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Cohomology and L-values

By Hiroyuki Yoshida∗

Abstract

In a paper published in 1959, Shimura presented an elegant calcu-
lation of the critical values of L-functions attached to elliptic modular
forms using the first cohomology group. We will show that a similar
calculation is possible for Hilbert modular forms over real quadratic
fields using the second cohomology group. We present explicit numer-
ical examples calculated by this method.

In a celebrated paper [Sh1] published in 1959, Shimura showed that ratios
of critical values of the L-function attached to an elliptic modular form can
be calculated explicitly using the cohomology group. This method was de-
veloped into the theory of modular symbols by Manin [Man]. Though there
have been great advances during the next half century in understanding the
relationship of automorphic forms and group cohomologies, it seems that no
explicit calculations of L-values using cohomology groups were performed
beyond the one dimensional case. The purpose of this paper is to show that
we can use cohomology groups effectively for calculations of L-values even in
higher dimensional cases.

To explain our ideas and results, it is best to review first the calculation
in [Sh1]. Let H be the complex upper half plane. Let Γ be a Fuchsian group
and let Ω be a cusp form of weight k ≥ 2 with respect to Γ. Put l = k − 2
and let ρl be the symmetric tensor representation of GL(2,C) of degree l on
a vector space V . We regard V as a Γ-module. Put ρ = ρl. We consider a
V -valued differential form on H:

d(Ω) = Ω(z)

[
z
1

]l

dz.
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Here

[
z
1

]l

denotes the column vector of dimension l + 1 whose components

are zl, zl−1, . . . , 1. We have d(Ω) ◦ γ = ρ(γ)d(Ω) for every γ ∈ Γ. Here
d(Ω) ◦ γ denotes the transform of d(Ω) by γ. Take a point of the complex
upper half plane or a cusp of Γ and denote it by z0. For γ ∈ Γ, we consider
the integral

(1) f(γ) =

∫ γz0

z0

d(Ω).

Then f satisfies the 1-cocycle condition:

f(γ1γ2) = f(γ1) + ρ(γ1)f(γ2).

The cohomology class of f in H1(Γ, V ) does not depend on the choice of z0.
Let p ∈ Γ be a parabolic element and z′0 be the cusp fixed by p. Then we
have

f(p) = (ρ(p)− 1)

∫ z0

z′0

d(Ω).

Thus f(p) looks like a coboundary, which is the parabolic condition on f .
Now let Γ = SL(2,Z) and z0 = i∞. Put

σ =

(
0 1
−1 0

)
, τ =

(
1 1
0 1

)
.

Then we find

(2) f(στ) = −
( ∫ i∞

0

Ω(z)ztdz

)

0≤t≤l

= −
(

it+1R(t + 1, Ω)

)

0≤t≤l

,

where R(s, Ω) = (2π)−sΓ(s)L(s, Ω) with the L-function L(s, Ω) of Ω. Since
(στ)3 = 1 and σ2 = 1, the 1-cocycle condition gives

(3)
[1 + ρ(στ) + ρ((στ)2)]f(στ) = 0,

[1 + ρ(σ)]f(σ) = [1 + ρ(σ)]f(στ) = 0.

In other words, f(στ) is annihilated by the elements 1+στ +(στ)2 and 1+σ
of the group ring Z[SL(2,Z)]. This gives constraints on the critical values of
L(s, Ω). For k = 12 and Ω = ∆, Shimura obtained that

R(8, ∆) =
5

4
R(6, ∆), R(10, ∆) =

12

5
R(6, ∆), etc.

In this paper, we will treat the case of Hilbert modular forms over a real
quadratic field F . Let OF be the ring of integers of F and Γ be a congruence
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subgroup of SL(2,OF ). Let Ω be a Hilbert modular cusp form of weight
(k1, k2) with respect to Γ. We assume 2 ≤ k2 ≤ k1 and put li = ki− 2, i = 1,
2. The first step is to attach an explicitly given 2-cocycle of Γ to Ω. This is
given in the author’s book [Y3] as follows. Let ρ = ρl1 ⊗ ρl2 and V be the
representation space of ρ. We consider a V -valued differential form on H2:

d(Ω) = Ω(z)

[
z1

1

]l1

⊗
[
z2

1

]l2

dz1dz2, z = (z1, z2) ∈ H2.

We have

(4) d(Ω) ◦ γ = ρ(γ)d(Ω), γ ∈ Γ.

Take a point w = (w1, w2) on H2. For γ1, γ2 ∈ Γ, we consider the integral

(5) f(γ1, γ2) =

∫ γ1w1

γ1γ2w1

∫ γ′1w2

w2

d(Ω).

Here γ′1 denotes the conjugate of γ1 by Gal(F/Q). Then f is a 2-cocycle of Γ
taking values in V . The cohomology class of f ∈ H2(Γ, V ) does not depend
on the choice of w. Let p ∈ Γ be a parabolic element and let (w∗

1, w
∗
2) be the

cusp fixed by p. Since Ω is a cusp form, we may replace w2 by w∗
2. By this

procedure, we find the parabolic condition satisfied by f .
Next let Γ = SL(2,OF ) and let ε be the fundamental unit of F . We

assume that l1 ≡ l2 mod 2 and replace Γ by PSL(2,OF ). Put

σ =

(
0 1
−1 0

)
, µ =

(
ε 0
0 ε−1

)
.

We choose w1 = iε−1, w2 = i∞. Then we have

f(σ, µ) = f(σ, σ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω).

For 0 ≤ s ≤ l1, 0 ≤ t ≤ l2, we put

Ps,t =

∫ iε

iε−1

∫ i∞

0

Ω(z)zs
1z

t
2dz1dz2.

The (l1 + 1)(l2 + 1) components of f(σ, µ) are given by −Ps,t. We have

(6) Pm,m−(k1−k2)/2 = (−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2R(m + 1, Ω)
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where R(s, Ω) = (2π)−2sΓ(s)Γ(s − (k1 − k2)/2)L(s, Ω) with the L-function
L(s, Ω) of Ω. The formula (6) gives a generalization of (2); (5) and (6) were
known to the author nine years ago.

The L-value L(m, Ω), m ∈ Z is a critical value if and only if

l1 − l2
2

+ 1 ≤ m ≤ l1 + l2
2

+ 1.

Since all of them appear as components of f(σ, µ), we expect that we can
deduce information on critical values once we know the second cohomology
group H2(Γ, V ) well. Before to materialize this hope, we need to answer
the following conceptual question: Can we annihilate the effect of adding a
coboundary to f? We can give an affirmative answer to this question by
using the parabolic condition. Put

P =

{(
u v
0 u−1

) ∣∣∣∣ u ∈ O×
F , v ∈ OF

}
/{±12} ⊂ Γ.

Then we have

(7) f(pγ1, γ2) = pf(γ1, γ2) for every p ∈ P, γ1, γ2 ∈ Γ.

This is the parabolic condition on f when Γ = PSL(2,OF ). A 2-cocycle
which satisfies (7) is called a parabolic 2-cocycle. In section 3, we will prove:

Theorem. Let i = 1 or 2. Then

dim H i(P, V ) =

{
0 if l1 6= l2 or N(ε)l1 = −1,

1 if l1 = l2 and N(ε)l1 = 1.

Now suppose that we add a coboundary to f keeping the parabolic condition
(7). In section 4, using this theorem for the case i = 1, we will show:
If l1 6= l2, the components of f(σ, µ) related to the critical values do not
change. If l1 = l2, the same assertion holds except for the critical values on
the edges: L(1, Ω) and L(l1 +1, Ω). Therefore we can deduce information on
critical values L(m, Ω) once we know a parabolic 2-cocycle corresponding to
Ω.

The final step is to find constraints on f(σ, µ) which generalize (3). This
is technically the most difficult step. Let OF = Z + Zω and put

τ =

(
1 1
0 1

)
, η =

(
1 ω
0 1

)
.

It is known ([V]) that Γ is generated by σ, µ, τ and η. Let F be the free group
on four letters σ̃, µ̃, τ̃ , η̃. Define a surjective homomorphism π : F −→ Γ by
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π(σ̃) = σ, π(µ̃) = µ, π(τ̃) = τ , π(η̃) = η and let R be the kernel of π. Then
we have Γ = F/R and (cf. §1.4)

(8) H2(Γ, V ) ∼= H1(R, V )Γ/Im(H1(F , V )).

Here we have

H1(R, V )Γ =

{
ϕ ∈ Hom(R, V ) | ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R

}
.

We write
ε2 = A + Bω, ε2ω = C + Dω.

We have relations: (i) σ2 = 1. (ii) (στ)3 = 1. (iii) (σµ)2 = 1. (iv) τη = ητ .
(v) µτµ−1 = τAηB. (vi) µηµ−1 = τCηD. For t ∈ O×

F , we have

(vii) σ

(
1 t
0 1

)
σ =

(
1 −t−1

0 1

)
σ

(−t 1
0 −t−1

)
.

The relation (ii) follows from (vii) by taking t = 1. We call the relation group
R minimal if it is generated by the elements corresponding to (i) ∼ (vii) and
their conjugates. We see that µ, τ and η generate P and (iv) ∼ (vi) are their
fundamental relations.

Now let ϕ ∈ H1(R, V )Γ be a corresponding element to f . Adding an
element of Im(H1(F , V )), we may assume that ϕ(σ̃2) = 0. Then we find (cf.
(5.3))

f(σ, µ) = −ϕ((σ̃µ̃)2).

Our problem is reduced to find constraints on ϕ((σ̃µ̃)2). We have an obvious
constraint σµϕ((σ̃µ̃)2) = ϕ((σ̃µ̃)2) but of course it is not enough.

To proceed further, we assume that l1 and l2 are even and change ρ to
ρ′ = ρ′l1 ⊗ ρ′l2 where ρ′l(g) = ρl(g) det(g)−l/2 and regard V as a PGL(2,OF )-
module. The Γ-module structure does not change. We put

ν =

(
ε 0
0 1

)
, δ =

(−1 0
0 1

)
.

These two elements act on Γ as outer automorphisms and induce automor-
phisms of H2(Γ, V ) of order 2. Hence H2(Γ, V ) decomposes into four pieces
under their actions. Let Γ∗ be the subgroup of PGL(2,OF ) generated by Γ
and ν. The transfer map gives an isomorphism of the plus part of H2(Γ, V )
under the action of ν onto H2(Γ∗, V ). For simplicity suppose that we can
take ω = ε. Then σ, ν and τ generate Γ∗. Let F∗ be the free group on
three letters σ̃, ν̃, τ̃ . Define a surjective homomorphism π∗ : F∗ −→ Γ∗ by
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π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ and let R∗ be the kernel of π∗. Then we
have Γ∗ = F∗/R∗ and

(8∗) H2(Γ∗, V ) ∼= H1(R∗, V )Γ∗/Im(H1(F∗, V )).

Let f ∗ be the transfer of f to Γ∗ and let f+ be the restriction of f ∗ to Γ.
Then f+ is the projection of f to the plus part. (We perform this procedure
on the cocycle level.) We have

f ∗(σ, µ) = f+(σ, µ) = (1 + ν)f(σ, µ).

In Γ∗, σ, ν and τ satisfy the relations (i), (ii) and (iii∗): (σν)2 = 1, (iv∗):
τντν−1 = ντν−1τ , (v∗): ν2τν−2 = τA(ντν−1)B. Let P ∗ be the subgroup
of Γ∗ generated by P and ν. We see that P ∗ is generated by ν and τ and
(iv∗) and (v∗) are the fundamental relations between generators ν and τ .
Let ϕ∗ ∈ H1(R∗, V )Γ∗ be a corresponding element to f ∗. By the parabolic
condition on f , we may assume that ϕ∗ vanishes on the elements of R∗

corresponding to (iv∗) and (v∗). Adding an element of Im(H1(F∗, V )), we
may also assume that ϕ∗(σ̃2) = 0. Then we have (cf. (6.6))

f ∗(σ, µ) = −(1 + ν−1)ϕ∗((σ̃ν̃)2)

and two quantities

A = ϕ∗((σ̃ν̃)2), B = ϕ∗((σ̃τ̃)3)

remain to be determined. The Hecke operators act on H2(Γ∗, V ). We can
analyze its action on the right-hand side of (8∗) and will give a simple formula
for it. The quantity A is related to the critical values of L(s, Ω). We may
assume that the class of f ∗ is in the plus space of H2(Γ∗, V ) under the action
of δ. Then A must satisfy the constraints

(9) (σν − 1)A = 0, (δ − 1)A = 0.

We will execute the determination of A for F = Q(
√

5) and F = Q(
√

13).
First assume F = Q(

√
5). In this case, we can show that R is minimal

and that R∗ is generated by the elements corresponding to the relations (i),
(ii), (iii∗), (iv∗), (v∗) and their conjugates. Calculating the action of the
Hecke operator T (2) on the right hand side of (8∗), we find a certain element
x ∈ F∗ such that π∗(x)3 = 1. We can give an explicit formula expressing
ϕ∗(x3) in terms of A and B. In every case examined, we find by numerical
computations that we may assume that B = 0 by adding an element of
Im(H1(F∗, V )). Therefore

(10) (x− 1)ϕ∗(x3) = 0
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gives a new constraint on A. Let Z+
A be the subspace of V consisting of all A

which satisfy (9) and (10) and let B+
A be the subspace of Z+

A which represents
the contribution from Im(H1(F∗, V )). Again in every case examined, we find
by numerical computations that dimSl1+2,l2+2(Γ) = dim Z+

A/B+
A . If this is

one dimensional, we can deduce information on L-values by calculating Z+
A .

In general, calculating the action of T (2) on Z+
A/B+

A and taking eigenvectors,
we can obtain many examples on L-values. Actually by considering f+, we
are losing half of the information on critical values (cf. §5.6). To treat all
critical values, we need to consider f−, the projection of f to the minus
part of H2(Γ, V ) under the action of ν. To handle f− is a somewhat more
complicated task and we leave the explanation of it to the text. Next let
F = Q(

√
13). The procedure is almost the same. Let p be the prime ideal

generated by 4 − √13. Calculating the action of the Hecke operator T (p),
we obtain a certain element x ∈ F∗ such that π∗(x) is of order 3. Then the
constraint (x− 1)ϕ∗(x3) = 0 obtained from x is sufficient. Here remarkably
we can perform rigorous calculations without proving that R is minimal.
(This is actually true also for the case F = Q(

√
5).) We have used Pari

[PARI] for the numerical calculations in sections 6 and 7.
To calculate the ratios of critical values of L-functions, there is another

method initiated by Shimura [Sh3] which employs the Rankin-Selberg con-
volution and differential operators. A comparison of this method and the
cohomological method will be discussed in section 8.

Now let us explain the organization of this paper briefly. In section 1, we
will review several facts on cohomology of a group which will be repeatedly
used in later sections. In section 2, we will review Hilbert modular forms.
We will prove (5) and (6). In section 3, we will study cohomology groups of
P and will prove the theorem stated above. In section 4, we will examine
the parabolic condition on a cocycle applying results in section 3. We will
prove the non-vanishing of the cohomology class of f under mild conditions.
In section 5, we will study the decomposition of H2(Γ, V ) under the action of
outer automorphisms of Γ. It decomposes into four pieces under this action.
In section 6, we will study the case F = Q(

√
5) in detail and will give many

examples. In section 7, we will study the case F = Q(
√

13). We devote
section 8 to the comparison of two methods mentioned above. In section 9,
we will show that it is possible to deduce some information on the components
of the cocycle f(Ω) which are not related to critical values in certain cases.

A more detailed version of this paper (except for section 9) is available
at Math. Arxiv [Y4].

Notation. For an associative ring A with identity element, A× denotes
the group of all invertible elements of A. Let R be a commutative ring with
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identity element. We denote by M(n,R) the ring of all n× n matrices with
entries in R. We define GL(n,R) = M(n,R)×, SL(n,R) = {g ∈ GL(n,R) |
det g = 1}. The quotient group of GL(n,R) (resp. SL(n,R)) by its center is
denoted by PGL(n,R) (resp. PSL(n,R)). Let G be a group. The subgroup
of G generated by g1, . . . , gn ∈ G is denoted by 〈g1, . . . , gn〉. When G acts
on a module M , MG denotes the submodule of M consisting of all elements
fixed by G. For an algebraic number field F , OF denotes the ring of integers
of F . For a ∈ OF , the ideal aOF generated by a is denoted by (a). We
denote by EF the group of units of F , i.e., EF = O×

F . When F is totally real
and α ∈ F , α À 0 means that α is totally positive. We denote by H the
complex upper half plane. The set of all positive real numbers is denoted by
R+.

§1. Preparations on cohomology groups

In this section, we will review group cohomology. Most of the results,
except for the results presented in subsection 1.5, can be found in standard
text books such as Cartan–Eilenberg [CE], Serre [Se1], Suzuki [Su].

1.1. Let G be a group, M be a left G-module. We set C0(G,M) = M , and
for 0 < n ∈ Z, let Cn(G,M) be the abelian group consisting of all mappings
of Gn into M . We define the coboundary operator dn : Cn(G,M) −→
Cn+1(G,M) by the usual formula

(1.1)

(dnf)(g1, . . . ,gn+1) = g1f(g2, . . . , gn+1) + (−1)n+1f(g1, . . . , gn)

+
n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1).

We set
Zn(G,M) = Ker(dn), Bn(G,M) = Im(dn−1).

Here we understand B0(G,M) = {0}. An element of Cn(G,M) (resp.
Zn(G,M), resp. Bn(G,M)) is called an n-cochain (resp. n-cocycle, resp.
n-coboundary). The cohomology group Hn(G,M) is that of the complex
{Cn(G,M), dn}, i.e., Hn(G,M) = Zn(G,M)/Bn(G,M).

Let G′ be a group and M ′ be a left G′-module. Let ϕ : G −→ G′ be
a group homomorphism and ψ : M ′ −→ M be a homomorphism of abelian
groups. We assume that ϕ and ψ are compatible, that is

ψ(ϕ(g)m′) = g(ψ(m′)), m′ ∈ M ′, g ∈ G.

For f ∈ Cn(G′,M ′), define ωnf ∈ Cn(G,M) by the formula

(1.2) (ωnf)(g1, g2, . . . , gn) = ψ(f(ϕ(g1), ϕ(g2), . . . , ϕ(gn)).
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Then ωn sends Zn(G′,M ′) (resp. Bn(G′,M ′)) into Zn(G,M) (resp. Bn(G,M))
and induces a homomorphism Hn(G′,M ′) −→ Hn(G,M).

Now let N be a subgroup of G. Let g ∈ G. We define

ϕ(n) = gng−1, n ∈ g−1Ng, ψ(m) = g−1m, m ∈ M.

Then ϕ is an isomorphism of g−1Ng onto N ; ϕ and ψ are compatible. Hence
we obtain an isomorphism of Hp(N,M) onto Hp(g−1Ng,M), which is in-
duced by sending f ∈ Zp(N,M) to f ′ ∈ Zp(g−1Ng,M):

(1.3) f ′(n1, n2, . . . , np) = g−1f(gn1g
−1, gn2g

−1, . . . , gnpg
−1).

1.2. Let H be a subgroup of G of finite index. An explicit form of the
transfer map T : Hn(H, M) −→ Hn(G,M) is given as follows (cf. Eckmann
[E], [Y4]).

Proposition 1.1. Let G be a group, H be a subgroup of finite index
and M be a left G-module. Let G = tr

i=1xiH be a coset decomposition.
Let f ∈ Zn(H, M) be an n-cocycle representing c ∈ Hn(H, M). Then an
n-cocycle f̃ ∈ Zn(G,M) which represents T (c) ∈ Hn(G,M) is given by

f̃(g1, g2, . . . , gn) =
r∑

i=1

xif(x−1
i g1xpi(1), x

−1
pi(1)

g2xpi(2), . . . , x
−1
pi(n−1)gnxpi(n)).

Here xpi(l) is chosen so that

x−1
i g1xpi(1) ∈ H, x−1

pi(l−1)glxpi(l) ∈ H, 2 ≤ l ≤ n.

Let Res : Hn(G,M) −→ Hn(H, M) be the restriction homomorphism.
Then we have the well-known result:

(1.4) T ◦ Res(c) = [G : H]c, c ∈ Hn(G,M).

1.3. We are going to consider the action of Hecke operators on cohomol-
ogy groups. Let G̃ be a group and G be a subgroup. Let M be a G̃-module.
We assume that G and tGt−1 are commensurable for every t ∈ G̃. For t ∈ G̃,
we put

Gt = G ∩ t−1Gt.

Let
conj : Hn(G,M) −→ Hn(t−1Gt,M)

be the isomorphism induced by (1.3). Let Res be the restriction map from
Hn(t−1Gt,M) to Hn(Gt,M) and let T : Hn(Gt,M) −→ Hn(G,M) be the
transfer map. Then we define

(1.5) [GtG] = T ◦ Res ◦ conj.

9



(It is not difficult to check that the right-hand side of (1.5) depends only on
the double coset GtG and that (1.5) defines a homomorphism of the Hecke

ring H(G, G̃) 1 into End(Hn(G,M)).) An explicit form of this operator when
n = 2 is given as follow (cf. [Y4]).

Proposition 1.2. Let c ∈ H2(G,M) and let f ∈ Z2(G,M) be a 2-
cocycle representing c. Let GtG = td

i=1Gβi be a coset decomposition. Then
a 2-cocycle h ∈ Z2(G,M) representing [GtG](c) is given by

h(g1, g2) =
d∑

i=1

β−1
i f(βig1β

−1
j(i), βj(i)g2β

−1
k(j(i))).

Here, for 1 ≤ i ≤ d, we choose j(i) and k(i) so that

βig1β
−1
j(i) ∈ G, βig2β

−1
k(i) ∈ G.

1.4. Let G be a group and M be a left G-module. Let N be a normal
subgroup of G. Then we have the Hochschild-Serre spectral sequence

(1.6) Ep,q
2 = Hp(G/N, Hq(N,M)) =⇒ Hn(G,M).

In low dimensions, this gives an exact sequence

(1.7)
0 −−−→ H1(G/N, MN) −−−→ H1(G,M) −−−→ H1(N,M)G/N

−−−→ H2(G/N, MN) −−−→ H2(G,M).

Now we are going to describe a method to calculate H2(G,M), which is
originally due to MacLane (cf. [K], §50). Taking a free group F , we write
G = F/R. Let π : F −→ G be the canonical homomorphism such that
Ker(π) = R. We regard M as an F -module by gm = π(g)m, g ∈ F , m ∈ M .
Since

(1.8) H i(F ,M) = 0, i ≥ 2,

(1.7) yields an exact sequence

0 −−−→ H1(G,M) −−−→ H1(F ,M) −−−→ H1(R,M)G −−−→ H2(G,M) −−−→ 0.

Therefore we have

(1.9) H2(G,M) ∼= H1(R,M)G/Im(H1(F ,M)).

1For the definition of the Hecke ring, see [Sh2], 3.1.
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Since R acts on M trivially, we have B1(R,M) = 0 and H1(R,M) =
Hom(R,M). Therefore we have

H1(R,M)G = {ϕ ∈ Hom(R,M) | ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R}.

The isomorphism (1.9) is explicitly given as follows. For g ∈ F , we
put π(g) = ḡ. Take a 2-cocycle f ∈ Z2(G,M). The mapping (g1, g2) −→
f(ḡ1, ḡ2) is an M -valued 2-cocycle of F . By (1.8), there exists a 1-cochain
a ∈ C1(F ,M) such that

(1.10) f(ḡ1, ḡ2) = g1a(g2) + a(g1)− a(g1g2), g1, g2 ∈ F .

Let ϕ = a|R, the restriction of a to R. We may assume that f is normalized,
i.e.,

f(1, g) = f(g, 1) = 0 for all g ∈ G.

If r1, r2 ∈ R, then, by (1.10), we have

a(r2) + a(r1)− a(r1r2) = 0.

Therefore we get ϕ ∈ Z1(R,M) = Hom(R,M). By (1.10), we have

(1.11) a(gr) = ga(r) + a(g), g ∈ F , r ∈ R.

Again by (1.10), we have

a(grg−1) = gra(g−1) + a(gr)− f(ḡ, ḡ−1)

= ga(g−1) + ga(r) + a(g)− f(ḡ, ḡ−1)

for g ∈ F , r ∈ R. Using (1.10) with g1 = g, g2 = g−1 and noting a(1) = 0,
we obtain

(1.12) ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R.

This formula shows that ϕ belongs to H1(R,M)G. Suppose that a′ is another
1-cochain satisfying (1.12). Put ϕ′ = a′|R, a′ = a + b. Then b ∈ Z1(F ,M).
Hence the classes of ϕ and ϕ′ in H1(R,M)G/Im(H1(F ,M)) are the same.
Suppose that we add the coboundary of a 1-cochain c to f . Then (1.10)
holds when we replace a(g) by a(g) + c(ḡ). Then a|R does not change. Thus
we have defined a homomorphism

ω : H2(G,M) −→ H1(R,M)G/Im(H1(F ,M)).

We can verify without difficulty that ω is a surjective isomorphism.
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1.5. Let f ∈ Z2(G,M) be a normalized cocycle. Take a ∈ C1(F ,M)
which satisfies (1.10) and put ϕ = a|R ∈ H1(R,M)G. For every g ∈ G, we
choose g̃ ∈ F such that π(g̃) = g. The formula (1.10) can be written as

f(g1, g2) = g1a(g̃2) + a(g̃1)− a(g̃1g̃2), g1, g2 ∈ G.

By (1.11), we have

a(g̃1g2(g̃1g2)
−1g̃1g̃2) = g1g2ϕ((g̃1g2)

−1g̃1g̃2) + a(g̃1g2).

Then, using (1.12), we have

a(g̃1g̃2) = a(g̃1g2) + ϕ(g̃1g̃2(g̃1g2)
−1).

Therefore we obtain

(1.13) f(g1, g2) = g1a(g̃2)+a(g̃1)−a(g̃1g2)−ϕ(g̃1g̃2(g̃1g2)
−1), g1, g2 ∈ G.

This formula shows that, adding a coboundary to f , we may assume that

(1.14) f(g1, g2) = −ϕ(g̃1g̃2(g̃1g2)
−1).

Conversely we note the following Lemma.

Lemma 1.3. Let ϕ ∈ H1(R,M)G. For g1, g2 ∈ G, define f(g1, g2) by
(1.14). Then f ∈ Z2(G,M). If 1̃ = 1, f is normalized.

Proof. The cocycle condition is

g1f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0.

We have

g1ϕ(g̃2g̃3(g̃2g3)
−1)− ϕ(g̃1g2g̃3(g̃1g2g3)

−1) + ϕ(g̃1g̃2g3(g̃1g2g3)
−1)

−ϕ(g̃1g̃2(g̃1g2)
−1)

= ϕ(g̃1g̃2g̃3(g̃2g3)
−1g̃−1

1 ) + ϕ(g̃1g̃2g3(g̃1g2g3)
−1) + ϕ(g̃1g2g3g̃

−1
3 (g̃1g2)

−1)

+ ϕ(g̃1g2g̃
−1
2 g̃−1

1 )

= ϕ(g̃1g̃2g̃3(g̃2g3)
−1g̃−1

1 ) + ϕ(g̃1g̃2g3g̃
−1
3 (g̃1g2)

−1) + ϕ(g̃1g2g̃
−1
2 g̃−1

1 )

= ϕ(g̃1g̃2(g̃1g2)
−1) + ϕ(g̃1g2g̃

−1
2 g̃−1

1 ) = 0.

Hence the cocycle condition holds. The latter assertion is obvious. This
completes the proof.

We are going to write the action of Hecke operators on the right-hand
side of (1.9) explicitly. Let the notation be the same as in subsections 1.3 and
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1.4. Let f ∈ Z2(G,M) be a normalized 2-cocycle of the cohomology class c.
Let h be the 2-cocycle given by Proposition 1.2 which represents the class
[GtG](c). Clearly h is normalized. There exists a 1-cochain b ∈ C1(F ,M)
such that

h(ḡ1, ḡ2) = g1b(g2) + b(g1)− b(g1g2), g1, g2 ∈ F .

Proposition 1.4. Let ϕ ∈ H1(R,M)G and let a normalized 2-cocycle
f ∈ Z2(G,M) be given by (1.14). Suppose gj ∈ G are given for 1 ≤ j ≤ m.
For every j, we define a permutation on d letters pj ∈ Sd by

βigjβ
−1
pj(i)

∈ G, 1 ≤ i ≤ d.

We define qj ∈ Sd inductively by

q1 = p1, qk = pkqk−1, 2 ≤ k ≤ m.

We assume that b(g̃j) = 0 for 1 ≤ j ≤ m. Then we have
(1.15)

b(g̃1g̃2 · · · g̃m)

=
d∑

i=1

β−1
i ϕ( ˜βig1β

−1
q1(i)

˜βq1(i)g2β
−1
q2(i) · · · ˜βqm−1(i)gmβ−1

qm(i)(
˜βig1g2 · · · gmβ−1

qm(i))
−1).

Proof. If m = 1, the left-hand side of (1.15) is 0 and the right-hand side
is 0 since ϕ(1) = 0. We assume that m ≥ 2 and the formula is valid for
m− 1. Then, by Proposition 1.2 and (1.14), we have

b(g̃1g̃2 · · · g̃m−1g̃m)

= g1g2 · · · gm−1b(g̃m) + b(g̃1g̃2 · · · g̃m−1)− h(g1 · · · gm−1, gm)

=
d∑

i=1

β−1
i ϕ( ˜βig1β

−1
q1(i) · · · ˜βqm−2(i)gm−1β

−1
qm−1(i)(

˜βig1g2 · · · gm−1β
−1
qm−1(i))

−1)

+
d∑

i=1

β−1
i ϕ( ˜βig1g2 · · · gm−1β

−1
qm−1(i)

˜βqm−1(i)gmβ−1
qm(i)(

˜βig1g2 · · · gmβ−1
qm(i))

−1)

=
d∑

i=1

β−1
i ϕ( ˜βig1β

−1
q1(i) · · · ˜βqm−1(i)gmβ−1

qm(i)(
˜βig1g2 · · · gmβ−1

qm(i))
−1)

since b(g̃m) = 0. This completes the proof.

We have

b(g1g2) = g1b(g2) + b(g1)− h(ḡ1, ḡ2), g1, g2 ∈ F .
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We may take b(g) = 0 for a fixed set of generators of F and we can apply
the above formula to determine the value of b(g) according to the length of
g ∈ F . But Proposition 1.5 is useful beyond this case as will be seen after
section 5.

§2. Hilbert modular forms

2.1. In this subsection, we follow the exposition given in Shimura [Sh4].
Let F be a totally real algebraic number field of degree n. Let dF denote the
different of F over Q and let {σ1, σ2, . . . , σn} be the set of all isomorphisms
of F into R. For ξ ∈ F , we put ξ(ν) = ξσν . For z = (z1, z2, . . . , zn) ∈ Hn, we
put

eF (ξz) = exp(2πi

n∑
ν=1

ξ(ν)zν).

Let k = (k1, k2, . . . , kn) ∈ Zn. For g =

(
a b
c d

)
∈ GL(2,R)+ and z ∈ H,

we put gz = (az + b)/(cz + d), j(g, z) = cz + d, where GL(2,R)+ = {g ∈
GL(2,R) | det g > 0}; GL(2,R)n

+ acts on Hn. For a function Ω on Hn,
g = (g1, . . . , gn) ∈ GL(2,R)n

+ and z = (z1, . . . , zn) ∈ Hn, we define a function
Ω|k g on Hn by the formula

(Ω|k g)(z) =
n∏

ν=1

det(gν)
kν/2j(gν , zν)

−kνΩ(gz).

We embed GL(2, F ) into GL(2,R)n by

GL(2, F ) 3
(

a b
c d

)
7→ ( (

a(1) b(1)

c(1) d(1)

)
, . . . ,

(
a(n) b(n)

c(n) d(n)

) ) ∈ GL(2,R)n.

Let Γ be a congruence subgroup of SL(2,OF ). A holomorphic function
Ω on Hn is called a Hilbert modular form of weight k with respect to Γ if

Ω|k γ = Ω

holds for every γ ∈ Γ, and usual conditions at cusps when F = Q. For
every g ∈ SL(2, F ), Ω|k g has a Fourier expansion of the form (Ω|k g)(z) =∑

ξ∈L ag(ξ)eF (ξz), where L is a lattice in F . We have ag(ξ) = 0 if ξ 6= 0 is not
totally positive. We call Ω a cusp form if the constant term ag(0) vanishes
for every g ∈ SL(2, F ). We denote the space of Hilbert modular forms (resp.
cusp forms) of weight k with respect to Γ by Mk(Γ) = Mk1,k2,...,kn(Γ) (resp.
Sk(Γ) = Sk1,k2,...,kn(Γ)).
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Hereafter until the end of this subsection, we assume that Γ = SL(2,OF )
and 0 6= Ω ∈ Sk(Γ). The Fourier expansion of Ω takes the form

(2.1) Ω(z) =
∑

0¿ξ∈d−1
F

a(ξ)eF (ξz).

Since

(
u 0
0 u−1

)
∈ Γ for u ∈ EF , we have

uk
∑

0¿ξ∈d−1
F

a(ξ)eF (ξu2z) =
∑

0¿ξ∈d−1
F

a(ξ)eF (ξz),

where we put uk =
∏n

ν=1(u
(ν))kν . Therefore we have

(2.2) a(u2ξ) = uka(ξ), u ∈ EF .

In particular, taking u = −1, we have

(2.3)
n∑

ν=1

kν ≡ 0 mod 2.

For the sake of simplicity, we assume that

(A) uk > 0 for every u ∈ EF .

Put

k0 = max(k1, k2, . . . , kn), k′ν = k0 − kν , k′ = (k′1, k
′
2, . . . , k

′
n).

We define the L-function of Ω by

(2.4) L(s, Ω) =
∑

ξE2
F

a(ξ)ξk′/2N(ξ)−s, ξk′/2 =
n∏

ν=1

(ξ(ν))k′ν/2.

Here the summation extends over all cosets ξE2
F with ξ satisfying 0 ¿ ξ ∈

d−1
F . By (2.2) and (A), we see that the sum is well defined. The series (2.4)

converges when <(s) is sufficiently large. We put

(2.5) R(s, Ω) = (2π)−ns

n∏
ν=1

Γ(s− k′ν
2

)L(s, Ω).

By the standard calculation, we obtain the integral representation

(2.6)

∫

Rn
+/E2

F

Ω(iy1, iy2, . . . , iyn)
n∏

ν=1

ys−k′ν/2−1
ν dyν = (2π)

Pn
ν=1 k′ν/2R(s, Ω)
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when <(s) is sufficiently large. By a suitable transformation of this integral,
we can show that R(s, Ω) is an entire function of s and satisfies the functional
equation

(2.7) R(s, Ω) = (−1)
Pn

ν=1 kν/2R(k0 − s, Ω).

2.2. In [Y3], Chapter V, §5, we gave an explicit method to attach a coho-
mology class to a Hilbert modular form. We will review it in this subsection.

For 0 ≤ l ∈ Z and

[
u
v

]
∈ C2, put

[
u
v

]l

= t(ul ul−1v . . . uvl−1 vl).

Define a representation ρl : GL(2,C) −→ GL(l + 1,C) by

ρl(g)

[
u
v

]l

= (g

[
u
v

]
)l.

Let Γ be a congruence subgroup of SL(2,OF ). Let l1, l2, . . . , ln be nonnega-
tive integers. Let V be the representation space of ρl1 ⊗ ρl2 ⊗ · · · ⊗ ρln . Let
Ω ∈ Ml1+2,l2+2,...,ln+2(Γ) be a Hilbert modular form of weight (l1 + 2, l2 +
2, . . . , ln + 2). Define a holomorphic V -valued n-form d(Ω) on Hn by

(2.8) d(Ω) = Ω(z)

[
z1

1

]l1

⊗
[
z2

1

]l2

⊗ · · · ⊗
[
zn

1

]ln

dz1dz2 · · · dzn.

We put ρ = ρl1 ⊗ ρl2 ⊗ · · · ⊗ ρln .
Let g = (g1, . . . , gn) ∈ GL(2,R)n

+. Under the action of g on Hn, d(Ω)
transforms to d(Ω) ◦ g, where

d(Ω) ◦ g = Ω(g(z))

[
g1z1

1

]l1

⊗ · · · ⊗
[
gnzn

1

]ln

(dz1 ◦ g1) · · · (dzn ◦ gn).

By an easy calculation, we obtain

(2.9a) d(Ω) ◦ g =
n∏

ν=1

(det gν)
−lν/2ρ(g)d(Ω|k g), g ∈ GL(2,R)n

+ ∩GL(2, F ).

In particular, we have

(2.9b) d(Ω) ◦ γ = ρ(γ)d(Ω), γ ∈ Γ.
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We are going to discuss the case n = 2 in detail. Take w = (w1, w2) ∈ H2.
For z = (z1, z2) ∈ H2, we put

(2.10) F (z) =

∫ z1

w1

∫ z2

w2

d(Ω),

a period integral of Eichler–Shimura type. Let H denote the vector space of
all V -valued holomorphic functions on H2. For ϕ ∈ H and γ ∈ Γ, we define
a function γϕ on H2 by

(2.11) (γϕ)(z) = ρ(γ)ϕ(γ−1z).

Then H becomes a left Γ-module. Since

∂

∂z1

∂

∂z2

(γF − F ) = 0,

we can write
γF − F = g(γ; z1) + h(γ; z2),

where g(γ; z1) ∈ H (resp. h(γ; z2) ∈ H) is a function which depends only on
z1 (resp. z2) (cf. [Y3], p. 208, Lemma 5.1). We regard g and h as 1-cochains
in C1(Γ,H). Then clearly we have (d1 in §1.1 is abbreviated to d)

dg(γ1, γ2; z1) + dh(γ1, γ2; z2) = 0.

Put
f(Ω)(γ1, γ2) = dg(γ1, γ2; z1).

We abbreviate f(Ω) to f . We see that f(γ1, γ2) ∈ V is a constant. Further-
more, in H, f is a coboundary. Hence f satisfies the cocycle condition

(2.12) γ1f(γ2, γ3)− f(γ1γ2, γ3) + f(γ1, γ2γ3)− f(γ1, γ2) = 0.

The 2-cocycle f determines a cohomology class in H2(Γ, V ).
Let us give an explicit formula for f . For x ∈ F , let x′ denote the

conjugate of x over Q. For γ =

(
a b
c d

)
∈ Γ, let γ′ =

(
a′ b′

c′ d′

)
. We regard

γ, γ′ ∈ SL(2,R). Then, for γ ∈ Γ, we have

F (γ(z)) = F (γz1, γ
′z2) =

∫ γz1

w1

∫ γ′z2

w2

d(Ω)

=

∫ γz1

γw1

∫ γ′z2

γ′w2

d(Ω) +

∫ γz1

γw1

∫ γ′w2

w2

d(Ω) +

∫ γw1

w1

∫ γ′z2

w2

d(Ω)

=(ρl1(γ)⊗ ρl2(γ
′))F (z) +

∫ γz1

γw1

∫ γ′w2

w2

d(Ω) +

∫ γw1

w1

∫ γ′z2

w2

d(Ω),
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Substituting z by γ−1z in this formula, we get
(2.13)

(ρl1(γ)⊗ ρl2(γ
′))F (γ−1z)− F (z) = −

∫ z1

γw1

∫ γ′w2

w2

d(Ω)−
∫ γw1

w1

∫ z2

w2

d(Ω).

We may take

(2.14) g(γ; z1) = −
∫ z1

γw1

∫ γ′w2

w2

d(Ω),

(2.15) h(γ; z2) = −
∫ γw1

w1

∫ z2

w2

d(Ω).

For γ1, γ2 ∈ Γ, we have

(2.16) f(γ1, γ2) = (γ1g)(γ2; z1)− g(γ1γ2; z1) + g(γ1; z1),

(2.17) f(γ1, γ2) = −{(γ1h)(γ2; z2)− h(γ1γ2; z2) + h(γ1; z2)}.
By (2.14) and (2.16), we have

f(γ1, γ2) =(ρl1(γ1)⊗ ρl2(γ
′
1))g(γ2; γ

−1
1 z1)− g(γ1γ2; z1) + g(γ1; z1)

=− (ρl1(γ1)⊗ ρl2(γ
′
1))

∫ γ−1
1 z1

γ2w1

∫ γ′2w2

w2

d(Ω)

+

∫ z1

γ1γ2w1

∫ γ′1γ′2w2

w2

d(Ω)−
∫ z1

γ1w1

∫ γ′1w2

w2

d(Ω)

=−
∫ z1

γ1γ2w1

∫ γ′1γ′2w2

γ′1w2

d(Ω) +

∫ z1

γ1γ2w1

∫ γ′1γ′2w2

w2

d(Ω)−
∫ z1

γ1w1

∫ γ′1w2

w2

d(Ω)

=

∫ z1

γ1γ2w1

∫ γ′1w2

w2

d(Ω)−
∫ z1

γ1w1

∫ γ′1w2

w2

d(Ω)

=

∫ γ1w1

γ1γ2w1

∫ γ′1w2

w2

d(Ω)

using (2.9b). Thus we obtain an explicit formula

(2.18) f(γ1, γ2) =

∫ γ1w1

γ1γ2w1

∫ γ′1w2

w2

d(Ω).

By (2.9b), (2.18) can be written as

(2.19) f(γ1, γ2) = (ρl1(γ1)⊗ ρl2(γ
′
1))

∫ w1

γ2w1

∫ w2

γ′−1
1 w2

d(Ω).
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Suppose that w1 is replaced by w∗
1, w2 remaining the same. Then g(γ; z1)

changes to g(γ, z1) + a(γ), where

a(γ) =

∫ γw∗1

γw1

∫ γ′w2

w2

d(Ω).

Hence f(γ1, γ2) changes to f(γ1, γ2) + γ1a(γ2) − a(γ1γ2) + a(γ1). Suppose
that w2 is replaced by w∗

2, w1 remaining the same. Then h(γ; z2) changes to
h(γ, z2) + b(γ), where

b(γ) =

∫ γw1

w1

∫ w∗2

w2

d(Ω).

By (2.17), f(γ1, γ2) changes to f(γ1, γ2)−γ1b(γ2)+b(γ1γ2)−b(γ1). Therefore
the cohomology class of f does not depend on the choice of the “base points”
w1, w2.

Put Γ = Γ/({±12} ∩ Γ). By (2.18), we see that f can be regarded as a
2-cocycle of Γ taking values in V . Depending on the context, we consider f
as a 2-cocycle on Γ. We see that the cocycle f is normalized, i.e.,

(2.20) f(1, γ) = f(γ, 1) = 0 for every γ ∈ Γ.

Now assume that Ω is a cusp form. Then the cocycle f = f(Ω) satisfies
the “parabolic condition”. Namely let q ∈ Γ be a parabolic element and
w∗ = (w∗

1, w
∗
2) be the fixed point of q′. Since f is a cusp form, we may

replace w2 by w∗
2.

2 Let f ∗ be the cocycle obtained from (w1, w
∗
2). We have

f ∗(γ1, γ2) = f(γ1, γ2)− γ1b(γ2) + b(γ1γ2)− b(γ1)

with a 1-cochain b and f ∗(q, γ) = 0. Therefore

f(q, γ) = qb(γ)− b(qγ) + b(q), γ ∈ Γ,

i.e., f(q, γ) is of the form of coboundary whenever q is parabolic. Similar
argument applies to f(γ, q).

2.3. We are going to investigate closely the relation between the critical
values of L-function L(s, Ω) and the cocycle f(Ω). Until the end of this

2For every g ∈ SL(2, F ), we have the Fourier expansion (Ω|k g)(z) =∑
0¿ξ∈L ag(ξ)eF (ξz) where L is a lattice in F . We have the estimate |ag(ξ)| ≤

Mξk1/2ξ′k2/2 with a positive constant M depending on Ω and g (cf. [Sh7], p. 280, Propo-
sition A6.4). Using this estimate, it is not difficult to check the absolute convergence of
the integral (2.10) defining F (z) when w2 is replaced by w∗2 .
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subsection, we assume Γ = SL(2,OF ). Let ε be the fundamental unit of F .
We put

σ =

(
0 1
−1 0

)
, µ =

(
ε 0
0 ε−1

)
.

We regard σ and µ as elements of Γ. Taking γ1 = γ2 = γ3 = σ in (2.12), we
obtain

(2.21) σf(σ, σ) = f(σ, σ)

in view of (2.20). As the base points, we choose

w1 = iε−1, w2 = i∞.

By (2.18), we get

(2.22) f(σ, µ) = f(σ, σ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω).

Put

P =

{(
u v
0 u−1

) ∣∣∣∣ u ∈ EF , v ∈ OF

}
⊂ Γ.

By (2.18), we get

(2.23) f(p, γ) = 0 for every p ∈ P, γ ∈ Γ

since we have pw2 = w2 for p ∈ P . Taking γ1 = p ∈ P in (2.12), we obtain

(2.24) f(pγ1, γ2) = pf(γ1, γ2) for every p ∈ P, γ1, γ2 ∈ Γ.

This is the parabolic condition for Γ = SL(2,OF ) and will play a crucial role
in the succeeding sections.

For 0 ≤ s ≤ l1, 0 ≤ t ≤ l2, we put

(2.25) Ps,t =

∫ iε

iε−1

∫ i∞

0

Ω(z)zs
1z

t
2dz1dz2.

The components of f(σ, σ) are given by −Ps,t. The condition σf(σ, σ) =
f(σ, σ) is equivalent to

(2.26) Ps,t = (−1)l1+l2−s−tPl1−s,l2−t.

Put k1 = l1 + 2, k2 = l2 + 2. By (2.3), we have

(2.27) l1 ≡ l2 mod 2.
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We assume that l1 ≥ l2. Then we have

k0 = k1, k′1 = 0, k′2 = k1 − k2.

Since E2
F = 〈ε2〉, a fundamental domain of R2

+/E2
F is given by [ε−1, ε]×R+.

By (2.6), we obtain

(2.28)

∫ ε

ε−1

∫ ∞

0

Ω(iy1, iy2)y
s−1
1 y

s−(k1−k2)/2−1
2 dy1dy2 = (2π)(k1−k2)/2R(s, Ω)

when <(s) is sufficiently large. We can verify that the integral converges
locally uniformly for s ∈ C. Take m ∈ Z and put s = m, t = m−(k1−k2)/2.
Then 0 ≤ s ≤ l1, 0 ≤ t ≤ l2 hold if and only if

(2.29)
k1 − k2

2
≤ m ≤ k1 + k2

2
− 2.

For an integer m in this range, we have

Pm,m−(k1−k2)/2 =

∫ iε

iε−1

∫ i∞

0

Ω(z)zm
1 z

m−(k1−k2)/2
2 dz1dz2

= i2m−(k1−k2)/2+2

∫ ε

ε−1

∫ ∞

0

Ω(iy1, iy2)y
m
1 y

m−(k1−k2)/2
2 dy1dy2.

Therefore we obtain

(2.30) Pm,m−(k1−k2)/2 = (−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2R(m + 1, Ω)

by (2.28). By the functional equation (2.7), this is equal to

(−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2(−1)(k1+k2)/2R(k1 −m− 1, Ω).

Since k1 −m− 2 satisfies (2.29), we obtain

(2.31) Pm,m−(k1−k2)/2 = (−1)(k1−k2)/2Pk1−m−2,(k1+k2)/2−m−2

using (2.30). We see that (2.31) is consistent with (2.26). Note that (2.29)
is the condition for L(m + 1, Ω) to be a critical value (cf. [Sh4], (4.14)).

2.4. Let Ω ∈ Mk(Γ) and f = f(Ω) ∈ Z2(Γ, V ) be the 2-cocycle attached
to Ω defined by (2.18). In this subsection, we will write the action of Hecke
operators on the cohomology class of f(Ω) explicitly. We denote f(Ω) also
by fΩ.

Let F be a totally real number field of degree n and Γ be a congruence
subgroup of SL(2,OF ). Let $ be a totally positive element of F and let

(2.32) Γ

(
1 0
0 $

)
Γ = td

i=1Γβi
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be a coset decomposition. Let Ω ∈ Mk(Γ). We define the Hecke operator
T ($) by

(2.33) Ω | T ($) = N($)k0/2−1

d∑
i=1

Ω|k βi.

Clearly T ($) does not depend on the choice of the coset decomposition
(2.32). We have Ω|T ($) ∈ Mk(Γ); it is a cusp form if Ω is. By (2.9a), we
have

(2.34) d(Ω | T ($)) =
n∏

ν=1

($(ν)(k0+kν)/2−2

d∑
i=1

ρ(βi)
−1(d(Ω) ◦ βi).

Put

(2.35) c =
n∏

ν=1

($(ν))(k0+kν)/2−2.

Until the end of this subsection, we assume that n = 2. We define (cf. (2.10))

(2.36) FΩ|T ($)(z) =

∫ z1

w1

∫ z2

w2

d(Ω | T ($)), z = (z1, z2).

By the procedure given in §2.2, we can calculate the 2-cocycle attached to
Ω | T ($). We omit the details (cf. [Y4]). The result is as follows. For γ1,
γ2 ∈ Γ, we put

(2.37) βiγ1 = δ
(1)
i βj(i), δ

(1)
i ∈ Γ, βiγ2 = δ

(2)
i βk(i), δ

(2)
i ∈ Γ, 1 ≤ i ≤ d.

Then, modulo coboundary, we have

(2.38) fΩ|T ($)(γ1, γ2) = c

d∑
i=1

β−1
i fΩ(βiγ1β

−1
j(i), βj(i)γ2β

−1
k(j(i))).

This formula is consistent with Proposition 1.2.

2.5. Assume that the class number of F in the narrow sense is 1. Suppose
that Ω is a Hecke eigenform. Then the L-function L(s, Ω) defined by (2.4)
essentially coincides with the Euler product given in [Sh4] or in Jacquet-
Langlands [JL] but there is a subtle difference; we are going to explain it
briefly for the reader’s convenience.
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We write dF = (δ) with δ À 0. Let Ω ∈ Sk1,k2(Γ), Γ = SL(2,OF ) and let

Ω(z) =
∑

0¿α∈OF

c(α)eF (
α

δ
z)

be the Fourier expansion. We have a(α/δ) = c(α) (cf. (2.1)). We set

∆ = {α ∈ M(2,OF ) | det α À 0}.

Let m be an integral ideal of F and take m À 0 so that m = (m). Then we
define

T (m) =
∑

α∈∆, det α=m

ΓαΓ,

which is an element of the abstract Hecke ring H(Γ, ∆) (cf. [Sh2], p. 54).
Let T (m) = te

i=1Γβi be a coset decomposition. Assume that k1 ≥ k2. We
define the action of T (m) on Ω by

Ω | T (m) = N(m)k1/2−1

e∑
i=1

Ω|kβi.

Then Ω|T (m) ∈ Sk(Γ); we can verify easily that it does not depend on the
choices of m and βi.

Assume that Ω is a nonzero common eigenfunction for all Hecke operators
T (m). We put

Ω | T (m) = λ(m)Ω.

We assume that Ω is normalized so that c(1) = 1. Then, calculating similarly
to [Sh2], p. 79-80, we have 3

λ(m) = c(m)(m(2))(k1−k2)/2.

Then we obtain

(2.39) L(s, Ω) = (δ(2))(k1−k2)/2Ds
F

∏
p

(1− λ(p)N(p)−s + N(p)k1−1−2s)−1.

Here p extends over all prime ideals of F and DF = N(δ) is the discriminant
of F .

When 0 ¿ $ ∈ OF generates a prime ideal p, we denote T ($) defined
by (2.33) also by T (p).

§3. Cohomology of P

3Correction to [Y4]: In (2.46), (m(2))(k1−k2) should read (m(2))(k1−k2)/2.
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In this section, we will study cohomology groups of P . Main results are
Theorems 3.7 and 3.9 which give the vanishing of H1(P, V ) and H2(P, V )
when l1 6= l2. Hereafter in this paper, we assume that [F : Q] = 2. We also
assume l1 ≡ l2 mod 2 and l2 ≤ l1.

3.1. Put Γ = PSL(2,OF ). In this section, we define subgroups P and U
of Γ by

P =

{(
t 0
u t−1

) ∣∣∣∣ t ∈ EF , u ∈ OF

}
/{±12},

U =

{(±1 0
u ±1

) ∣∣∣∣ u ∈ OF

}
/{±12}.

We write OF = Z + Zω. Let ε be the fundamental unit of F and let

ε2 = A + Bω, ε2ω = C + Dω.

Then we see that ε2 is an eigenvalue of

(
A B
C D

)
and that

(
A B
C D

)
∈

SL(2,Z). We put

u1 =

(
1 0
1 1

)
, u2 =

(
1 0
ω 1

)
∈ U, t =

(
ε−1 0
0 ε

)
.

We have

(3.1) tu1t
−1 = uA

1 uB
2 , tu2t

−1 = uC
1 uD

2 .

We put

(3.2) Z = {(U1, U2) ∈ V × V | (u1 − 1)U2 = (u2 − 1)U1}.

It is easy to see that by the mapping

Z1(U, V ) 3 f −→ (f(u1), f(u2)) ∈ Z,

we have an isomorphism Z1(U, V ) ∼= Z. Put

(3.3) B = {((u1 − 1)b, (u2 − 1)b) | b ∈ V }.

Then we have B1(U, V ) ∼= B ⊂ Z.
We have V = V1 ⊗ V2, V1 = Cl1+1, V2 = Cl2+1. Let {e1, e2, . . . , el1+1}

(resp. {e′1, e′2, . . . , e′l2+1}) be the standard basis of V1 (resp. V2). The follow-
ing four lemmas deal with linear algebra. The proofs are not difficult and
can be found in [Y4]. We omit them.
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Lemma 3.1. We have dim V U = 1 and V U is spanned by el1+1⊗ e′l2+1.

Lemma 3.2. Let g = (

(
1 0
c1 1

)
,

(
1 0
c2 1

)
) ∈ SL(2,C)2. We assume

that c1 6= 0, c2 6= 0. Then the dimension of the subspace of V consisting of
all vectors fixed by g is l2 + 1. (Note that we have assumed l1 ≥ l2.)

Lemma 3.3. Let u =

(
1 0
c 1

)
, 0 6= c ∈ F . Then we have

ei ⊗ e′j ∈ Im(u− 1), for 1 ≤ j ≤ l2 + 1 if i ≥ l2 + 3− j.

Here Im(u − 1) denotes the image of the linear mapping V 3 v 7→ (ρ(u) −
ρ(1))v ∈ V .

Lemma 3.4. We have

Im(u1 − 1) + Im(u2 − 1) = (⊕l2+1
j=2 C(e1 ⊗ e′j))⊕ (⊕l1+1

i=2 ⊕l2+1
j=1 C(ei ⊗ e′j)).

In particular, dim(Im(u1 − 1) + Im(u2 − 1)) = dim V − 1.

By Lemma 3.1, we have

(3.4) dimB = dim V − 1.

Consider the surjective linear mapping

Z 3 (U1, U2) 7→ (u2 − 1)U1 ∈ Im(u1 − 1) ∩ Im(u2 − 1).

The kernel of this mapping consists of (U1, U2) such that U1 ∈ Ker(u2 − 1),
U2 ∈ Ker(u1 − 1). Hence by Lemma 3.2, we have

(3.5) dimZ = dim(Im(u1 − 1) ∩ Im(u2 − 1)) + 2l2 + 2.

By (3.4) and (3.5), we obtain

(3.6) dim H1(U, V ) = dim(Im(u1 − 1) ∩ Im(u2 − 1)) + 2l2 + 3− dim V.

Lemma 3.5. We have dim H1(U, V ) = 2.

Proof. We have

dim(Im(u1 − 1) ∩ Im(u2 − 1))

= dim(Im(u1 − 1)) + dim(Im(u2 − 1))− dim(Im(u1 − 1) + Im(u2 − 1)).

By Lemma 3.2, we have dim(Im(ui − 1)) = dim V − (l2 + 1), i = 1, 2. Then
by Lemma 3.4, we get

dim(Im(u1 − 1) ∩ Im(u2 − 1)) = dim V − 2l2 − 1.

The assertion follows from (3.6).

3.2. In this subsection, we will prove the following two theorems.
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Theorem 3.6. The eigenvalues of the action of t on H1(U, V ) are
εl1+2(ε′)−l2 and ε−l1−2(ε′)l2 . In particular, H1(U, V )P/U = 0.

Theorem 3.7.

dim H1(P, V ) =

{
0 if l1 6= l2 or N(ε)l1 = −1,

1 if l1 = l2 and N(ε)l1 = 1.

Here N(ε) denotes the norm of ε.

Taking G = P , N = U , M = V in (1.7), we obtain the exact sequence

0 −−−→ H1(P/U, V U) −−−→ H1(P, V ) −−−→ H1(U, V )P/U −−−→ 0,

since P/U ∼= Z. Therefore Theorem 3.7 follows immediately from Theorem
3.6, since dim H1(P/U, V U) is easily seen to be equal to 0 (resp. 1) if l1 6= l2
or N(ε)l1 = −1 (resp. if l1 = l2 and N(ε)l1 = 1), in view of Lemma 3.1.

Proof of Theorem 3.6. First we recall the following fact on the action
of t on Hq(U, V ) (cf. (1.3)). Let f ∈ Zq(U, V ) and let f̄ ∈ Hq(U, V ) be the
cohomology class represented by f . Put

g(n1, n2, . . . nq) = t−1f(tn1t
−1, tn2t

−1, . . . , tnqt
−1), ni ∈ U, 1 ≤ i ≤ q.

Then g ∈ Zq(U, V ) and f̄ 7→ ḡ is the action of t.
As in Lemma 3.4, let

W = Im(u1− 1)+ Im(u2− 1) = (⊕l2+1
j=2 C(e1⊗e′j))⊕ (⊕l1+1

i=2 ⊕l2+1
j=1 C(ei⊗e′j)).

We have
V = C(e1 ⊗ e′1)⊕W.

We may assume that l1 > 0 since our assertion is clearly true if l1 = l2 = 0.
Put t1 = e1 ⊗ e′l2+1. Let us show that for

t2 = ω(e1 ⊗ e′l2+1) +

l1+1∑
i=2

xi(ei ⊗ e′l2+1)

with suitably chosen xi ∈ C, we have

(3.7) (u2 − 1)t1 = (u1 − 1)t2.

To this end, for i ≥ 1, put

Wi = ⊕l1+1
k=i C(ek ⊗ e′l2+1).
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We have

(u2 − 1)(e1 ⊗ e′l2+1) = (ωe2 + ω2e3 + · · · )⊗ e′l2+1,

(u1 − 1)(ei ⊗ e′l2+1) = (iei+1 +

(
i + 1

i− 1

)
ei+2 + · · · )⊗ e′l2+1.

We see that
(u2 − 1)t1 ≡ (u1 − 1)t2 mod W3.

For x2 = (ω2 − ω)/2, we have

(u2 − 1)t1 ≡ (u1 − 1)t2 mod W4.

In this way, we can determine xi successively so that (3.7) holds. Let f1 ∈
Z1(U, V ) be the 1-cocycle which corresponds to the point (t1, t2) ∈ Z.

Put t3 = el1+1 ⊗ e′1. Similarly to the above, we can show that for

t4 = ω′(el1+1 ⊗ e′1) +

l2+1∑
j=2

yj(el1+1 ⊗ e′j),

the relation

(3.8) (u2 − 1)t3 = (u1 − 1)t4

holds when yj are suitably chosen. Let f2 ∈ Z1(U, V ) be the 1-cocycle which
corresponds to the point (t3, t4) ∈ Z.

Let f̄i be the class of fi in H1(U, V ), i = 1, 2. Let us show that {f̄1, f̄2}
gives a basis of H1(U, V ). To this end, assume that αf1 + βf2 ∈ B1(U, V )
for α, β ∈ C. Then there exists b ∈ V such that

(i) αt1 + βt3 = (u1 − 1)b,

(ii) αt2 + βt4 = (u2 − 1)b

hold. Put

b =

l1+1∑
i=1

l2+1∑
j=1

xij(ei ⊗ e′j).

On the left-hand side of (i), the coefficient of the tensor e1 ⊗ e′l2+1 is α and
the coefficients of e1 ⊗ e′j are 0 for 1 ≤ j ≤ l2. We have

(u1 − 1)(e1 ⊗ e′j) = j(e1 ⊗ e′j+1) +

l2+1∑

l=j+2

zl(e1 ⊗ e′l) + A,
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where zl ∈ Z and A is a term which does not contain e1 ⊗ e′l. Therefore
we have x11 = · · · = x1l2−1 = 0. By comparing the coefficients of the tensor
e1 ⊗ e′l2+1 on the both sides of (i), we obtain

α = l2x1l2 .

By comparing the coefficients of the tensor e1 ⊗ e′l2+1 on the both sides of
(ii), we get

αω = l2ω
′x1l2 .

Hence we obtain x1l2 = 0, α = 0. Similarly by comparing the coefficients of
the tensor el1+1 ⊗ e′1 for the both sides of (i) and (ii), we obtain β = 0.

Let f ′1 be the image of f1 under the action of t and let (U ′
1, U

′
2) ∈ Z be

the point corresponding to f ′1. Then we have

U ′
1 = f ′1(u1) = t−1f1(tu1t

−1) = t−1f1(u
A
1 uB

2 ) = t−1[uA
1 f1(u

B
2 ) + f1(u

A
1 )],

U ′
2 = f ′1(u2) = t−1f1(tu2t

−1) = t−1f1(u
C
1 uD

2 ) = t−1[uC
1 f1(u

D
2 ) + f1(u

C
1 )].

For i = 1, 2, we have f1(ui) = ti and

(3.9) f1(u
n
i ) = (1 + ui + · · ·+ un−1

i )ti if n > 0.

(3.10) f1(u
−n
i ) = −(u−1

i + · · ·+ u−n
i )ti if n > 0.

From these formulas, we see easily that the coefficient of e1⊗e′l2+1 in tU ′
1 is A+

Bω. Hence the coefficient of e1⊗e′l2+1 in U ′
1 is εl1(ε′)−l2(A+Bω) = εl1+2(ε′)−l2 .

Similarly we see that the coefficient of e1 ⊗ e′l2+1 in U ′
2 is ωεl1+2(ε′)−l2 .

Now let
f ′1 ≡ γf1 + δf2 mod B1(U, V )

with γ, δ ∈ C. Then there exists c ∈ V such that

(iii) γt1 + δt3 − U ′
1 = (u1 − 1)c,

(iv) γt2 + δt4 − U ′
2 = (u2 − 1)c.

Put c =
∑l1+1

i=1

∑l2+1
j=1 yij(ei⊗ e′j). Comparing the coefficients of e1⊗ e′l2+1 on

the both sides of (iii), we obtain

γ − εl1+2(ε′)−l2 = l2y1l2 .

Comparing the coefficients of e1 ⊗ e′l2+1 on the both sides of (iv), we obtain

(γ − εl1+2(ε′)−l2)ω = l2y1l2ω
′.
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From these two formulas, we obtain y1l2 = 0, γ = εl1+2(ε′)−l2 . Similarly
comparing the coefficients of el1+1⊗ e′1 on the both sides of (iii) and (iv), we
obtain δ = 0. Thus we have shown

(3.11) f ′1 ≡ εl1+2(ε′)−l2f1 mod B1(U, V ).

Next let f ′2 be the image of f2 under the action of t and let (U ′
3, U

′
4) be

the point of Z corresponding to f ′2. Here U ′
3 = f ′2(u1), U ′

4 = f ′2(u2). Then we
have

U ′
3 = f ′2(u1) = t−1f2(tu1t

−1) = t−1f2(u
A
1 uB

2 ) = t−1[uA
1 f2(u

B
2 ) + f2(u

A
1 )],

U ′
4 = f ′2(u2) = t−1f2(tu2t

−1) = t−1f2(u
C
1 uD

2 ) = t−1[uC
1 f2(u

D
2 ) + f2(u

C
1 )].

The coefficient of el1+1 ⊗ e′1 in tU ′
3 is A + Bω′ = ε−2. The coefficient of

el1+1 ⊗ e′1 in tU ′
4 is C + Dω′ = ε−2ω′. By a similar argument to the above,

we obtain

(3.12) f ′2 ≡ ε−l1−2(ε′)l2f2 mod B1(U, V ).

This completes the proof of Theorem 3.6.

3.3. In this subsection, we will prove the following two theorems.

Theorem 3.8. We have dim H2(U, V ) = 1 and t acts on it as the
multiplication by εl1(ε′)l2 .

Theorem 3.9. We have H2(P, V ) = 0 except for the case l1 = l2 and
N(ε)l1 = 1. If l1 = l2 and N(ε)l1 = 1, then we have dim H2(P, V ) = 1.

First we will prove the part of Theorem 3.8 concerning the dimension.

Lemma 3.10. We have dim H2(U, V ) = 1.

Proof. Let U1 be the subgroup of U generated by u1. We have the exact
sequence

(3.13) 0 −−−→ U1 −−−→ U −−−→ U2 −−−→ 0

and the associated spectral sequence (cf. (1.6))

(3.14) Ep,q
2 = Hp(U2, H

q(U1, V )) =⇒ Hn(U, V ).

Let En = Hn(U, V ) and {F i} denote the filtration on En induced by (3.14).
We have F p(En)/F p+1(En) ∼= Ep,n−p

∞ . Since U2
∼= Z, we have E2,q

2 = E2,q
∞ =

0. Since F 3(E2) = 0, we get F 2(E2) = 0. Since U1
∼= Z, we have Ep,2

2 =
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Ep,2
∞ = 0. Hence we get E2/F 1(E2) = 0. We have F 1(E2)/F 2(E2) ∼= E1,1

∞ .
Therefore it is sufficient to show that dim E1,1

∞ = 1.
We consider

E1,1
2 = H1(U2, H

1(U1, V )).

The map Z1(U1, V ) 3 f 7→ f(u1) ∈ V induces the isomorphism

(3.15) H1(U1, V ) ∼= V/Im(u1 − 1).

The action of u ∈ U2 on the right-hand side of (3.15) is given by

V/Im(u1−1) 3 v mod Im(u1−1) −→ u−1v mod Im(u1−1) ∈ V/Im(u1−1).

Since ū2 = u2 mod U1 is a generator of U2, we have

H1(U2, H
1(U1, V )) ∼= (V/Im(u1−1))/Im(ū2−1) ∼= V/(Im(u1−1)+Im(u2−1)).

By Lemma 3.4, we obtain

dim H1(U2, H
1(U1, V )) = dim E1,1

2 = 1.

Since E3,0
2 = 0, we have E1,1

∞ = E1,1
2 . This completes the proof.

Proof of Theorem 3.8. We set τ = u1, η = u2. Let F be the free
group on two free generators τ̃ and η̃ and let π : F −→ U be the surjective
homomorphism such that

π(τ̃) = τ, π(η̃) = η.

Let R be the kernel of π. For a, b ∈ F , let [a, b] = aba−1b−1 be the commu-
tator of a and b. We see easily that

R = 〈x[τ̃ , η̃]x−1 | x ∈ F〉, R = [F ,F ].

We have the isomorphism (cf. (1.9))

(3.16) H2(U, V ) ∼= H1(R, V )U/Im(H1(F , V )).

We have

(3.17) H1(R, V )U = {ϕ ∈ Hom(R, V ) | ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R}.

Hence ϕ ∈ H1(R, V )U is completely determined by ϕ([τ̃ , η̃]). For b ∈ H1(F , V ),
we have

b([τ̃ , η̃]) = (1− η)b(τ̃) + (τ − 1)b(η̃).
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Let W be the subspace Im(u1 − 1) + Im(u2 − 1) of V (cf. Lemma 3.4).
For ϕ ∈ Im(H1(F , V )), the formula above shows that ϕ([τ̃ , η̃]) can take an
arbitrary vector in W . In particular, it follows that dimH2(U, V ) ≤ 1. Since
dim H2(U, V ) = 1 by Lemma 3.10, we see that there exists ϕ1 ∈ H1(R, V )U

such that ϕ1([τ̃ , η̃]) = e1⊗e′1. This ϕ1 corresponds to a generator of H2(U, V ).
Let f ∈ Z2(U, V ). For g ∈ F , we put ḡ = π(g). There exists a ∈ C1(F , V )

such that (cf. (1.10))

(3.18) f(ḡ1, ḡ2) = g1a(g2) + a(g1)− a(g1g2), g1, g2 ∈ F .

The corresponding element ϕ ∈ H1(R, V )U to f is obtained as the restriction
of a to R. Now let ξ be an automorphism of F . Since ξ stabilizes R = [F ,F ],
ξ induces an automorphism of U = F/R, which we denote by ξ̄. We have

ξ̄(ḡ) = ξ(g), g ∈ F .

From (3.18), we obtain

(3.19) f(ξ̄(ḡ1), ξ̄(ḡ2)) = ξ(g1)a(ξ(g2))+a(ξ(g1))−a(ξ(g1)ξ(g2)), g1, g2 ∈ F .

Lemma 3.11. For γ =

(
a b
c d

)
∈ SL(2,Z), let ξ(γ) be the automor-

phism of U defined by ξ(γ)(τ) = τaηc, ξ(γ)(η) = τ bηd. Then there exists an

automorphism ξ̃(γ) of F such that ξ(γ) = ξ̃(γ). Moreover ξ̃(γ) can be taken
so that

(3.20) ϕ(ξ̃(γ)(g)) ≡ ϕ(g) mod W

holds for every ϕ ∈ H1(R, V )U and every g ∈ [F ,F ].

Proof. For γ1, γ2 ∈ SL(2,Z), we have ξ(γ1γ2) = ξ(γ1)ξ(γ2). For two
automorphisms ξ1, ξ2 of F , we have ξ1ξ2 = ξ̄1ξ̄2. Therefore to show the

first assertion, it is sufficient to verify it for generators γ1 =

(
1 1
0 1

)
, γ2 =

(
0 1
−1 0

)
of SL(2,Z). Clearly the formulas ξ̃(γ1)(τ̃) = τ̃ , ξ̃(γ1)(η̃) = τ̃ η̃,

ξ̃(γ2)(τ̃) = η̃−1, ξ̃(γ2)(η̃) = τ̃ define automorphisms ξ̃(γ1) and ξ̃(γ2) of F
satisfying the requirements.

To show the latter assertion, we first note that

(3.21) uv ≡ v mod W for every u ∈ U and every v ∈ V .
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Let ϕ ∈ H1(R, V )U . Since ξ̃(γ) can be taken from the subgroup of Aut(F)

generated by ξ̃(γ1) and ξ̃(γ2), it is sufficient to show (3.20) for these gener-
ators. Moreover since ϕ(x[τ̃ , η̃]x−1) = xϕ([τ̃ , η̃]) for x ∈ F , it is enough to

verify (3.20) for g = [τ̃ , η̃] in view of (3.21). For ξ̃(γ1), we have

ϕ(ξ̃(γ1)([τ̃ , η̃])) = ϕ(τ̃ [τ̃ , η̃]τ̃−1) = τϕ([τ̃ , η̃]) ≡ ϕ([τ̃ , η̃]) mod W

by (3.21). For ξ̃(γ2), we can check (3.20) similarly since ξ̃(γ2)([τ̃ , η̃]) =
η̃−1[τ̃ , η̃]η̃. This completes the proof of Lemma 3.11.

Applying Lemma 3.11 to γ =

(
A B
C D

)
, we see that there exists an au-

tomorphism ξt of F such that (cf. (3.1))

ξ̄t(u) = tut−1, u ∈ U.

Under the action of t, f is transformed to the 2-cocycle f ′ ∈ Z2(U, V ) where

f ′(h1, h2) = t−1f(th1t
−1, th2t

−1), h1, h2 ∈ U.

By (3.19), we obtain

(3.22)
t−1f(tḡ1t

−1, tḡ2t
−1)

= g1t
−1a(ξt(g2)) + t−1a(ξt(g1))− t−1a(ξt(g1)ξt(g2)), g1, g2 ∈ F .

This formula shows that a 1-cochain a′ ∈ C1(F , V ) which splits f ′ is given
by

a′(g) = t−1a(ξt(g)), g ∈ F .

Now suppose that f (resp. f ′) ∈ Z2(U, V ) corresponds to ϕ (resp. ϕ′)
∈ H1(R, V )U . We have

(3.23) ϕ′([τ̃ , η̃]) = t−1ϕ(ξt([τ̃ , η̃])).

We may assume that ϕ = ϕ1, i.e., ϕ([τ̃ , η̃]) = e1 ⊗ e′1. Then by (3.20), we
obtain

ϕ′([τ̃ , η̃]) ≡ t−1ϕ([τ̃ , η̃]) ≡ εl1(ε′)l2ϕ([τ̃ , η̃]) mod W.

This completes the proof of Theorem 3.8.

Proof of Theorem 3.9. Set T = P/U . Then T is generated by t
mod U . We consider the spectral sequence

(3.24) Ep,q
2 = Hp(T, Hq(U, V )) =⇒ Hn(P, V ).

Let En = Hn(P, V ) and {F i} denote the filtration induced by (3.24). Since
T ∼= Z, we have Ep,q

2 = 0 for p ≥ 2, q ≥ 0. Hence F 2(E2)/F 3(E2) ∼= E2,0
∞ =
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0. Since F 3(E2) = 0, we obtain F 2(E2) = 0. By Theorem 3.6, we have
E1,1

2 = H1(T, H1(U, V )) = 0. Hence we have F 1(E2)/F 2(E2) ∼= E1,1
∞ = 0.

Therefore we obtain

(3.25) dim H2(P, V ) = dim E2/F 1(E2) = dim E0,2
∞ .

Now assume l1 6= l2 or N(ε)l1 6= 1. By Theorem 3.8, we have H2(U, V )T =
0. Hence we get E0,2

2 = E0,2
∞ = 0. Next assume that l1 = l2 and N(ε)l1 = 1.

By Theorem 3.8, we have dim E0,2
2 = dim H2(U, V )T = 1. We clearly have

E0,2
2
∼= E0,2

∞ . This completes the proof.

§4. On the parabolic condition

In this section (in particular subsection 4.1), we will show that it is pos-
sible to deduce information on critical values of L-functions, once we know
a corresponding 2-cocycle which satisfies the parabolic condition.

From this section until the end of the paper, we define subgroups of Γ by

P =

{(
u v
0 u−1

) ∣∣∣∣ u ∈ EF , v ∈ OF

}
/{±12},

U =

{(±1 v
0 ±1

) ∣∣∣∣ v ∈ OF

}
/{±12}

restoring the notation to that of §2. We see that Theorems 3.7, 3.9 and
the fact H1(P, V )P/U = 0 stated in Theorem 3.6 are valid, considering the
isomorphism P 3 p 7→ tp−1 ∈ tP and noting that g 7→ ρ(g) and g 7→ ρ(tg−1)
are equivalent as representations of SL(2,C)2.

4.1. Let V1 (resp. V2) be the representation space of ρl1 (resp. ρl2).

We take a basis {e1, e2, . . . , el1+1} of V1 so that ρl1(

(
a 0
0 1

)
)ei = al1+1−iei.

Similarly we take a basis {e′1, e′2, . . . , e′l2+1} of V2 so that ρl2(

(
a 0
0 1

)
)e′i =

al2+1−ie′i. We assume that l1 ≥ l2, l1 ≡ l2 mod 2. We put k1 = l1 + 2,
k2 = l2 + 2, k = (k1, k2). Let Ω ∈ Sk(Γ). We assume that l1 is even if
N(ε) = −1. (This assumption is (A) in §1.)

We recall the formulas:

(4.1) f(γ1, γ2) =

∫ γ1w1

γ1γ2w1

∫ γ′1w2

w2

d(Ω), w1 = iε−1, w2 = i∞,

(4.2) f(σ, µ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω).
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The formula (2.30) shows that the coefficients of ei ⊗ e′i−(l1−l2)/2 in f(σ, µ),

(l1− l2)/2+1 ≤ i ≤ (l1 + l2)/2+1 are related to the critical values of L(s, Ω).
The parabolic condition on the cocycle f is

(4.3) f(pγ1, γ2) = pf(γ1, γ2) for every p ∈ P, γ1, γ2 ∈ Γ.

Now suppose that we add the coboundary of b ∈ C1(Γ, V )

b(γ1γ2)− γ1b(γ2)− b(γ1)

to f . We assume that the resulting 2-cocycle is normalized and still satis-
fies the parabolic condition (4.3). Then b(1) = 0 and using the parabolic
condition, we obtain

pγ1b(γ2) + b(pγ1)− b(pγ1γ2) = pγ1b(γ2) + pb(γ1)− pb(γ1γ2)

for p ∈ P . Taking γ2 = γ−1
1 and writing γ1 as γ, we find that b must satisfy

the condition

(4.4) b(pγ) = pb(γ) + b(p), p ∈ P, γ ∈ Γ.

Put A = f(σ, µ). After adding the coboundary of b, A changes to A+b(σµ)−
σb(µ)− b(σ). By (4.4), we have

b(σµ) = b(µ−1σ) = µ−1b(σ) + b(µ−1), b(µ−1) = −µ−1b(µ).

Therefore A changes to

A + (µ−1 − 1)b(σ)− (σ + µ−1)b(µ).

By (4.4), we have b|P ∈ Z1(P, V ). Suppose that l1 6= l2. By Theorem 3.7,
we have

b(µ) = (µ− 1)b, b ∈ V.

Since (σ + µ−1)(µ− 1) = (µ−1 − 1)(σ − 1), we see that A changes to

A + (µ−1 − 1)[b(σ) + (1− σ)b].

This formula shows that the components of A related to the critical values do
not change by adding a coboundary, since µ−1(ei⊗e′i−(l1−l2)/2) = N(ε)l1(ei⊗
e′i−(l1−l2)/2). Next suppose that l1 = l2. By Theorem 3.7 and by the exact
sequence below it, we have

b(µ) = (µ− 1)b + b0, b ∈ V, b0 ∈ V U .
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Hence A changes to

A + (µ−1 − 1)[b(σ) + (1− σ)b]− (σ + µ−1)b0.

Since b0 ∈ V U , this formula shows that the components of A related to
the critical values do not change except for two critical values L(1, Ω) and
L(l1 + 1, Ω) at the edges.

4.2. Let Z̄2(Γ, V ) be the subgroup of Z2(Γ, V ) consisting of normalized
2-cocycles. Put

B̄2(Γ, V ) = {f = db | b ∈ C1(Γ, V ), b(1) = 0}.
Then we have

Z̄2(Γ, V ) ∩B2(Γ, V ) = B̄2(Γ, V )

and therefore

Z̄2(Γ, V )/B̄2(Γ, V ) ⊂ Z2(Γ, V )/B2(Γ, V ).

Since every 2-cocycle can be normalized by adding a coboundary, we have

H2(Γ, V ) = Z̄2(Γ, V )/B̄2(Γ, V ).

Put
(4.5)

Z2
P(Γ, V ) = {f ∈ Z̄2(Γ, V ) | f satisfies the parabolic condition (4.3)},

(4.6)
B2

P(Γ, V ) ={f ∈ B̄2(Γ, V ) | f = db, b ∈ C1(Γ, V ),

b(pγ) = pb(γ) + b(p), p ∈ P, γ ∈ Γ}.
An element of Z2

P (Γ, V ) is called a normalized parabolic 2-cocycle. The next
lemma can easily be verified.

Lemma 4.1. We have

Z2
P(Γ, V ) ∩ B̄2(Γ, V ) = B2

P(Γ, V ).

By Lemma 4.1, we have

Z2
P(Γ, V )/B2

P(Γ, V ) ⊂ Z̄2(Γ, V )/B̄2(Γ, V ) = H2(Γ, V ).

We define the parabolic part H2
P(Γ, V ) of H2(Γ, V ) by

(4.7) H2
P(Γ, V ) = Z2

P(Γ, V )/B2
P(Γ, V ).

4.3. As another application of Theorem 3.7, we are going to show the
non-vanishing of the cohomology class attached to a Hecke eigenform.
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Lemma 4.2. Assume l1 is even if N(ε) = −1. Let f ∈ Z2
P (Γ, V ) be

a normalized parabolic 2-cocycle. For (l1 − l2)/2 + 1 ≤ i ≤ (l1 + l2)/2 + 1,
let ci be the coefficient of ei ⊗ e′i−(l1−l2)/2 in f(σ, µ). Assume that ci 6= 0 for
some i if l1 6= l2 and that ci 6= 0 for some i 6= 1, l1 + 1 if l1 = l2. Then the
cohomology class of f is non-trivial.

Proof. Suppose that the cohomology class of f is trivial. Then there
exists b ∈ C1(Γ, V ) such that

f(γ1, γ2) = γ1b(γ2) + b(γ1)− b(γ1γ2), γ1, γ2 ∈ Γ.

By a similar computation to that given in §4.1, we obtain

(4.8) f(σ, µ) = (1− µ−1)b(σ) + (σ + µ−1)b(µ).

First we consider the case l1 6= l2. Since b|P ∈ Z1(P, V ) and H1(P, V ) = 0
(Theorem 3.7), there exists b ∈ V such that b(µ) = (µ− 1)b. Then we have

f(σ, µ) = (1− µ−1)[b(σ) + (1− σ)b].

We have µ−1(ei ⊗ e′i−(l1−l2)/2) = N(ε)l1(ei ⊗ e′i−(l1−l2)/2). Hence ci vanishes
for all i. This is a contradiction and the proof is complete in this case.

Next we consider the case l1 = l2. By Theorem 3.7, there exist b ∈ V
and b0 ∈ V U such that

b(µ) = (µ− 1)b + b0.

Then we have

f(σ, µ) = (1− µ−1)[b(σ) + (1− σ)b] + (σ + µ−1)b0.

Since b0 ∈ V U , this formula shows that ci = 0 if i 6= 1, l1 + 1. This is a
contradiction and completes the proof.

Proposition 4.3. Let k = (k1, k2), k1 ≥ k2, k1 ≡ k2 ≡ 0 mod 2. Let
Ω ∈ Sk(Γ) and let f = f(Ω) be the normalized parabolic 2-cocycle attached
to Ω (cf. (4.1)). We assume that the class number of F in the narrow sense
is 1 and that Ω is a nonzero Hecke eigenform. If k1 6= k2, we assume k2 ≥ 4.
If k1 = k2, we assume k2 ≥ 6. Then the cohomology class of f in H2(Γ, V )
is non-trivial.

Proof. Let k1 = l1 + 2, k2 = l2 + 2. By (2.30), we see that the coefficient
ci of ei ⊗ e′i−(l1−l2)/2 in f(σ, µ) is L(l1 + 2 − i, Ω) times a nonzero constant

for (l1 − l2)/2 + 1 ≤ i ≤ (l1 + l2)/2 + 1. It is well known that L(s, Ω) 6= 0
for <(s) ≥ (k1 + 1)/2 (cf. [Sh4], Proposition 4.16). For i = (l1 − l2)/2 + 1,
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ci is nonzero times L((k1 + k2)/2− 1, Ω). Since (k1 + k2)/2− 1 ≥ (k1 + 1)/2
if k2 ≥ 3, our assertion follows from Lemma 4.2 if k1 6= k2. Assume k1 = k2.
For i = 2, ci is nonzero times L(k1−2, Ω). Since k1−2 ≥ (k1 +1)/2 if k1 ≥ 5,
our assertion in this case also follows from Lemma 4.2.

4.4. With a free group F , we write Γ = F/R. Let π : F −→ Γ be the
canonical homomorphism with Ker(π) = R. For g ∈ F , we put π(g) = ḡ.
We regard V as an F -module by gv = ḡv, g ∈ F , v ∈ V . By (1.9), we have

(4.9) H2(Γ, V ) ∼= H1(R, V )Γ/Im(H1(F , V )).

We are going to examine the part of the right-hand side of (4.9) which
corresponds to H2

P(Γ, V ). Put P = π−1(P ). Let f ∈ Z2
P(Γ, V ). Take a

1-cochain a ∈ C1(F , V ) which satisfies (1.10). Then we have

f(p̄ḡ1, ḡ2) = pg1a(g2) + a(pg1)− a(pg1g2), p ∈ P , g1, g2 ∈ F .

By the parabolic condition on f , this is equal to

p(g1a(g2) + a(g1)− a(g1g2)).

Hence we have

a(pg1g2)− a(pg1) = pa(g1g2)− pa(g1), p ∈ P , g1, g2 ∈ F .

Taking g1 = g−1
2 = g, we obtain

(4.10) a(pg) = pa(g) + a(p), p ∈ P , g ∈ F .

Conversely if a satisfies (4.10), then f satisfies the parabolic condition.
Let ϕ = a|R. We note that a satisfies (1.11) and ϕ ∈ H1(R, V )Γ. For

every s ∈ P , we take an element s̃ ∈ P such that π(s̃) = s. We fix the choice
of s̃. Then we write a(s̃) as ã(s). By (1.11), we have

(4.11) a(s̃r) = sϕ(r) + ã(s), s ∈ P, r ∈ R.

Now for s1, s2 ∈ P and r1, r2 ∈ R, we have

a(s̃1r1s̃2r2) = a((s̃1s2)(s̃1s2)
−1s̃1s̃2s̃

−1
2 r1s̃2r2)

= s1s2ϕ((s̃1s2)
−1s̃1s̃2s̃

−1
2 r1s̃2r2) + ã(s1s2)

= s1s2[ϕ(s̃−1
2 r1s̃2) + ϕ(r2) + ϕ((s̃1s2)

−1s̃1s̃2)] + ã(s1s2)

= s1ϕ(r1) + s1s2ϕ(r2) + ϕ(s̃1s̃2(s̃1s2)
−1) + ã(s1s2),

using (1.11), (1.12) and (4.11). On the other hand, by (4.10), we have

a(s̃1r1s̃2r2) = s1a(s̃2r2) + a(s̃1r1)

= s1(s2ϕ(r2) + ã(s2)) + s1ϕ(r1) + ã(s1).
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Comparing two results, we obtain

(4.12) ϕ(s̃1s̃2(s̃1s2)
−1) = s1ã(s2) + ã(s1)− ã(s1s2).

The condition (4.12) can be interpreted as follows. The group extension

1 −−−→ R −−−→ P −−−→ P −−−→ 0.

defines the factor set

(4.13) (s1, s2) −→ s̃1s̃2(s̃1s2)
−1

of P taking values in R. Mapping this factor set by ϕ, we obtain a 2-cocycle
of P taking values in V (cf. Lemma 1.3). Then (4.12) means that this
2-cocycle splits. The converse holds (cf. [Y4] for a proof) and we have:

Proposition 4.4. On the right-hand side of (4.9), the subgroup which
corresponds to H2

P(Γ, V ) consists of the class of ϕ ∈ H1(R, V )Γ for which the
2-cocycle (s1, s2) 7→ ϕ(s̃1s̃2(s̃1s2)

−1) of P taking values in V splits.

By Theorem 3.9, we have H2(P, V ) = 0 if l1 6= l2. Hence the next
proposition follows.

Proposition 4.5. If l1 6= l2, then we have H2(Γ, V ) = H2
P(Γ, V ).

It is known that there are no holomorphic Eisenstein series of weight
(k1, k2) if k1 6= k2 ([Sh6], Proposition 2.1). We can interpret this proposition
as the cohomological counter part of this fact.

Remark 4.6. In view of the results of Matsushima-Shimura [MS], Hida
[Hi1], [Hi2] and Harder [Ha], we should be able to prove that dimH2

P (Γ, V ) =
4 dim Sl1+2,l2+2(Γ). The author does not work out the details yet. The
parabolic cohomology group is also discussed in [Hi2].

§5. Decompositions of H2(Γ, V )

5.1. Let F be a real quadratic field and let Γ = PSL(2,OF ). We define
elements σ, µ, τ and η of Γ by

σ =

(
0 1
−1 0

)
, µ =

(
ε 0
0 ε−1

)
, τ =

(
1 1
0 1

)
, η =

(
1 ω
0 1

)
.

Here we choose an ω so that OF = Z + Zω. Let F be the free group on four
letters σ̃, µ̃, τ̃ , η̃. Let π : F −→ Γ be the homomorphism such that

π(σ̃) = σ, π(µ̃) = µ, π(τ̃) = τ, π(η̃) = η.
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By Vaserštein [V], π is surjective. Let R be the kernel of π. For γ ∈ Γ, we
choose a γ̃ ∈ F so that π(γ̃) = γ. For γ = σ, µ, τ and η, we choose γ̃ so that
the notation to be consistent. We choose 1̃ = 1. For other γ, we will specify
the choice of γ̃ later (cf. (5.2) and §6.2).

Let f ∈ Z2(Γ, V ) be a normalized 2-cocycle. There exists a ∈ C1(F , V )
which satisfies

f(γ1, γ2) = γ1a(γ̃2) + a(γ̃1)− a(γ̃1γ̃2).

A corresponding element ϕ ∈ H1(R, V )Γ to f is given by ϕ = a|R. As was
shown in §1.5, adding a coboundary to f , we may assume that f ∈ Z2(Γ, V )
is given by

(5.1) f(γ1, γ2) = −ϕ(γ̃1γ̃2(γ̃1γ2)
−1), γ1, γ2 ∈ Γ.

Let FP be the subgroup of F generated by µ̃, τ̃ and η̃. Let πP be the
restriction of π to FP and let RP be the kernel of πP . We see that RP

is generated by the elements corresponding to the relations (iv), (v), (vi)
given in the introduction and their conjugates. Suppose that f satisfies the
parabolic condition (4.3). Then, by (4.12), we see that we may assume that
ϕ|RP = 0 in addition to (5.1), adding a coboundary to f if necessary.

Conversely assume that ϕ|RP = 0. Take a complete set of representatives
∆ for P\Γ and fix it. We have

Γ = tδ∈∆Pδ.

For γ = pδ, p ∈ P , δ ∈ ∆, we define

(5.2) γ̃ = p̃δ̃.

In (5.1), write γ1 = p1δ1, p1 ∈ P , δ1 ∈ ∆, γ1γ2 = p2δ2, p2 ∈ P , δ2 ∈ ∆. Let
p ∈ P . Then we have

p̃γ1 = p̃p1δ̃1 = p̃p1(p̃p̃1)
−1p̃γ̃1, p̃γ1γ2 = p̃p2p̃

−1
2 γ̃1γ2.

Hence, by (5.1), we have

f(pγ1, γ2) = −ϕ(p̃p1(p̃p̃1)
−1p̃γ̃1γ̃2{p̃p2(p̃p̃2)

−1p̃γ̃1γ2}−1)

= −ϕ(p̃γ̃1γ̃2(γ̃1γ2)
−1p̃−1) = −pϕ(γ̃1γ̃2(γ̃1γ2)

−1) = pf(γ1, γ2).

Therefore f satisfies the parabolic condition (4.3).
The value f(σ, µ) of the cocycle is related to the critical values of the

L-function. By (5.1), we have

f(σ, µ) = −ϕ(σ̃µ̃(σ̃µ)−1) = −ϕ(σ̃µ̃(µ̃−1σ)−1).
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We assume that σ ∈ ∆. Then we have

f(σ, µ) = −ϕ(σ̃µ̃σ̃−1(µ̃−1)−1),

since µ̃−1σ = µ̃−1σ̃. As µ̃−1µ̃ ∈ RP , we have

f(σ, µ) = −ϕ(σ̃µ̃σ̃−1µ̃) = −ϕ(σ̃µ̃σ̃−2σ̃µ̃) = −ϕ(σ̃µ̃σ̃−2(σ̃µ̃)−1σ̃µ̃σ̃µ̃)

= −σµϕ(σ̃−2)− ϕ(σ̃µ̃σ̃µ̃).

Therefore we obtain

(5.3) f(σ, µ) = −ϕ((σ̃µ̃)2) + σµϕ(σ̃2).

5.2. Let us consider the action of Hecke operators. Let $ be a totally
positive element of F . Let

Γ

(
1 0
0 $

)
Γ = td

i=1Γβi

be a coset decomposition. We put (cf. (2.35))

c =
2∏

ν=1

($(ν))(k0+kν)/2−2.

Let f ∈ Z2(Γ, V ) and put g = cT ($)f . The explicit form of g is given as
follows (cf. Proposition 1.2 and (2.38)). Let

βiγ1 = δ
(1)
i βj(i), δ

(1)
i ∈ Γ, βiγ2 = δ

(2)
i βk(i), δ

(2)
i ∈ Γ,

for 1 ≤ i ≤ d. Here j and k are permutations on d letters. Then

(5.4) g(γ1, γ2) = c

d∑
i=1

β−1
i f(βiγ1β

−1
j(i), βj(i)γ2β

−1
k(j(i))).

We assume that f ∈ Z2
P (Γ, V ) and that it is given by (5.1) with ϕ ∈

H1(R, V )Γ satisfying ϕ|RP = 0. Then we have

(5.5) g(γ1, γ2) = −c
d∑

i=1

β−1
i ϕ( ˜βiγ1β

−1
j(i)

˜βj(i)γ2β
−1
k(j(i))(

˜βiγ1γ2β
−1
k(j(i)))

−1).

Let ψ ∈ H1(R, V )Γ be a corresponding element to g. We are going to give
an explicit form of ψ. There exists b ∈ C1(F , V ) such that

g(x̄1, x̄2) = x1b(x2) + b(x1)− b(x1x2), x1, x2 ∈ F
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and ψ is given as the restriction of b to R. Here x̄ = π(x), x ∈ F . We assume
that ($) is a prime ideal. Then d = N($) + 1 and {βi} can be taken as

{(
1 u
0 $

)
, u mod $,

(
$ 0
0 1

)}
.

Take p ∈ P and let βipβ
−1
j(i) ∈ Γ for 1 ≤ i ≤ d. Then we see easily that

(5.6) βipβ
−1
j(i) ∈ P, 1 ≤ i ≤ d.

By (5.5), (5.6) and ϕ|RP = 0, we find

(5.7) g(p1, p2) = 0, p1, p2 ∈ P.

We have

b(x1x2) = x1b(x2) + b(x1)− g(x̄1, x̄2), x1, x2 ∈ F

and we can use this formula to determine the value b(x), x ∈ F by the
induction on the length of the element x. As the initial conditions, we may
assume that

b(µ̃) = 0, b(τ̃) = 0, b(η̃) = 0, b(σ̃) = 0.

Then, by (5.7), we see that

(5.8) b|FP = 0.

The next Proposition is a special case of Proposition 1.4.

Proposition 5.1. Suppose γj ∈ Γ are given for 1 ≤ j ≤ m. For every
j, we define pj ∈ Sd by

βiγjβ
−1
pj(i)

∈ Γ, 1 ≤ i ≤ d.

We define qj ∈ Sd inductively by

q1 = p1, qk = pkqk−1, 2 ≤ k ≤ m.

We assume that γj ∈ P or γj = σ for every j. Then we have
(5.9)

b(γ̃1γ̃2 · · · γ̃m)

= c
d∑

i=1

β−1
i ϕ( ˜βiγ1β

−1
q1(i)

˜βq1(i)γ2β
−1
q2(i) · · · ˜βqm−1(i)γmβ−1

qm(i)(
˜βiγ1γ2 · · · γmβ−1

qm(i))
−1).
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5.3. For the practical computation, it is convenient to decompose H2(Γ, V )
into a direct sum of subspaces under the action of the automorphisms of Γ.
We put

Z =

{(
u 0
0 u

) ∣∣∣∣ u ∈ EF

}
,

which is the center of GL(2,OF ). Then we have

Z · SL(2,OF )/Z ∼= SL(2,OF )/{±
(

1 0
0 1

)
} = PSL(2,OF ) = Γ.

By this isomorphism, we regard Γ as a subgroup of PGL(2,OF ) = GL(2,OF )/Z.
Hereafter we assume that l1 and l2 are even. When l is even, we define a
representation ρ′l of GL(2,C) by

ρ′l(g) = ρl(g) det(g)−l/2, g ∈ GL(2,C).

Then ρ′l is trivial on the center. We put ρ′ = ρ′l1 ⊗ ρ′l2 . By gv = ρ′(g)v,
g ∈ GL(2,OF ), v ∈ V , we regard V as a left GL(2,OF )-module. Since
ρ′(z) = id, z ∈ Z, we can regard V as a PGL(2,OF )-module. Since ρ′|Γ =
ρ|Γ, the Γ-module structure of V is the same as before.

We have

PGL(2,OF )/PSL(2,OF ) ∼= EF /E2
F
∼= Z/2Z⊕ Z/2Z.

By conjugation, PGL(2,OF ) acts on H2(Γ, V ) and it decomposes into a direct
sum of four subspaces. We put

ν =

(
ε 0
0 1

)
, δ =

(−1 0
0 1

)
.

We see that PGL(2,OF ) is generated by ν and δ over PSL(2,OF ). We first
examine the action of ν. For f ∈ Z2(Γ, V ), define ẽf ∈ Z2(Γ, V ) by (cf.
(1.3))

(5.10) ẽf(γ1, γ2) = ν−1f(νγ1ν
−1, νγ2ν

−1), γ1, γ2 ∈ Γ.

Then ẽ induces an automorphism e of H2(Γ, V ). Since ν2 = µ, ẽ2 is obtained
from the inner automorphism by µ. Hence e2 = 1. By (5.10), we see that
ẽf is a parabolic cocycle if f is parabolic. Therefore, by the action of e, we
have the decompositions

H2(Γ, V ) = H2(Γ, V )+⊕H2(Γ, V )−, H2
P (Γ, V ) = H2

P (Γ, V )+⊕H2
P (Γ, V )−.
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Here we put

H2(Γ, V )± = {c ∈ H2(Γ, V ) | ec = ±c}, H2
P (Γ, V )± = {c ∈ H2

P (Γ, V ) | ec = ±c}.

Explicitly the decomposition is given by

f =
1

2

[
(1 + ẽ)f + (1− ẽ)f

]
, f ∈ Z2(Γ, V ).

Proposition 5.2. Let k = (k1, k2), k1 ≥ k2, k1 and k2 are even. Let
Ω ∈ Sk(Γ) and let f = f(Ω) be the normalized parabolic 2-cocycle attached
to Ω by (4.1). We assume that the class number of F in the narrow sense is
1 and that Ω is a nonzero Hecke eigenform.

(1) If k1 6= k2, we assume k2 ≥ 6. If k1 = k2, we assume k2 ≥ 8. Then
the cohomology class of (1 + ẽ)f in H2(Γ, V ) is non-trivial.

(2) If k1 6= k2, we assume k2 ≥ 4. If k1 = k2, we assume k2 ≥ 6. Then
the cohomology class of (1− ẽ)f in H2(Γ, V ) is non-trivial.

Proof. We apply Lemma 4.2 in a similar way to the proof of Proposition
4.3. We use the same notation as there. By (5.10), we have

(ẽf)(σ, µ) = ν−1f(νσν−1, νµν−1) = ν−1f(µσ, µ) = ν−1µf(σ, µ) = νf(σ, µ).

We have

ν(ei⊗e′i−(l1−l2)/2) = N(ε)l1/2+1−i(ei⊗e′i−(l1−l2)/2) = N(ε)k1/2−i(ei⊗e′i−(l1−l2)/2).

By the assumption, we have N(ε) = −1. The range of i is k1

2
− l2

2
≤ i ≤ k1

2
+ l2

2
.

We see that L(l1+2−i, Ω) is non-vanishing if i 6= k1/2. To conclude the non-
vanishing of the cohomology class of (1+ẽ)f , it suffices to find an even integer
j such that 0 < j ≤ l2/2 if k1 6= k2 and 0 < j ≤ l2/2 − 1 if k1 = k2. Such
a j exists under the condition stated in (1). To conclude the non-vanishing
of the cohomology class of (1− ẽ)f , it suffices to find an odd integer j such
that 0 < j ≤ l2/2 if k1 6= k2 and 0 < j ≤ l2/2− 1 if k1 = k2. Such a j exists
under the condition stated in (2). This completes the proof.

We put

Γ
∗

= {γ ∈ GL(2,OF ) | det(γ) = εn, n ∈ Z}, Γ∗ = ZΓ
∗
/Z.

Then Γ∗ is generated by ν over Γ and we have [Γ∗ : Γ] = 2. Let

Res : H2(Γ∗, V ) −→ H2(Γ, V ), T : H2(Γ, V ) −→ H2(Γ∗, V )

be the restriction map and the transfer map respectively.
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Proposition 5.3. We have

(1) Res(H2(Γ∗, V )) = H2(Γ, V )+.
(2) T (H2(Γ, V )+) = H2(Γ∗, V ).
(3) Ker(T ) = H2(Γ, V )−.

We omit the proof since it is easy.

5.4. We have

H2(Γ, V ) ∼= H1(R, V )Γ/Im(H1(F , V )).

Let us consider the action of e on the right-hand side under this isomorphism.
We use the same notation as in §5.1. Let ξ be the automorphism of Γ defined
by ξ(γ) = νγν−1, γ ∈ Γ. Put

ε = A + Bω, εω = C + Dω.

Then we have

(
A B
C D

)
∈ GL(2,Z). We have

νσν−1 = σµ−1, νµν−1 = µ, ντν−1 = τAηB, νην−1 = τCηD.

Using Lemma 3.11, we can check that there exists an automorphism ξ̃ of F
which satisfies

(5.11) π(ξ̃(g)) = ξ(π(g)), g ∈ F .

Now let f ∈ Z2(Γ, V ) and take a ∈ C1(F , V ) so that

f(π(g1), π(g2)) = g1a(g2) + a(g1)− a(g1g2), g1, g2 ∈ F .

Then we have

(ẽf)(π(g1), π(g2)) = ν−1f(ξ(π(g1)), ξ(π(g2))) = ν−1f(π(ξ̃(g1)), π(ξ̃(g2))

= g1ν
−1a(ξ̃(g2)) + ν−1a(ξ̃(g1))− ν−1a(ξ̃(g1g2))

for g1, g2 ∈ F . Put

a′(g) = ν−1a(ξ̃(g)), g ∈ F .

Then we have

(ẽf)(π(g1), π(g2)) = g1a
′(g2) + a′(g1)− a′(g1g2), g1, g2 ∈ F .

Thus we obtain the following proposition.
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Proposition 5.4. Let f ∈ Z2(Γ, V ) and let ϕ ∈ H1(R, V )Γ be a
corresponding element. Then a corresponding element ψ of H1(R, V )Γ to ẽf
is given by

ψ(r) = ν−1ϕ(ξ̃(r)), r ∈ R.

We can check easily that the map ϕ −→ ψ induces a map from
H1(R, V )Γ/Im(H1(F , V )) to itself and gives an automorphism of order 2.

5.5. For the actual computation, the cohomology group H2(Γ∗, V ) is
easier to handle than H2(Γ, V ). By the action of δ, we can further decompose
H2(Γ∗, V ) so that

H2(Γ∗, V ) = H2(Γ∗, V )+ ⊕H2(Γ∗, V )−.

Let d̃ (resp. d) denote the action of δ on Z2(Γ∗, V ) (resp. H2(Γ∗, V )).

Proposition 5.5. Let k = (k1, k2), k1 ≥ k2, k1 and k2 are even. Let
Ω ∈ Sk(Γ) and let f = f(Ω) be the normalized parabolic 2-cocycle attached
to Ω by (4.1). We assume that the class number of F in the narrow sense
is 1 and that Ω is a nonzero Hecke eigenform. Take f ∗ ∈ Z2(Γ∗, V ) so that
f ∗|Γ = (1 + ẽ)f . 4 If k1 6= k2, we assume k2 ≥ 6. If k1 = k2, we assume

k2 ≥ 8. Then the cohomology class of (1 + d̃)f ∗ in H2(Γ∗, V ) is non-trivial.

We omit the proof since it is similar to that of Proposition 5.2.
Until the end of this subsection, we assume that σ, ν and τ generate Γ∗.

(This assumption is satisfied if OF = Z + Zε.) Let F∗ be the free group on
three letters σ̃, ν̃ and τ̃ . We define a surjective homomorphism π∗ of F∗ onto
Γ∗ by

π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ

and let R∗ be the kernel of π∗. We see that δ commutes with σ and ν and
δτδ−1 = τ−1. We can define an automorphism x 7→ xδ of F∗ by (σ̃)δ = σ̃,
(ν̃)δ = ν̃, (τ̃)δ = τ̃−1. Then we have

π∗(xδ) = δπ∗(x)δ−1, x ∈ F∗.

The following proposition can be shown in a similar way to Proposition 5.4.

Proposition 5.6. Let f ∈ Z2(Γ∗, V ) and let ϕ ∈ H1(R∗, V )Γ∗ be a
corresponding element. Then a corresponding element ψ of H1(R∗, V )Γ∗ to

d̃f is given by
ψ(r) = δ−1ϕ(rδ), r ∈ R∗.

4f∗ = T̃ (f) satisfies this condition.

45



Let ϕ ∈ H1(R∗, V )Γ∗ . We define ϕδ ∈ H1(R∗, V )Γ∗ by the formula

(5.12) ϕδ(r) = δ−1ϕ(rδ).

Then we can check easily that (ϕδ)δ = ϕ and H1(R∗, V )Γ∗ decomposes into
a direct sum of ±1 eigenspaces under the action of δ:

(5.13) H1(R∗, V )Γ∗ = H1(R∗, V )Γ∗,+ ⊕H1(R∗, V )Γ∗,−.

5.6. Let l1 and l2 be nonnegative even integers. We assume that l1 ≥
l2. Let Ω ∈ Sl1+2,l2+2(Γ). Define L(s, Ω) and R(s, Ω) by (2.4) and (2.5)
respectively. The functional equation is (cf. (2.7))

R(s, Ω) = (−1)(l1+l2)/2R(l1 + 2− s, Ω).

For an integer m, L(m, Ω) is a critical value if and only if

(5.14)
l1 − l2

2
+ 1 ≤ m ≤ l1 + l2

2
+ 1.

The central critical value is L(l1/2+1, Ω) which vanishes if (l1 + l2)/2 is odd.
By (2.30), we have

(5.15) R(m, Ω) = (−1)mi(l1−l2)/2(2π)(l2−l1)/2Pm−1,m−1−(l1−l2)/2.

Here Ps,t denotes the period integral given by (2.25). Let f = f(Ω) ∈
Z2

P (Γ, V ) be the parabolic 2-cocycle defined by (4.1). Then we have

f(σ, µ) = −
∫ iε

iε−1

∫ i∞

0

d(Ω)

and −Pm−1,m−1−(l1−l2)/2 is equal to the coefficient of el1+2−m ⊗ e′(l1+l2)/2+2−m

in f(σ, µ).
Using the operator ẽ (cf. (5.10)), we define

f+ = (1 + ẽ)f, f− = (1− ẽ)f.

We have f± ∈ Z2
P (Γ, V ). As was shown in the proof of Proposition 5.2, we

have

(5.16) f+(σ, µ) = (1 + ν)f(σ, µ), f−(σ, µ) = (1− ν)f(σ, µ).

We have

(5.17) ν(el1+2−m ⊗ e′(l1+l2)/2+2−m) = N(ε)m−1−l1/2el1+2−m ⊗ e′(l1+l2)/2+2−m.
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Assume N(ε) = −1. Suppose that l1/2 is even. By (5.17), we see that
f+(σ, µ) contains information on R(m, Ω) for odd m and f−(σ, µ) contains
information on R(m, Ω) for even m. If l1/2 is odd, then f+(σ, µ) contains
information on R(m, Ω) for even m and f−(σ, µ) contains information on
R(m, Ω) for odd m.

To treat f− efficiently, we will need more techniques which will be ex-
plained in the next section.

§6. Numerical examples I

6.1. In this section, we assume that F = Q(
√

5). (The formulas (6.1) ∼
(6.6) and those given in §6.5 are valid for any real quadratic field.) We use
the notation of §5. The elements σ, µ, τ and η generate Γ = PSL(2,OF ) (cf.
Vaserštein [V]). We take ω = ε. Then they satisfy the relations (i) σ2 = 1,
(ii) (στ)3 = 1, (iii) (σµ)2 = 1, (iv) τη = ητ , (v) µτµ−1 = τη, (vi) µηµ−1 =
τη2, (vii) σησ = τη−1ση−1µ.

Theorem 6.1. Let F = Q(
√

5) and Γ = PSL(2,OF ). We take ω = ε.
The fundamental relations satisfied by the generators σ, µ, τ and η are (i) ∼
(vii).

A proof is given in the appendix of [Y4]. This theorem is not necessary
for the calculations in this section but it clarifies the exposition.

Now the elements σ, ν and τ of Γ∗ satisfy the relations

(i′) σ2 = 1.

(ii′) (στ)3 = 1.

(iii′) (σν)2 = 1.

(iv′) τντν−1 = ντν−1τ.

(v′) ν2τν−2 = τντν−1.

Theorem 6.2. The fundamental relations satisfied by the generators
σ, ν, τ of Γ∗ are (i′) ∼ (v′).
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This theorem follows from Theorem 6.1. We sketch a proof. We have
µ = ν2, η = ντν−1. Then we can check easily that the relations (i) ∼ (vii)
in Theorem 6.1 follow from (i′) ∼ (v′). Suppose that

(∗) u1u2 · · ·um = 1

is a relation. Here ui is one of σ, ν, ν−1, τ , τ−1. In (∗), we substitute ν−1 by
µ−1ν. Then we obtain a relation

(∗∗) v1v2 · · · vn = 1.

Here vi is one of σ, ν, µ−1, τ , τ−1. The number of vi such that vi = ν is even.
If this number is 0, then (∗∗) is the relation among the elements σ, µ and τ .
If this number is positive, then in (∗∗), a term of the form νXν is contained,
where X is an expression which contains only σ, τ and µ. We may replace
νXν by νXν−1µ. By the relations

νσν−1 = σν−2 = σµ−1, ντν−1 = η,

νXν−1 is transformed to an expression which contains only σ, µ, τ , η and
their inverses. Repeating this procedure, (∗∗) can be reduced to a relation
among the elements σ, µ, τ and η. By Theorem 6.1, this relation follows
from the fundamental relations (i) ∼ (vii). Since (i) ∼ (vii) follow from (i′)
∼ (v′), our assertion is proved.

Let F∗ be the free group on three letters σ̃, ν̃, τ̃ . We define a surjective
homomorphism π∗ : F∗ −→ Γ∗ by π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ . Let R∗

be the kernel of π∗. We have Γ∗ = F∗/R∗. By Theorem 6.2, R∗ is generated
by the elements

(i∗) σ̃2,

(ii∗) (σ̃τ̃)3,

(iii∗) (σ̃ν̃)2,

(iv∗) τ̃ ν̃τ̃ ν̃−1(ν̃τ̃ ν̃−1τ̃)−1,

(v∗) ν̃2τ̃ ν̃−2(τ̃ ν̃τ̃ ν̃−1)−1

and their conjugates.
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Let P ∗ be the subgroup of Γ∗ consisting of elements which can be repre-
sented by upper triangular matrices. Let FP ∗ be the subgroup of F∗ gener-
ated by ν̃ and τ̃ . Then π∗|FP ∗ : FP ∗ −→ P ∗ is surjective. Let RP ∗ be the
kernel of this homomorphism. We see that RP ∗ is generated by (iv∗) and
(v∗) and their conjugates.

We have [F∗ : (π∗)−1(Γ)] = 2. The following lemma can be proved easily
by applying the method of Reidemeister–Schreier (cf. Schreier [Sc], Suzuki
[Su], §6).

Lemma 6.3. The group (π∗)−1(Γ) is the free group on five elements σ̃,
ν̃2, τ̃ , ν̃σ̃ν̃−1 and ν̃τ̃ ν̃−1.

We put ν̃2 = µ̃, ν̃τ̃ ν̃−1 = η̃. Let F be the free group on four elements
σ̃, µ̃, τ̃ and η̃. Then our notation becomes consistent with that given in the
beginning of section 5. We have FR∗ = (π∗)−1(Γ).

6.2. For every γ ∈ Γ∗, we choose γ̃ ∈ F∗ so that π∗(γ̃) = γ. For explicit
calculations, it is necessary to specify the choice of γ̃. First let p ∈ P . We
can write p = µaτ bηc and this expression is unique. We put p̃ = µ̃aτ̃ bη̃c. Next
let p ∈ P ∗. We have p ∈ P or p = νp1 with p1 ∈ P . In the latter case, we
put p̃ = ν̃p̃1.

Let ∆ be a complete set of representatives for P\Γ as in §5.1. Then ∆ is
also a complete set of representatives for P ∗\Γ∗. For γ ∈ Γ∗, we write γ = pδ

with p ∈ P ∗, δ ∈ ∆ and put γ̃ = p̃δ̃. Our task is to specify the choice of
∆ and define δ̃ for δ ∈ ∆. To specify ∆ is equivalent to choose one element

from every coset Pγ, γ ∈ Γ. Let γ =

(
a b
c d

)
.

(1) The case where Pγ = P . We take 1 as the representative. We take
the identity element of F as 1̃.

(2) The case where c ∈ EF . We can take an element of the form

(
0 −1
1 d

)

as the representative. We define

˜(
0 −1
1 d

)
= σ̃

(̃
1 d
0 1

)
.

(3) 5 The case where c 6= 0 and c /∈ EF . We note that OF is a Euclidean
ring with respect to the absolute value of the norm (cf. [HW], Theorem 247,
p. 213): For every x, y ∈ OF , x 6= 0, there exist q, r ∈ OF such that

y = qx + r, |N(r)| < |N(x)|.
5In this paper, this step will be used for the actual calculations only in the case a ∈ EF .

Since it will become necessary in future calculations, we write one (tentative) algorithm
explicitly.
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We have
(

u 0
0 u−1

)(
a b
c d

)
=

(
ua ub

u−1c u−1d

)
,

(
1 t
0 1

)(
a b
c d

)
=

(
a + tc b + td

c d

)
.

First multiplying γ on the left by

(
u 0
0 u−1

)
, u ∈ EF , we normalize c so that

c À 0, 1 ≤ c′/c < ε2.

Next multiplying γ on the left by

(
1 t
0 1

)
, t ∈ OF , we may assume that

|N(a)| < |N(c)| by the Euclidean algorithm. However to specify the choice
of t is not necessarily easy. In other words, there can be many choices of
such a’s. We make the preference order of the choice of a as follows. Put
a = α + βε, α, β ∈ Z.

1. |α|+ |β| is minimum. 2. |α| is minimum. 3. |β| is minimum. 4. α ≥ 0.
5. β ≥ 0.

We define δ̃ for δ ∈ ∆ as follows. We put δ =

(
a b
c d

)
and proceed by

induction on |N(c)|. The case |N(c)| = 0 or 1 is settled by (1) and (2). By
our choice of ∆, we have |N(a)| < |N(c)|. Put σ−1δ = p1δ1, p1 ∈ P , δ1 ∈ ∆,

δ1 =

(
a1 b1

c1 d1

)
. We have |N(c1)| = |N(a)| < |N(c)|. We define δ̃ = σ̃p̃1δ̃1.

6.3. Let f ∈ Z2
P (Γ, V ) be a normalized parabolic 2-cocycle. We first

consider f+ (cf. §5.6). We put f ∗ = T̃ (f). Then f ∗ ∈ Z2(Γ∗, V ) and
f ∗|Γ = f+ (cf. §5.3). We can verify easily the parabolic condition

(6.1) f ∗(pγ1, γ2) = pf ∗(γ1, γ2), p ∈ P ∗, γ1, γ2 ∈ Γ∗.

We have

(6.2) H2(Γ∗, V ) ∼= H1(R∗, V )Γ∗/Im(H1(F∗, V )).

Let ϕ ∈ H1(R∗, V )Γ∗ be a corresponding element to f ∗. We recall that ϕ is
obtained in the following way. There exists a ∈ C1(F∗, V ) such that

(6.3) a(g1g2) = g1a(g2) + a(g1)− f ∗(π∗(g1), π
∗(g2)), g1, g2 ∈ F∗.

Then ϕ = a|R∗. We may regard (6.3) as a rule for determining the value
a(g) according to the length of a word g ∈ F∗. We can take a(σ̃) = a(ν̃) =
a(τ̃) = 0. Then we have a|FP ∗ = 0, since (6.1) yields f ∗(p, γ) = 0, p ∈ P ∗,
γ ∈ Γ∗. In particular, we have

(6.4) ϕ|RP ∗ = 0.
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As shown in §1.5, we may assume that

(6.5) f ∗(γ1, γ2) = −ϕ(γ̃1γ̃2(γ̃1γ2)
−1)

adding a coboundary to f ∗. By (6.4), we can check that f ∗ satisfies (6.1) in
the same way as in §5.1. We have (cf. (5.3))

f ∗(σ, µ) = −ϕ((σ̃µ̃)2) + σµϕ(σ̃2).

We have

ϕ((σ̃µ̃)2) = ϕ(σ̃ν̃2σ̃ν̃2) = ϕ(σ̃ν̃σ̃ν̃ν̃−1σ̃−1ν̃σ̃ν̃2)

= ϕ(σ̃ν̃σ̃ν̃) + ϕ(ν̃−1σ̃−2ν̃) + ϕ(ν̃−1σ̃ν̃σ̃ν̃2) = (1 + ν−1)ϕ((σ̃ν̃)2)− ν−1ϕ(σ̃2).

Therefore we obtain

(6.6) f ∗(σ, µ) = −(1 + ν−1)ϕ((σ̃ν̃)2) + (σµ + ν−1)ϕ(σ̃2).

Clearly ϕ is determined by its values on the elements (i∗) ∼ (v∗). By (6.4),
ϕ takes the value 0 on the elements (iv∗) and (v∗). We have σϕ(σ̃2) = ϕ(σ̃2).
Take h ∈ H1(F∗, V ) so that h(σ̃) = −ϕ(σ̃2)/2, h(ν̃) = 0, h(τ̃) = 0. Adding
h|R∗ to ϕ, we may assume that ϕ(σ̃2) = 0; ϕ still satisfies (6.4).

We analyze the process of adding h|R∗ to ϕ in more detail. For S, T ,
U ∈ V , we can find h ∈ H1(F∗, V ) such that

h(σ̃) = S, h(τ̃) = T, h(ν̃) = U.

We find easily that the conditions that h vanishes on the elements (iv∗) and
(v∗) are

(6.7) (1 + τν − ν − ντν−1)T + (τ − 1)(1− ντν−1)U = 0,

(6.8) (ν2 − 1− τν)T + (1 + ν − ν2τν−1 − τ)U = 0

respectively. We have

(6.9) h(σ̃2) = (1 + σ)S.

We put
A = ϕ((σ̃ν̃)2), B = ϕ((σ̃τ̃)3).

We note that

(6.10) σνA = A, στB = B.
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Our objective is to determine A explicitly.

6.4. Let us consider the Hecke operators. We put g∗ = T ($)f ∗ where
g∗ is defined by (5.4) with Γ∗ in place of Γ. Let ψ ∈ H1(R∗, V )Γ∗ be a
corresponding element to g∗. We see that Proposition 5.1 remains valid with
Γ∗ and P ∗ in place of Γ and P . In particular we may assume that ψ is given
by the formula
(6.11)

ψ(γ̃1γ̃2 · · · γ̃m)

= c
d∑

i=1

β−1
i ϕ( ˜βiγ1β

−1
q1(i)

˜βq1(i)γ2β
−1
q2(i) · · · ˜βqm−1(i)γmβ−1

qm(i)(
˜βiγ1γ2 · · · γmβ−1

qm(i))
−1).

Here γj = σ or γj ∈ P ∗ and γ1γ2 · · · γm = 1.

Example 6.4. Let us consider T (2). We may take

β1 =

(
1 0
0 2

)
, β2 =

(
1 1
0 2

)
, β3 =

(
1 ε
0 2

)
,

β4 =

(
1 ε2

0 2

)
, β5 =

(
2 0
0 1

)
.

By (6.11), we find
ψ((σ̃τ̃)3) = c(β−1

3 Z3 + β−1
4 Z4),

where

(6.12) Z3 = ϕ((
˜(
ε −ε2

2 −ε2

)
τ̃)3), Z4 = ϕ((

˜(
ε2 −ε2

2 −ε

)
)3).

We have
˜(
ε −ε2

2 −ε2

)
= σ̃

˜(
ε−1 0
0 ε

)(̃
1 ε
0 1

)−2

σ̃

(̃
1 ε
0 1

)−1

.

Hence, using (6.4), we have

Z3 = ϕ((σ̃
˜(

ε−1 −2
0 ε

)
σ̃

˜(
1 −ε−1

0 1

)
)3).

Similarly we obtain

Z4 = ϕ((σ̃
˜(

ε−2 −2
0 ε2

)
σ̃
˜(
1 −1
0 1

)
)3).
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6.5. In general, every element r of R∗ can be written as (by using (i∗),
(iv∗), (v∗) and taking conjugation by σ̃ if necessary)

r = σ̃p̃1σ̃p̃2 · · · σ̃p̃m

with pi ∈ P ∗, 1 ≤ i ≤ m such that σp1σp2 · · ·σpm = 1. We call such
an element an m terms relation. Theorem 6.2 assures us that ϕ(r) can be
expressed by A and B. The following formulas can be proved easily.

(6.13a) ϕ((σ̃ν̃n)2) = (1 + ν−1 + · · ·+ ν1−n)A, n ≥ 1,

(6.13b) ϕ((σ̃ν̃−n)2) = −(ν + ν2 + · · ·+ νn)A, n ≥ 1,

For t ∈ EF , we put

B(t) = ϕ(σ̃

(̃
1 t
0 1

)
σ̃
˜(
1 t−1

0 1

)
σ̃

(̃
1 t
0 1

) ˜(
t 0
0 t−1

)
).

Then we have B(1) = B,

(6.14) B(−t) = −σ

(
t 0
0 t−1

)
B(t)−

(
t−1 0
0 t

)
ϕ((σ̃

˜(
t−1 0
0 t

)
)2),

(6.15)

B(εt) =ν−1B(t)

+

[
1 + σ

(
1 εt
0 1

)
σ

(
1 ε−1t−1

0 1

)
− σ

(
1 εt
0 1

)
σ

]
A,

(6.16) B(t) = σ

(
1 t
0 1

)
B(t−1) + ϕ((σ̃

˜(
t 0
0 t−1

)
)2).

By these formulas, we can express B(t) in terms of A and B explicitly. Using
B(t), we have an explicit formula for ϕ(r) for a three terms relation r:

(6.17)

ϕ(σ̃
˜(
u1 x1

0 1

)
σ̃
˜(
u2 x2

0 1

)
σ̃
˜(
u3 x3

0 1

)
)

=

(
u−1

1 0
0 1

)
B(u−1

1 x1) + ϕ((σ̃
˜(
u1 0
0 1

)
)2)

+

(
u−1

3 −u−1
3 x3

0 1

)
σϕ((σ̃

˜(
u2 0
0 1

)
)2).
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For an m terms relation r ∈ R∗, m ≥ 4, we may write pi =

(
ui xi

0 1

)
,

ui ∈ EF , xi ∈ OF , 1 ≤ i ≤ m. We see that ϕ(r) reduces to an (m− 2) terms
relation if xi = 0 for some i. If xi ∈ EF for some i, ϕ(r) reduces to an (m−1)
terms relation. For example, if x1 ∈ EF and m ≥ 4, we have

(6.18)

ϕ(σ̃
˜(
u1 x1

0 1

)
σ̃
˜(
u2 x2

0 1

)
σ̃
˜(
u3 x3

0 1

)
σ̃ · · · σ̃

˜(
um xm

0 1

)
)

=

(
u−1

1 u−1 −u−1
1

0 u

)
ϕ(σ̃

˜(
1 −u−1

0 1

) ˜(
u2 x2

0 1

)
σ̃
˜(
u3 x3

0 1

)
σ̃

· · · σ̃
˜(

um xm

0 1

) ˜(
u−1

1 u−1 −u−1
1

0 u

)
)

+

(
u−1

1 0
0 1

)
B(u) + ϕ((σ̃

˜(
u1 0
0 1

)
)2).

Here u = u−1
1 x1. For a general m terms relation r, the explicit reduction of

ϕ(r) to A and B is a highly non-trivial problem. The author has an idea
on a heuristic algorithm to solve this problem, but it will not be discussed
in this paper. For our present purposes, the formulas (6.13a) ∼ (6.18) are
sufficient.

6.6. For actual computations, it is convenient to use the decomposition
(5.13). Proposition 5.5 shows that we will lose little information by assuming
ϕ ∈ H1(R∗, V )Γ∗,+, so we do assume this. Then we have

− ϕ((σ̃τ̃)3) = ϕ(τ̃−1σ̃τ̃−1σ̃τ̃−1σ̃) = τ−1ϕ((σ̃τ̃−1)3)

= τ−1ϕ(((σ̃τ̃)3)δ) = τ−1δϕ((σ̃τ̃)3).

Hence
(δτ + 1)B = 0.

Similarly we obtain
(δ − 1)A = 0.

Now we are ready to state explicit numerical examples. First by numerical
computations, we have verified:

Fact 6.1. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h|R∗, h ∈ H1(F∗, V )
to ϕ (keeping ϕ in the plus space under the action of δ and the condition
(6.4)), we may assume B = 0.
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Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). Note that

(σν − 1)A = 0. We put x =

(
ε −ε2

2 −ε2

)
τ and

(6.19) Z+
A = {v ∈ V | (σν − 1)v = 0, (δ − 1)v = 0, xZ3 = Z3}.

Here some explanation is called for on the meaning of xZ3 = Z3. First note
that Z3 is defined by (6.12); clearly we must have xZ3 = Z3. Using the
formulas (6.13a) ∼ (6.18), we see that Z3 can be expressed by A. Therefore
xZ3 = Z3 gives a constraint on A. We define a linear mapping

(6.20) ζ+ : Z+
A −→ Cl2+1

as follows. Let v ∈ Z+
A . We let the coefficient of el1+2−m ⊗ e′(l1+l2)/2+2−m in

(1 + ν−1)v be equal to the (l1 + l2)/2 + 2 − m-th coefficient of ζ+(v), for
(l1 − l2)/2 + 1 ≤ m ≤ (l1 + l2)/2 + 1 (cf. (6.6)).

Suppose that ϕ as above corresponds to a (nonzero) Hecke eigenform
Ω ∈ Sl1+2,l2+2(Γ). Suppose that l1 and l2 are in the range of Fact 6.1. Then
ζ+(A) 6= 0 if l2 ≥ 4 in the case l1 6= l2, if l2 ≥ 6 in the case l1 = l2 by
Proposition 5.5.

Example 6.5. We take l1 = 8, l2 = 4. Then dim S10,6(Γ) = 1. We find
ζ+(Z+

A ) is one dimensional and consists of scalar multiples of t(4, 0, 1, 0, 4).
Hence we obtain

R(7, Ω)/R(5, Ω) = 4, Ω ∈ S10,6(Γ).

My computer calculates this example in six seconds.

Example 6.6. In the same way as in Example 6.5, we obtain the follow-
ing numerical values.

R(9, Ω)/R(7, Ω) = 6, Ω ∈ S14,6(Γ).

R(6, Ω)/R(4, Ω) =
25

6
, Ω ∈ S8,8(Γ).

R(8, Ω)/R(6, Ω) = 7, Ω ∈ S12,8(Γ).

R(10, Ω)/R(8, Ω) =
720

11
, Ω ∈ S12,10(Γ).

The spaces of cusp forms appearing in this example are all one dimensional.

6.7. To deal with the case where dim Sl1+2,l2+2(Γ) > 1, it is necessary to
use the action of Hecke operators. To this end, we consider the contribution
of H1(F∗, V ) to Z+

A . Take h ∈ H1(F∗, V ) and put

h(σ̃) = S, h(ν̃) = U, h(τ̃) = T.
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We require that h|R∗ vanishes on the elements (i∗), (ii∗), (iv∗), (v∗). These
conditions are equivalent to

(6.21) (σ + 1)S = 0,

(6.22) {(στ)2 + στ + 1}(σT + S) = 0

and (6.7), (6.8). We have

h((σ̃ν̃)2) = (σν + 1)(σU + S).

We also require that

(6.23) (δ − 1)(σν + 1)(σU + S) = 0.

Let B+
A be the subspace of V generated by (σν + 1)(σU + S) when S, T , U

extend over vectors of V satisfying the relations (6.7), (6.8), (6.21), (6.22)
and (6.23). We have B+

A ⊂ Z+
A . As shown in §4.1, we have

(6.24) ζ+(B+
A) = {0} if l1 6= l2, dim ζ+(B+

A) ≤ 1 if l1 = l2.

By Proposition 5.5, we have

dim Z+
A/B+

A ≥ dim Sl1+2.l2+2(Γ) if l2 ≥ 4, l1 6= l2 or if l1 = l2, l2 ≥ 6.

Now by numerical computations, we have verified:

Fact 6.2. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then dim Sl1+2,l2+1(Γ) = dim Z+
A/B+

A .

This fact means that the constraints posed on A = ϕ((σ̃ν̃)2) is enough.

Example 6.7. We take l1 = 12, l2 = 8. We have dim S14,10(Γ) = 2.
Moreover we have ζ+(Z+

A ) = 2 in this case. Hence ζ+ gives an isomorphism
of Z+

A/B+
A into Cl2+1. Calculating the action of T (2) on Z+

A/B+
A using (6.11),

we find that the eigenvalues are −2560 ± 960
√

106. Take an eigenvector in
Z+

A/B+
A and map it by ζ+. Then we find

R(11, Ω)/R(7, Ω) = 1616− 76
√

106, R(9, Ω)/R(7, Ω) =
58

3
− 5

6

√
106

if 0 6= Ω ∈ S14,10(Γ) satisfies Ω|T (2) = (−2560 + 960
√

106)Ω. If 0 6= Ω ∈
S14,10(Γ) satisfies Ω|T (2) = (−2560− 960

√
106)Ω, then we have

R(11, Ω)/R(7, Ω) = 1616 + 76
√

106, R(9, Ω)/R(7, Ω) =
58

3
+

5

6

√
106.
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Remark 6.8. The relation dim ζ+(Z+
A ) = dim Sl1+2,l2+2(Γ) is rather acci-

dental in the above example. It holds in many cases but we have dim Sl1+2,l2+2(Γ) >
dim ζ+(Z+

A ) in general. Even in the general case, we can obtain ratios of L-
values by finding an eigenvector of Hecke operators in Z+

A/B+
A and mapping

it by ζ+.

6.8. We next consider the 2-cocycle f− (cf. §5.6). The technique of
calculation is basically same as for f+, but this case is somewhat more com-
plicated. Put
(6.25)

H1(R∗, V )Γ = {ϕ ∈ Hom(R∗, V ) | ϕ(grg−1) = gϕ(r), g ∈ F , r ∈ R∗}.
Let ϕ ∈ H1(R∗, V )Γ. We put

(eϕ)(r) = ν−1ϕ(ν̃rν̃−1), r ∈ R∗.

Then we can verify easily that

eϕ ∈ H1(R∗, V )Γ, e2ϕ = ϕ.

Therefore H1(R∗, V )Γ decomposes as

(6.26) H1(R∗, V )Γ = H1(R∗, V )Γ,+ ⊕H1(R∗, V )Γ,−,

where, for ε = ±1,

H1(R∗, V )Γ,ε = {ϕ ∈ Hom(R∗, V )Γ | ϕ(ν̃rν̃−1) = ενϕ(r), r ∈ R∗}.
First we take an arbitrary normalized 2-cocycle f ∈ Z2(Γ, V ). Since FR∗

is a free group, there exists a ∈ C1(FR∗, V ) such that

(6.27) f(π∗(g1), π
∗(g2)) = g1a(g2) + a(g1)− a(g1g2), g1, g2 ∈ FR∗.

As shown in §1.4, we have

a(gr) = ga(r) + a(g), a(grg−1) = ga(r), g ∈ FR∗, r ∈ R∗.

Put ϕ = a|R∗. Then the above formulas imply ϕ ∈ H1(R∗, V )Γ. From the
isomorphism Γ ∼= FR∗/R∗(∼= F/F ∩R∗ = F/R), we obtain

(6.28) H2(Γ, V ) ∼= H1(R∗, V )Γ/Im(H1(FR∗, V ))

and the procedure f 7→ ϕ described above gives an explicit form of the
isomorphism (6.28). We consider the decomposition of H2(Γ, V ) under the
action of ν (cf. the formula below (5.10)). Then we have

(6.29) H2(Γ, V )± ∼= H1(R∗, V )Γ,±/(Im(H1(FR∗, V )) ∩H1(R∗, V )Γ,±)).
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6.9. Now we consider the 2-cocycle f−. Let ϕ ∈ H1(R∗, V )Γ,− be a
corresponding element. As for f+, we may assume that

(6.30) ϕ|RP ∗ = 0,

(6.31) f−(γ1, γ2) = −ϕ(γ̃1γ̃2(γ̃1γ2)
−1)

adding a coboundary to f−. We put

A = ϕ((σ̃ν̃)2), B = ϕ((σ̃τ̃)3).

The formulas (6.13a) ∼ (6.18) hold with the following modifications.

(6.13a−) ϕ((σ̃ν̃n)2) = (1− ν−1 + ν−2 + · · ·+ (−1)1−nν1−n)A, n ≥ 1,

(6.13b−) ϕ((σ̃ν̃−n)2) = (ν − ν2 + ν3 − · · ·+ (−1)1−nνn)A, n ≥ 1.

We define B(t), t ∈ EF by the same formula as before. In (6.15), the term
ν−1B(t) should be replaced by −ν−1B(t); (6.14) and (6.16) hold without any
change. For u = ±εn ∈ EF , we define ε0(u) = (−1)n. On the right-hand side
of (6.17), the first term should be multiplied by ε0(u1) and the third term
should be multiplied by ε0(u3). On the right-hand side of (6.18), both of the
first and the second term should be multiplied by ε0(u1).

We may and do assume that f− belongs to the plus subspace of H2(Γ, V )−

under the action of δ. Then we have

(δ − 1)A = 0, (δτ + 1)B = 0.

By numerical computations, we have verified

Fact 6.3. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h|R∗ for h ∈
H1(FR∗, V ) such that h|R∗ ∈ H1(R∗, V )Γ,− to ϕ (keeping ϕ in the plus
space under the action of δ and the condition (6.30)), we may assume B = 0.

Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). Note that

(σν + 1)A = 0. We put x =

(
ε −ε2

2 −ε2

)
τ and

(6.32) Z−
A = {v ∈ V | (σν + 1)v = 0, (δ − 1)v = 0, xZ3 = Z3}.

Here the meaning of the constraint xZ3 = Z3 is the same as for Z+
A . We

define a linear mapping
ζ− : Z−

A −→ Cl2+1
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as follows. Let v ∈ Z−
A . We let the coefficient of el1+2−m ⊗ e′(l1+l2)/2+2−m in

(1 − ν−1)v be equal to the (l1 + l2)/2 + 2 − m-th coefficient of ζ−(v), for
(l1 − l2)/2 + 1 ≤ m ≤ (l1 + l2)/2 + 1 (cf. (6.6)).

Example 6.9. We take l1 = 8, l2 = 6. Then dim S10,8(Γ) = 1. We find
ζ−(Z−

A ) is one dimensional and consists of scalar multiples of
t(2, 0, 7/90, 0,−7/90, 0,−2). Hence we obtain

R(8, Ω)/R(6, Ω) =
180

7
, Ω ∈ S10,8(Γ).

Example 6.10. In the same way as in Example 6.9, we obtain the
following numerical values.

R(9, Ω)/R(7, Ω) =
70

3
, Ω ∈ S12,8(Γ).

R(9, Ω)/R(7, Ω) = 42, Ω ∈ S12,10(Γ).

The spaces of cusp forms appearing in this example are all one dimensional.

6.10. To treat the case where dim Sl1+2,l2+2(Γ) > 1, it is necessary to
consider Hecke operators.

First let us write down Im(H1(FR∗, V )) ∩ H1(R∗, V )Γ,± which appears
on the right-hand side of (6.29), explicitly. Take h ∈ Z1(FR∗, V ). We put

(6.33) (e0h)(x) = ν−1h(ν̃xν̃−1), x ∈ FR∗.

We can check easily that e0h ∈ Z1(FR∗, V ) and that

(e2
0h)(x) = h(x) + (ν−2 − xν−2)h(ν̃2), x ∈ FR∗.

If we restrict h to R∗, then the action e0 coincides with the action of e defined
in §6.8. We have (e2

0h)|R∗ = h|R∗. We put

h± = h± e0h.

A general element of Im(H1(FR∗, V )) ∩ H1(R∗, V )Γ,± can be obtained as
h±|R∗ from a general element h ∈ Z1(FR∗, V ).

Let Z1(FR∗, V )± be the subgroup of Z1(FR∗, V ) consisting of all ele-
ments whose restrictions to R∗ belong to H1(R∗, V )Γ,±. Take ε1 = ±1 and
put h± = h + ε1e0h. For the free generators σ̃, τ̃ , ν̃2, ν̃σ̃ν̃−1, ν̃τ̃ ν̃−1 of FR∗,
we put

h(σ̃) = S1, h(τ̃) = T1, h(ν̃2) = U, h(ν̃σ̃ν̃−1) = V1, h(ν̃τ̃ ν̃−1) = W1.
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Then we find
h±(σ̃) = S1 + ε1ν

−1V1,

h±(τ̃) = T1 + ε1ν
−1W1,

h±(ν̃2) = (1 + ε1ν
−1)U,

h±(ν̃σ̃ν̃−1) = V1 + ε1νS1 + ε1ν
−1(1− ν4σ)U,

h±(ν̃τ̃ ν̃−1) = W1 + ε1νT1 + ε1(ν
−1 − ντν−2)U.

Fix ε1 = ±1 and put

(6.34) h±(σ̃) = S, h±(τ̃) = T.

Then V1 and W1 are eliminated and we obtain

(6.35) h±(ν̃2) = (1 + ε1ν
−1)U,

(6.36) h±(ν̃σ̃ν̃−1) = ε1νS + ε1ν
−1(1− ν4σ)U,

(6.37) h±(ν̃τ̃ ν̃−1) = ε1νT + ε1(ν
−1 − ντν−2)U.

Clearly S, T and U can take arbitrary three vectors of V . The formulas
(6.34) ∼ (6.37) describe a general element of Z1(FR∗, V )±. The conditions
for h± to vanish on the elements (iv∗) and (v∗) are

(6.38) {ντν−1 − 1 + ε1(1− τ)ν}T + ε1(1− τ)(ν−1 − ν−1τν−2)U = 0,

(6.39) (1+ε1τν−ν2)T +{ε1τ(ν−1−ντν−2)−(1−ν2τν−2)(1+ε1ν
−1)}U = 0

respectively. For h± ∈ Z1(FR∗, V )± as above, we have

(6.40) h±((σ̃ν̃)2) = (1 + ε1σν)S + (ν−2 + ε1σν−1)U.

Now we consider the case ε1 = −1. Let B−
A be the subspace of V generated by

(1−σν)S +(ν−2−σν−1)U when S, T , U extend over vectors of V satisfying
the relations (6.21), (6.22), (6.38), (6.39) and

(6.41) (δ − 1){(1− σν)S + (ν−2 − σν−1)U} = 0.

We have B−
A ⊂ Z−

A . As shown in §4.1, we have

ζ−(B−
A) = {0} if l1 6= l2, dim ζ−(B−

A) ≤ 1 if l1 = l2.
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Using Proposition 5.2, (2), we can show that

dim Z−
A/B−

A ≥ dim Sl1+2.l2+2(Γ) if l2 ≥ 2, l1 6= l2 or if l1 = l2, l2 ≥ 4.

Now by numerical computations, we have verified:

Fact 6.4. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then dim Sl1+2,l2+1(Γ) = dim Z−
A/B−

A .

The formula (6.11) can be generalized in the following way. We put
g− = T ($)f− where g− is defined by (5.4). Let ϕ ∈ H1(R∗, V )Γ,− be a
corresponding element to f−. We may assume that (6.31) holds. There
exists a 1-cochain b ∈ C1(FR∗, V ) such that

(6.42) f−(π∗(x1), π
∗(x2)) = x1b(x2) + b(x1)− b(x1x2), x1, x2 ∈ FR∗.

As the intial conditions, we may assume that

b(σ̃) = 0, b(ν̃2) = 0, b(τ̃) = 0, b(ν̃σ̃ν̃−1) = 0, b(ν̃τ̃ ν̃−1) = 0

for the free generators of FR∗. Then the formula (5.9) holds when b(γ̃j) = 0,
1 ≤ j ≤ m. This condition holds if γ̃j is equal to one of the five free generators
as above or their inverses. In particular, ψ = b|R∗ is given by

ψ(γ̃1γ̃2 · · · γ̃m)

= c
d∑

i=1

β−1
i ϕ( ˜βiγ1β

−1
q1(i)

˜βq1(i)γ2β
−1
q2(i) · · · ˜βqm−1(i)γmβ−1

qm(i)(
˜βiγ1γ2 · · · γmβ−1

qm(i))
−1)

provided γ̃j is equal to one of the five free generators of FR∗ or their inverses
and γ1γ2 · · · γm = 1. The above formula is the same as (6.11) but there is
one important point about which we must be careful. This ψ belongs to
H1(R∗, V )Γ and gives a corresponding element to g− but it does not neces-
sarily belong to H1(R∗, V )Γ,−. We obtain ψ− ∈ H1(R∗, V )Γ,− corresponding
to g− by ψ− = 1

2
(1− e)ψ (cf. §6.8).

Example 6.11. We take l1 = 12, l2 = 8. We have dim S14,10(Γ) = 2.
Moreover we have ζ−(Z−

A ) = 2 in this case. Hence ζ− gives an isomorphism
of Z−

A/B−
A into Cl2+1. Take an eigenvector of T (2) in Z−

A/B−
A and map it by

ζ−. Then we find

R(10, Ω)/R(8, Ω) = 50−
√

106,

if 0 6= Ω ∈ S14,10(Γ) satisfies Ω|T (2) = (−2560 + 960
√

106)Ω. If 0 6= Ω ∈
S14,10(Γ) satisfies Ω|T (2) = (−2560− 960

√
106)Ω, then we have

R(10, Ω)/R(8, Ω) = 50 +
√

106.
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Let Ω be a Hecke eigenform of S14,10(Γ). Then L(m, Ω) is a critical value for
integers in the range 3 ≤ m ≤ 11 (cf. (5.14)). We have L(s, Ω) = L(14−s, Ω)
(cf. (2.7)). By Examples 6.7 and 6.11, we have treated all critical values on
the right of the critical line.

Example 6.12. We take l1 = l2 = 18. We have dim S20,20(Γ) = 7.
Calculating the action of T (2) on Z+

A/B+
A using (6.11), we find that the

characteristic polynomial of T (2) is (we can use Z−
A/B−

A which gives the
same result)

(X − 97280)2(X + 840640)(X4 − 1286780X3 + 19006483200X2

+ 27181090390835200X − 22979876427231395840000).

The irreducible factor of degree four corresponds to the base change part
from S20(Γ0(5), (

5
)); X + 840640 corresponds to the base change part from

S20(SL2(Z)); the factor (X − 97280)2 corresponds to the non base change
part. Let Ω ∈ dim S20,20(Γ) be a Hecke eigenform in the non base change
part. A calculation for the plus part yields the result

R(18, Ω)/R(10, Ω) = 39355680000, R(16, Ω)/R(10, Ω) = 33163650,

R(14, Ω)/R(10, Ω) =
1266460

27
, R(12, Ω)/R(10, Ω) =

26075

216
.

A calculation for the minus part yields the result

R(17, Ω)/R(11, Ω) =
111006792000

803
, R(15, Ω)/R(11, Ω) =

54618434

365
,

R(13, Ω)/R(11, Ω) =
453159

1606
.

We note that though there are two Hecke eigenforms in the non base change
part, these ratios are the same for them. 6

§7. Numerical examples II

7.1. In this section, we treat the case F = Q(
√

13). We use the same
notation as in the previous section. Many results there remain valid in the
present case so we will be brief.

6We can show that the L-functions (2.39) are the same for two Hecke eigenforms in the
non base change part. In fact, let Ω 6= 0 be a Hecke eigenform in the non base change part
and let λ(m) be the eigenvalue of T (m) for Ω. For the nontrivial automorphism σ of F ,
there exists a Hecke eigenform Ωσ 6= 0 such that Ωσ|T (m) = λ(mσ)Ωσ (cf. [Y2], p. 1035,
Remark). Since Ω is not a base change, we have λ(m) 6= λ(mσ) for some m. Hence Ωσ is
not a constant multiple of Ω. On the other hand, L(s,Ωσ) is equal to L(s,Ω).
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The fundamental unit of F is ε = 3+
√

13
2

. The elements σ, ν and τ of Γ∗

satisfy the relations (i′) ∼ (iv′) in §6.1 and

(v′) ν2τν−2 = τ(ντν−1)3.

Though we do not know that (i′) ∼ (v′) are the fundamental relations, we
will show that it is possible to calculate ratios of critical values of L-functions
rigorously.

Let F∗ be the free group on three letters σ̃, ν̃, τ̃ . We define a surjective
homomorphism π∗ : F∗ −→ Γ∗ by π∗(σ̃) = σ, π∗(ν̃) = ν, π∗(τ̃) = τ . Let R∗

be the kernel of π∗. Then R∗ contains the elements (i∗) ∼ (iv∗) in §6.1 and

(v∗) ν̃2τ̃ ν̃−2{τ̃(ν̃τ̃ ν̃−1)3}−1.

For every γ ∈ Γ∗, we choose γ̃ ∈ F∗ so that π∗(γ̃) = γ. We use the same
algorithm as in the previous section.

We consider f+ (cf. §5.6). We put f ∗ = T̃ (f). Then f ∗ ∈ Z2(Γ∗, V ) and
f ∗|Γ = f+ (cf. §5.3). Let ϕ ∈ H1(R∗, V )Γ∗ be a corresponding element to
f ∗. We may assume that (6.4) and (6.5) hold. We may also assume that
ϕ(σ̃2) = 0. We need to analyze the process of adding h|R∗ to ϕ. For S, T ,
U ∈ V , there exists h ∈ H1(F∗, V ) such that

h(σ̃) = S, h(τ̃) = T, h(ν̃) = U.

We find that the conditions for h to vanish on the elements (iv∗) and (v∗)
are (6.7) and
(7.1)

[ν2 − τ{1 + ντν−1 + (ντν−1)2}ν − 1]T

+[(1− ν2τν−2)(1 + ν)− τ{1 + ντν−1 + (ντν−1)2}(1− ντν−1)]U = 0

respectively. We put

A = ϕ((σ̃ν̃)2), B = ϕ((σ̃τ̃)3).

Then (6.10) holds. As in the previous section, our objective is to determine
A explicitly.

7.2. Let us consider the Hecke operators. We put g∗ = T ($)f ∗ where
g∗ is defined by (5.4) with Γ∗ in place of Γ. Let ψ ∈ H1(R∗, V )Γ∗ be a
corresponding element to g∗. We may assume that ψ is given by (6.11).

We have 3 = (4 +
√

13)(4 − √13) in F . Put $ = 4 − √13 = −2ε + 7,
p = ($) and we consider the Hecke operator T (p) = T ($). We may take

β1 =

(
1 0
0 $

)
, β2 =

(
1 1
0 $

)
, β3 =

(
1 ε
0 $

)
, β4 =

(
$ 0
0 1

)
.
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Using (6.11), we can compute ψ(σ̃2), ψ((σ̃ν̃)2) and ψ((σ̃τ̃)3). Remarkably
it turns out that these quantities can be expressed by A and B. Since this
is technically the essential part of calculation, we are going to explain the
computation of ψ((σ̃τ̃)3) in some detail. By (6.11), we have

ψ((σ̃τ̃)3) = cβ−1
3 Z3,

where

(7.2) Z3 = ϕ((σ̃
˜(

ε−1 2ε− 7
0 ε

)
σ̃

˜(
1 −2ε
0 1

)
)3).

For x ∈ OF and u ∈ EF such that x divides u− 1, we put

{x, u}4

=

(̃
1 x
0 1

)
σ̃

˜(
1 (1− u)/x
0 1

)
σ̃

˜(
1 −x/u
0 1

)
σ̃

˜(
1 −u(1− u)/x
0 1

)
σ̃

˜(
u−1 0
0 u

)
.

Then {x, u}4 ∈ R∗. As a quantitative version of Lemma A.6, (3) of the
appendix of [Y4], we can show that

(7.3)

ϕ({x, ue}4) = ϕ({x, u}4)

+ σ

(
u−1 u−e+1(1− ue)/x
0 u

)
σ

(
1 ue−2x
0 1

)
ϕ({−ue−2x, ue−1}4)

−σ

(
u−1 u−e+1(1− ue)/x
0 u

)
σϕ((σ̃

˜(
u1−e 0

0 ue−1

)
)2)

+ σ

(
u−e 0
0 ue

)
ϕ((σ̃

˜(
u−e 0
0 ue

)
)2)

−σ

(
u−1 0
0 u

)
ϕ((σ̃

˜(
u−1 0
0 u

)
)2)

for e ∈ Z. (This formula holds for any real quadratic field F .) By (7.3) and
using the formulas given in §6.5, we can express ψ((σ̃τ̃)3) in terms of A and
B.

7.3. We assume ϕ ∈ H1(R∗, V )Γ∗,+ (cf. §5.5). Then, as in §6.6, we have

(δτ + 1)B = 0, (δ − 1)A = 0.

Fact 7.1. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h|R∗, h ∈ H1(F∗, V )
to ϕ (keeping ϕ in the plus space under the action of δ and the condition
ϕ|RP ∗ = 0), we may assume B = 0.
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Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). We put x =

σ

(
ε−1 2ε− 7
0 ε

)
σ

(
1 −2ε
0 1

)
and let

(7.4) Z+
A = {v ∈ V | (σν − 1)v = 0, (δ − 1)v = 0, xZ3 = Z3}.

Here Z3 is defined by (7.2) and the meaning of xZ3 = Z3 is the same as in
§6.6. Namely, xZ3 = Z3 must hold because x3 = 1; since Z3 can be expressed
by A, xZ3 = Z3 gives a constraint on A.

We consider the contribution of H1(F∗, V ) to Z+
A . Take h ∈ H1(F∗, V )

and put
h(σ̃) = S, h(ν̃) = U, h(τ̃) = T.

We require that h|R∗ vanishes on the elements (i∗), (ii∗), (iv∗), (v∗). These
conditions are equivalent to (6.21), (6.22), (6.7) and and (7.1). We have

h((σ̃ν̃)2) = (σν + 1)(σU + S).

We also require that (6.23) holds. Let B+
A be the subspace of V generated

by (σν + 1)(σU + S) when S, T , U extend over vectors of V satifying the
relations (6.7), (6.21), (6.22), (6.23) and (7.1). We have B+

A ⊂ Z+
A . As shown

in §4.1, (6.24) holds. By Proposition 5.5, we have

dim Z+
A/B+

A ≥ dim Sl1+2.l2+2(Γ) if l2 ≥ 4, l1 6= l2 or if l1 = l2, l2 ≥ 6.

Now by numerical computations, we have verified:

Fact 7.2. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then dim Sl1+2,l2+1(Γ) = dim Z+
A/B+

A .

This fact means that the constraints posed on A = ϕ((σ̃ν̃)2) is enough.

Example 7.1. We take l1 = l2 = 6. We have dim S8,8(Γ) = 5. Calculat-
ing the action of T (p) on Z+

A/B+
A using (6.11), we find that the characteristic

polynomial of T (p) is

(X2 − 40X − 3957)(X3 + 28X2 − 2601X − 71748).

The quadratic factor corresponds to the non base change part; the irre-
ducible factor of degree three corresponds to the base change part from
S8(Γ0(13), (

13
)). Let Ω ∈ S8,8(Γ) be the Hecke eigenform such that Ω|T (p) =

(20 +
√

4357)Ω. Then we find

R(6, Ω)/R(4, Ω) = 70/3.

Example 7.2. We take l1 = l2 = 8. We have dim S10,10(Γ) = 7. We find
that the characteristic polynomial of T (p) is

(X2−16X−42789)(X5+X4−66033X3+1260423X2+530326440X+14266185264).
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The quadratic factor corresponds to the non base change part. Let Ω ∈
S10,10(Γ) be the Hecke eigenform such that Ω|T (p) = (8 +

√
42853)Ω. Then

we find
R(7, Ω)/R(5, Ω) = 50.

Example 7.3. We take l1 = l2 = 10. We have dim S12,12(Γ) = 11. We
find that the characteristic polynomial of T (p) is

(X − 252)(X4 + 252X3 − 496198X2 − 116604684X + 25202349477)

(X6 + 244X5 − 665334X4 − 129598956X3 + 109163403621X2

+ 14522233287672X − 255121008509808).

The irreducible factor of degree four corresponds to the non base change
part; X − 252 corresponds to the base change part from S12(SL2(Z)) and
the irreducible factor of degree six corresponds to the base change part from
S12(Γ0(13), (

13
)). Put

f(X) = X4 + 252X3 − 496198X2 − 116604684X + 25202349477.

Let θ be a root of f(X) and put K = Q(θ). We find that K contains a
quadratic subfield F = Q(

√
7 · 5167). Put d = 7 · 5167. Then a root of f(X)

is given by

ψ = −(63 +
√

d) +

√
223837− 360

√
d.

We have
N(223837− 360

√
d) = 13 · 563 · 6205151.

This number and the quadratic fields in Examples 7.1 and 7.2 are consistent
with the table given in Doi-Hida-Ishii [DHI].

For the Hecke eigenform Ω ∈ S12,12(Γ) such that Ω|T ($) = ψΩ, we find

R(10, Ω)/R(6, Ω) =
3732099 + 18663

√
d

5
,

R(8, Ω)/R(6, Ω) =
24367 + 121

√
d

20
.

§8. A comparison of two methods

In [Sh3], Shimura gave a method to calculate critical values of D(s, f, g)
for two elliptic modular forms f and g. Here D(s, f, g) is the Rankin-Selberg
convolution of f and g. Shortly later he gave a generalization to the case
of Hilbert modular forms ([Sh4]). Taking one argument in the convoluted
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L-function as a suitable Eisenstein series, this method enables us to calculate
the ratios of critical values of L(s, Ω) for a Hilbert modular form Ω. We call
this technique method A. We call the cohomological technique method B,
which was initiated in [Sh1] and studied in this paper when [F : Q] = 2. It
is interesting to compare A and B.

(0) Method A is more general and conceptually simpler. It has the ad-
vantage to give the relation of the product of the plus and minus periods to
the Petersson norm. It is applicable also to modular forms of half integral
weights.

(1) If n = [F : Q] > 2, the method B has to calculate Hn(Γ, V ), which is
beyond the reach at present. Therefore when [F : Q] > 2, A is definitively
superior than B.

(2) Suppose that [F : Q] = 2. The method B is still incomplete. But
in the cases well worked out, F = Q(

√
5) for example, B has the advantage

that we can write a program which calculates everything by machine. It can
also be used to calculate the characteristic polynomials of Hecke operators.
(In this respect, it is desirable to solve the problem mentioned at the end of
subsection 6.5.) We employed essentially a single program to obtain examples
in section 7. Therefore in some cases at least, B will have the advantage over
A. But in general the method A is conceptually simpler.

In Doi-Goto [DG] and Doi-Ishii [DI], the authors gave interesting exam-
ples of critical values of D(s, f, g) for Hilbert modular forms f and g. Their
interest was the relation of this value to the congruences between Hilbert
modular forms. However they did not give examples of critical values of
L(s, Ω). Recently Dr. K. Okada calculated the ratios of critical values of
L(s, Ω) and confirmed the numerical value of Example 7.1 by method A. He
obtained one more example for F = Q(

√
17).

(3) Suppose that F = Q. The method B is developed into the theory of
modular symbols which is presently used to calculate characteristic polyno-
mials of Hecke operators. For the L-values, the author does not know which
is faster. But the calculation of [Sh1] reviewed in the introduction suggests
that B would not be more complex than A.

§9. A remark on periods unrelated to critical values

In this section, we will show that we can deduce some information on the
components of the cocycle f(Ω) which are not related to critical values in
certain cases. We use the notation of section 6 assuming F = Q(

√
5). For

simplicity, we consider the plus space assuming l1 6= l2.
To explain our ideas, let us recall that

(9.1) H2(Γ∗, V )+ ∼= Z+
A/B+

A ,
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which is verified for 4 ≤ l2 < l1 ≤ 20 (cf. Facts 6.1, 6.2 and Proposition 5.5).
We assume that (9.1) always holds. Let ζ+ be the linear mapping of Z+

A

into Cl2+1 ((6.20)) which picks up information on critical values. A crucial
point of our calculation of L-values is the fact that ζ+(B+

A) = 0. By the
functional equation of L(s, Ω) (or by (2.21)) and by §5.6, we see easily that
the components of ζ+ consists of (at most) [l2/4] + 1 linearly independent
linear forms on Z+

A . We have

Z+
A ⊃ Ker(ζ+) ⊃ B+

A , dim ζ+(Z+
A ) = dim Z+

A/Ker(ζ+).

Put g+ = dim Ker(ζ+)/B+
A and L = Hom(Z+

A/B+
A ,C). We regard an element

of L as a linear form on Z+
A which is trivial on B+

A . Let L0 be the subspace
of L spanned by the components of ζ+.

Now our idea is very simple: By the dimensionality reason, we have
g+ > 0 when l1 is sufficiently large for a fixed l2. (For example, g+ = 1
when (l1, l2) = (12, 6), (18, 6), (18, 8).) Hence there exists l ∈ L which does
not belong to L0. In view of (9.1), l defines the linear form of Z2(Γ∗, V )+

which is trivial on the coboundary space. Considering the image under l of
the cocycle obtained from Ω, we can deduce information on periods which
are not related to critical values.

More concretely, let χ be the system of eigenvalues of Hecke operators at-
tached to Ω. Let (Z+

A/B+
A)(χ) be the χ-isotypic component of Z+

A/B+
A and let

Z+
A (χ) be its pull back under the canonical homomorphism Z+

A −→ Z+
A/B+

A .
By the method of section 6, we can calculate (Z+

A/B+
A)(χ) algebraically. Take

ϕ ∈ Z+
A (χ) whose components are in Q. On the other hand, we can calculate

the corresponding element ψ ∈ Z+
A (χ) from values of the cocycle f(Ω). We

have ψ ≡ cϕ mod B+
A with c ∈ C× and therefore

(9.2) l(ψ) = cl(ϕ).

The equation (9.2) contains information on the values of f(Ω) unrelated to
the critical values.

References

[B] D. Blasius, Hilbert modular forms and the Ramanujan conjecture, Non-
commutative geometry and number theory, 35–56, Aspects Math., 37,
Vieweg, 2006.

[BW] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups,
and representations of reductive groups, Ann. Math. Studies 94, Prince-
ton University Press, 1980.

68



[CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton University
Press, 1956.

[DG] K. Doi and K. Goto, On the L-series associated with modular forms,
Memoirs of Institute of Science and Engineering, Ritsumeikan Univ. 52
(1993), 1–19 (in Japanese).

[DHI] K. Doi, H. Hida and H. Ishii, Discriminant of Hecke fields and twisted
adjoint L-values for GL(2), Inv. Math. 134 (1998), 547–577.

[DI] K. Doi and H. Ishii, Hilbert modular L-values and discriminant of
Hecke’s fields, Memoirs of Institute of Science and Engineering, Rit-
sumeikan Univ. 53 (1994), 1–12.

[E] B. Eckman, Cohomology of groups and tranfer, Ann. of Math. 58 (1953),
481–493.

[Ha] G. Harder, Eisenstein cohomology of arithmetic groups. The case GL2,
Inv. Math. 89 (1987), 37–118.

[Hi1] H. Hida, On abelian varieties with complex multiplication as factors
of the abelian variety attached to Hilbert modular forms, Japanese J.
Math. 5 (1979), 157–208.

[Hi2] H. Hida, p-ordinary cohomology groups for SL(2) over number fields,
Duke Math. J. 69 (1993), 259–314.

[Hi3] H. Hida, On the critical values of L-functions of GL(2) and GL(2) ×
GL(2), Duke Math. J. 74 (1994), 431–529.

[HW] G. H. Hardy and E. M. Wright, An introduction to the theory of
numbers, Oxford University Press, fifth edition, 1979.

[JL] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture
notes in mathematics 114, Springer-Verlag, 1970.

[K] A. G. Kurosh, The theory of groups, English edition, two volumes,
Chelsea, 1955, 1956.

[KS] M. Kuga and G. Shimura, On vector differential forms attached to au-
tomorphic forms, J. Math. Soc. Japan, 12 (1960), 258–270 (= Collected
Papers of Goro Shimura I, [60a]).

[Mac] A. M. Macbeath, Groups of homeomorphisms of a simply connected
space, Ann. of Math. 79 (1964), 473–488.

69



[Man] Y. I. Manin, Periods of parabolic forms and p-adic Hecke series, Math.
USSR Sbornik 21 (1973), 371–393.

[MM] Y. Matsushima and S. Murakami, On vector valued harmonic forms
and automorphic forms on symmetic Riemannian manifolds, Ann. of
Math. 78 (1963), 365–416.

[MS] Y. Matsushima and G. Shimura, On the cohomology groups attached
to certain vector valued differential forms on the product of the upper
half plane, Ann. of Math. 78 (1963), 417–449 (= Collected Papers of
Goro Shimura I, [63c]).

[PARI2] PARI/GP, version 2.3.4, Bordeaux, 2008, http://pari.math.u-
bordeaux.fr/.

[Sc] O. Schreier, Die Untergruppen der freie Gruppen, Abh. Math. Sem.
Univ. Hamburg 5 (1927), 161–183.

[Se1] J-P. Serre, Corps locaux, deuxième édition, Hermann, 1968.
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