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Abstract 

 

The present study aimed to analyze outcomes of hypofractionated stereotactic radiotherapy 

(HFSRT) delivered in five fractions to metastatic brain tumors. Between June 2008 and June 2011, 

39 consecutive patients with 46 brain metastases underwent HFSRT at Kyoto University Hospital. 

Selection criteria included high risk factors such as eloquent location, history of whole-brain 

radiotherapy (WBRT), or large tumor size. Given these factors, fractionated schedules were 

preferable in terms of radiobiology. The prescribed dose at the isocenter was basically 35 Gy in five 

fractions. Brainstem lesions with a history of WBRT were treated with 20–25 Gy in five fractions. 

Planning target volume was covered by the 80% isodose line of the prescribed dose to the isocenter. 

Local-control probability and overall survival were estimated using the Kaplan–Meier method. For 

the analysis of local control, the response criteria were defined as follows: complete response (CR) 

was defined as no visible gross tumor or absence of contrast enhancement, partial response (PR) as 

more than a 30% decrease in size, progressive disease (PD) as more than a 20% increase in size, and 

stable disease (SD) as all other responses. Local control was defined as a status of CR, PR, or SD. 

Only patients with at least 3 months or longer follow-up (21 patients, 27 tumors) were included in 

the analysis. Median age and Karnofsky performance status were 59 years (range, 39–84 years) and 

90 (range, 40–100), respectively. Tumor volumes and maximum diameters ranged from 0.08 to 

15.38 cc (median, 3.67 cc) and from 3 to 34 mm (median, 18 mm), respectively. The median 

follow-up period was 329 days (range, 120–1321 days). Local-control probabilities at 6 and 12 

months were 92.1% and 86.7%, respectively. Overall survival after HFSRT at 6 and 12 months was 

85.4% and 64.5%, respectively. Grade 3 radiation necrosis was observed in one patient according to 

the Common Terminology Criteria for Adverse Events version 3.0. The patient was successfully 

managed conservatively. HFSRT for metastatic brain tumors yields high local-control probabilities 

without increasing severe adverse events despite high risk factors.
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Introduction 

 

Brain metastases are a commonly reported condition, occurring in 20–40% of patients with cancer 

[1]. Brain metastases may be symptomatic and can be the direct cause of death. Brain metastases are 

primarily treated with open surgery and radiotherapy. Radiotherapy strategies include whole-brain 

radiotherapy (WBRT) and/or stereotactic irradiation, depending on the clinical situation [2 6]. 

Stereotactic radiosurgery (SRS) yields high local-control rates for relatively small lesions. 

However, local control using a single-fraction dose becomes difficult as tumor size increases. 

Large tumors required a high dose for local control, and exposure of normal brain tissue to a high 

radiation dose increases the probability of late toxicities such as radiation necrosis [7]. 

Furthermore, lesions with a history of WBRT and those located in an eloquent area such as 

brainstem can increase the probability of the toxicity because normal brain tissue in these cases 

probably have a lower tolerance for irradiation and late toxicities should be more problematic in 

eloquent areas than non-eloquent areas [8]. Survival rates have increased as systemic therapies have 

improved [1]. More attention should be given to late toxicities under these conditions. 

Hypofractionated stereotactic radiotherapy (HFSRT) may provide a way to maintain high 

local-control rates without increasing late toxicities [9,10]. Recent advances in precision and the 

development of a less invasive fixation technique have increased the safety of irradiation using a 

fractionated schedule. The present paper reports the outcome of HFSRT treatment for metastatic 

brain tumors.
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Materials and methods 

 

Patients and tumor characteristics 

 

From June 2008 through July 2011, 39 consecutive patients with 46 brain metastases underwent 

HFSRT at Kyoto University Hospital. Inclusion criteria included high risk factors such as lesions in 

eloquent locations, prior history of WBRT, and large tumors (maximum diameter >15 mm). 

Eloquent lesions are defined as those located at or adjacent to the brainstem, basal ganglion, or 

motor areas. Of 39 patients, 21 with 27 lesions had follow-up magnetic resonance imaging (MRI) 

scans at least once 3 months or more after HFSRT and were included in the analysis. The remaining 

18 patients could not undergo follow-up MRI scans because of poor performance status. Eligible 

patient and tumor characteristics are summarized in Table 1. According to the Radiation Therapy 

Oncology Group (RTOG) recursive partitioning analysis (RPA) [11], the majority of patients in our 

study (17/21 patients, 81%) were classified as class II. 

 

Treatment 

 

The treatment was performed using the Novalis system equipped with the ExacTrac system ver. 

5.02 and Robotic Tilt Module mounted on the Exact Couch top (BrainLAB AG, Feldkirchen, 

Germany). Patients were immobilized in a thermoplastic stereotactic head mask with an additional 

bite block and infrared reflecting markers (BrainLAB AG). Computerized tomography (CT) images 

of 1.25-mm slice thickness were acquired using a Light Speed RT scanner (GE Healthcare, 

Milwaukee, WI, USA). Contrast-enhanced MRI scans were also referred with CT-MRI fusion 

devices. The gross tumor volume (GTV) was defined as the contrast-enhanced lesion detected in 

CT/MRI images. The clinical target volume (CTV) was defined as being identical to the GTV. The 

planning target volume (PTV) was formed by expanding the CTV with a 1-mm margin. This margin 

was evaluated using upfront analysis of the geometric accuracy of frameless stereotactic 

radiotherapy systems in our hospital [12]. All lesions were treated using a dynamic conformal arc 

technique with multileaf collimator (MLC) margin 0–1 mm, planned with iPlan RT Dose 4.1.2 

(BrainLAB AG). Three or four arc beams were used. Patients were positioned using the 

Novalis/ExacTrac system. Positional errors including translations and rotations were corrected by 
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moving the robotic couch. The prescribed doses were specified at the isocenter, and 35 Gy in five 

fractions was basically prescribed. Brainstem lesions with a prior history of WBRT were treated 

with lower doses: 20–25 Gy in five fractions was prescribed. PTV was covered by the 80% isodose 

line of the prescribed dose to the isocenter. One lesion was exceptionally treated with 40 Gy in five 

fractions at the discretion of the treating physician. 

 

Follow-up and analysis 

 

After treatment, patients underwent a follow-up MRI scan every 1–3 months, and the maximum 

diameter of the irradiated lesion in the axial image was measured. Twenty-one patients with 27 

lesions had follow-up MRI scans at least once 3 months or more after HFSRT and were eligible 

for the analysis of local-control probability, probability of developing new brain metastases, 

overall survival, and time to neurological deterioration in the present study. For the analysis of 

local control, the response criteria were defined as follows: complete response (CR) was defined as 

no visible gross tumor or absence of contrast enhancement, partial response (PR) as more than a 

30% decrease in size, progressive disease (PD) as more than a 20% increase in size, and stable 

disease (SD) as all other responses. Local control was defined as a status of CR, PR, or SD. 

Radiation necrosis/injury was defined as lesions in which the contrast-enhanced MRI images were 

enhanced peripherally or heterogeneously and resulted in no continuous progression on further 

follow-up. A nuclear medicine study such as positron-emission tomography was conducted as 

necessary. Open surgery and pathological diagnosis was recommended for lesions that caused 

clinical symptoms and could not be controlled conservatively. Radiation necrosis was not included 

in the PD category in the analysis of local control.  

Neurologic deterioration was defined a decline in the KPS of ≥30 for at least 1 week or 

a decline in KPS from any baseline to ≤50 for at least 1 week. If the KPS before HFSRT was <70, 

neurologic deterioration was defined as any decline in the KPS after HFSRT for at least 1 week. A 

temporal decline in KPS that was attributable to other causes and not to a neurologic deficit was 

excluded. The cause of death was considered a neurologic cause if the patient had progressive 

neurologic dysfunction with or without progressive systemic disease.  
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Statistics 

 

Local-control probability, probability of developing new brain metastases, and overall survival 

were calculated using the Kaplan–Meier method. The local control probability and the probability 

of developing new brain metastases were evaluated from the initial HFSRT treatment to the date of 

failure or last imaging follow-up. Overall survival was measured from the initial HFSRT to the date 

of death or last follow-up. Time to neurological deterioration was measured from the date of the 

initial HFSRT to the date of neurological deterioration, death, or last follow-up.
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Results 

 

Local control and new lesion development 

 

The median duration of imaging follow-up was 286 days (range, 92–1315 days). PTV and 

maximum diameter of the tumor ranged from 0.08 to 15.38 cc (median, 3.67 cc) and from 3 to 34 

mm (median, 18 mm), respectively. With the exception of the brainstem lesions (5 lesions, 18.5%), 

the PTV and maximum diameter were 0.44–15.38 cc (median, 5.44 cc) and 9–34 mm (median, 23 

mm), respectively. Brainstem lesions are more likely to be symptomatic and lethal than lesions in 

other locations, even when they are relatively small [13]; thus, we treated the brainstem lesions as 

soon as possible. Of the 21 patients, 10 (47.6%) with 15 of the 27 lesions (55.6%) had a history of 

WBRT before receiving HFSRT. The time between the end of prior WBRT and the initiation of 

HFSRT was 563 days (69 1116 days). The dose fractionation of prior WBRT was 30 Gy in 10 

fractions (seven patients), 37.5 Gy in 15 fractions (two patients), and 25 Gy in 10 fractions (one 

patient). All these patients underwent HFSRT as salvage for failed WBRT. 

The local-control probabilities were 92.1% (95% confidence interval [CI], 82.2–100) at 

6 months and 86.7% (95% CI, 73.5–100) at 12 months (Fig. 1a). At the time of analysis, four 

lesions in four patients were diagnosed as PD (Table 1). All PD lesions had been treated with an 

irradiation schedule of 35 Gy in five fractions.  

Eleven patients (52.4%) had new brain metastases after the initial HFSRT treatment. 

The probability of developing new brain metastases was 45.4% (95% CI, 18.1–63.6) at 6 months 

and 59.0% (95% CI, 27.6–76.8) at 12 months (Fig. 1b). 

 

Toxicity 

 

According to the CTCAE version 3.0, no grade 3–4 acute toxicities occurred in our study. Two 

grade 2 seizures were observed: one transient partial convulsion and one general seizure. Grade 2 

mild hemorrhages at the irradiated site were observed in three patients, and they were successfully 

managed conservatively. We observed late toxicity in one patient, who developed a grade 3 

radiation necrosis associated with clinical symptoms. The patient had a metastatic tumor in the right 

frontal lobe derived from breast cancer. The tumor was treated with 40 Gy in five fractions. The 
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patient had a history of WBRT (30 Gy in 10 fractions) performed 15 months prior to the HFSRT. 

Initially, the tumor appeared to gradually shrink, but the contrast-enhanced lesion emerged 

approximately 2 years after HFSRT with clinical symptoms, increased weakness, and gait 

impairment. Surgery was recommended by a specialized neurosurgeon, but the patient refused and 

was treated with conservative therapy. At present, the symptoms have improved, and the enhanced 

areas and surrounding edema have disappeared. 

 

Overall survival and time to neurological deterioration 

 

The median follow-up after HFSRT was 329 days (range, 120–1321 days). Overall survival was 

85.4% (95% CI, 71.5–100) at 6 months and 64.5% (95% CI, 46.3–89.8) at 12 months (Fig. 1c). 

Time to neurological deterioration was a median of 316 days (range, 98 1011 days). 

Nine patients had died at the time of analysis. The cause of death was neurologic causes 

in four patients and progressive systemic cancer in five patients. Another three patients were lost 

to follow-up, and all had progressive intracranial diseases and neurologic dysfunction. The 

remaining nine patients are alive to date and all except one is free from neurologic symptoms. The 

one patient had neurologic deterioration due to progressive intracranial disease. 

   As to the seven patients with eight eloquent lesions, time to neurological 

deterioration was a median of 231 days (range, 98–651 days) after the initiation of HFSRT. Of 

them, four patients had one or two lesion(s) at the brainstem and three patients had a history of 

WBRT (30 Gy in 10 fractions). The intervals between the end of WBRT and the initiation of 

HFSRT were 69, 171, and 325 days. Three improved or had stable neurologic symptoms at the 

time of last follow-up: two had stable or improved oculomotor nerve impairment and one had no 

neurologic symptoms. The other had local brainstem failure at 434 days after HFSRT and also had 

rapidly growing multiple intracranial lesions that caused neurologic deterioration. In contrast, two 

of three patients with lesions at the motor area had no severe acute toxicity but had neurologic 

deterioration due to local or other progressive lesions within the brain.  
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Discussion 

 

Research in the 1990s suggested that hypofractionation had significant benefits over single-dose 

radiosurgery in terms of widening the therapeutic window between tumor control and late effects, 

particularly for malignant tumors [9,10]. Current noninvasive, sophisticated techniques such as 

HFSRT have enabled clinicians to deliver high radiation doses to lesions precisely and repeatedly.  

Dose escalation using single-fraction radiosurgery is problematic because large tumors 

require high doses that may cause late neurological toxicities. The first dose-escalation study using 

single-fraction radiosurgery (Radiation Therapy Oncology Group Study 90-05; RTOG 90-05) [7] 

was conducted to establish the maximum tolerable dose for patients with recurrent, previously 

irradiated, primary brain tumors and brain metastases. Doses were prescribed to the 50–90% 

isodose line according to the maximum diameter of the tumor. The results showed that the 

maximum tolerable doses for SRS were 24 Gy, 18 Gy, and 15 Gy for tumors with maximum 

diameters ≤20 mm, 21–30 mm, and 31–40 mm, respectively. Thus, the dose for larger tumors was 

reduced when using single-dose SRS, although dose escalation would be desirable in terms of 

controlling larger tumors. 

In daily clinical practice, lesions amenable to SRS are typically <3 cm in maximum 

diameter [14], and local control has been reported to be influenced by tumor size [15 18]. 

However, the relationship between tumor size and local control is difficult to assess because lower 

doses are prescribed for larger tumors and higher doses for smaller ones. Thus, the relationship 

between tumor size and local control in relation to one fixed dose in a single fraction is not clear 

and is seldom addressed in the literature. For relatively small tumors ≤2 cm, many reports have 

shown good local control rates by using single-fraction SRS [14]. However, a cut-off value for 

local control seems to exist in even small tumors ≤2 cm. To our knowledge, there are two reports 

regarding this point of view [19,20]. One study by Chang et al. [19] showed that the threshold 

value was a maximum tumor diameter of 1 cm. The maximum diameter of the treated lesions in 

that study was 2.1 cm, and they were treated in a single fraction with a prescribed dose of 20–24 

Gy to the periphery of the target. Chang and colleagues reported that the 1-year local-control rates 

were 86% in tumors with a diameter ≤1 cm and 56% in tumors with a diameter >1 cm [19]. The 

local-control rates found in the larger-diameter group were low compared with previously reported 

rates [14], which may have been due to the authors’ criteria for inclusion and local treatment 
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failure. The other study by Shehata et al. [20] reported excellent local control with single-fraction 

SRS for ≤2 cm tumors. At the same time, they also found that tumor volume was a significant 

factor affecting tumor control in their multivariate analysis. The threshold value was 0.3 cc, which 

was equal to about 0.8 cm estimated diameter. 

Evidence suggests that hypofractionation could overcome the disadvantages of 

single-fraction radiosurgery. Several investigators have reported good results for local control 

using various hypofractionation schedules [21 29]. We also achieved high local-control rates of 

92.1% and 86.7% at 6 and 12 months, respectively, despite relatively large tumor diameters 

(median, 18 mm), and four relapsed cases (Table 1), which were irradiated with 35 Gy in five 

fractions. Two of the tumors were derived from colon and renal cancers, which were thought to be 

radioresistant tumors. Additionally, all four patients with these lesions had uncontrolled 

extracranial lesions, and these unfavorable factors might be associated with undesirable outcomes, 

but the actual relationship between local control and its predictive factors was not clear in the 

present study. An increase in dose escalation may be necessary to obtain better local-control 

probabilities; however, our sample size was too small to confirm this notion.  

Optimal fractionation schedules need to be determined. Wiggernraad et al. [29] conducted 

a systematic review of stereotactic fractionated radiotherapy in metastatic brain tumors using a 

modified linear–quadratic–cubic (LQC) model. The LQC model adjusted the LQ model to account 

for a more linear response at higher doses by adding an additional term proportional to the cube of 

the dose. They concluded that a biologically effective dose at an /  value of 12 Gy (BED12) of at 

least 40 Gy was needed for a 12-month local-control rate of 70% or greater. Most of the patients in 

our study received a dose of 35 Gy in five fractions. Using a classical LQ model, the BED12 of this 

dose fractionation is significantly lower than that of single dose fraction radiosurgery. For 

example, the BED12 of 25 Gy in a single fraction is 77.1 Gy according to the classical LQ model, 

and 35 Gy in five fractions corresponds to a BED12 of 55.4 Gy. However, using the LQC model, 

both dose fractionations are the same, estimated as BED12 = 53.0 Gy. The peripheral doses of PTV, 

80% of the prescribed dose at the isocenter, were 28 Gy in five fractions and 20 Gy in a single 

fraction. Both were calculated as a BED12 of 40 Gy. Thus, we obtained good local-control rates in 

our study, supporting the notion of a more linear response rate between cell survival and dose at 

higher doses. Application of the LQC model to clinical practice is reasonable when comparing the 
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BED12 of HFSRT with that of SRS at high doses. Lower doses estimated using the classical LQ 

model should provide good local control of metastatic brain tumors despite large sizes. 

The role of tumor size in the control of brain metastases was not clear in the present 

study. Aoyama et al. [23] reported tumor volume >3 cc (equal to about 1.8 cm estimated diameter) 

is a significant prognostic factor for local control. However, some aspects of their study were 

different from ours as follows: a fractionation schedule of 20–40 Gy in four fractions at the 

isocenter, setup accuracy and PTV margin of 2 mm, and dose delivery without MLC. To our 

knowledge, no other study has described the relationship between tumor size and local control in 

HFSRT. We think that the rationale behind better local control in HFSRT is safe dose escalation 

for larger tumors and radiobiological benefit of fractionation. According to the LQC model, 

HFSRT enables deliver of the same effective doses for larger tumors as a high-single dose for 

smaller tumors. In addition, some radiobiological benefit, such as reoxygenation, also contributes 

to better outcomes. The interval between each fractionated dose allows hypoxic tumor cells to be 

aerobic and radiosensitive, and to be killed by subsequent dose fractions [10]. The maximum 

diameter in the present study was up to 34 mm. Tumors within this range seem to be safely 

controlled and a cutoff may exist at much larger sizes. However, HFSRT for much larger tumors 

would be a remaining issue for the future evaluations. 

Late toxicities such as radiation necrosis and radiation injury may be life-threatening. The 

exact rates of radiation necrosis are not known. One reason for this is the difficulty in differentiating 

between a radiation injury and a recurrence [30]. Few studies describe the method used to 

distinguish a radiation necrosis from a true recurrence in their analysis of local control in brain 

metastases. The judgment appears to be based on clinical factors in most studies, and many report 

crude rates of radiation necrosis of 5–10% [29]. In the RTOG 90-05 study, radiation necrosis was 

frequently observed when large-volume tumors were irradiated with high doses that were not 

clinically tolerated. In our study, the crude rate of radiation necrosis was 3.7% (one lesion), which 

occurred in the lesion irradiated with a dose of 40 Gy in five fractions. This patient had a history of 

WBRT, 30 Gy in 10 fractions. Radiation necrosis was not observed in other lesions in our study in 

those treated with 20–35 Gy in five fractions, even though half of them had been previously 

irradiated with WBRT. Moreover, with the exception of lesions in the brainstem, the median PTV 

was relatively large (median 5.44 cc); however, we did not observe severe toxicity. 
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To our knowledge, no reports have shown a direct comparison of the incidence of 

radiation necrosis between WBRT plus SRS and SRS alone. However, we have some suggestive 

data in the Japanese randomized controlled trial [5]. In this trial, 132 patients with one to four 

metastases, each less than 3 cm in diameter, were randomly assigned to receive up-front WBRT 

plus SRS (65 patients) or SRS alone (67 patients). As a result, more patients treated with SRS plus 

WBRT developed radiation necrosis (three patients) than patients treated with SRS alone (one 

patient), although the SRS dose was reduced by 30% in SRS plus WBRT group compared with 

SRS alone group. This observation suggests WBRT followed by SRS may result in increasing the 

risk of radiation necrosis. 

A reduction in late toxicity is crucial for long-term survival. Patients with primary tumors 

such as renal cancer have been reported to have longer survival times than patients with other 

primary tumors [22], and more investigations should focus on the longer-surviving patients. 

Varlotto et al. [31] reported that the actuarial incidence of adverse events at 1 and 5 years was 2.8% 

and 11.4%, respectively, in patients who had survived at least 1 year after radiosurgery for brain 

metastases. In our study, nine patients survived more than 1 year after HFSRT. One patient, who 

was treated with 40 Gy in five fractions, developed radiation necrosis. The sample size in our study 

was small, but 35 Gy in five fractions appears to be a safe dose. 

The small sample size in the present study and limitations imposed by retrospective 

analyses do not allow us to definitively state that metastatic tumor treatment with HFSRT is 

superior to SRS. However, a randomized trial to compare these two methods would be unethical 

considering the toxicity of the higher doses in SRS. Nonetheless, a prospective study to determine 

optimal dose and fractionation schedules is warranted. Our results demonstrate the potential of 

HFSRT in terms of tumor-control probability and reduction in toxicities as a treatment for 

metastatic brain tumors with high risk factors. 
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Conclusions 

 

We conclude that HFSRT is safe and produces high local-control rates for metastatic brain tumors 

with high risk factors. We will continue to use this fractionation schedule for these difficult cases 

and conduct long-term follow-up to evaluate the efficacy of this strategy.
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Figure Legend 

 

Fig. 1 a Local-control probability, b probability of developing new brain metastases, and c overall 

survival estimated using the Kaplan–Meier method 
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Table 1 Patient and tumor characteristics 

a This indicates the time between initiation of hypofractionated stereotactic radiotherapy and progression or last imaging follow-up. 

Abbreviations: C Controlled; CUP Cancer of unknown primary; F Female; fr fraction; HP Hypopharynx; KPS Karnofsky performance status; M Male; MD Maximum diameter; N Radiation necrosis; 

PTV planning target volume; R Relapsed; RPA Radiation Therapy Oncology Group Recursive Partitioning Analysis; WBRT whole-brain radiotherapy 

Patient no. 

/Tumor no. 

Age (years), 

Gender 
KPS 

RPA 

class 

Primary 

tumor 

Extracranial 

lesion and status 

Prior 

WBRT 

Tumor 

location 
Eloquent 

MD 

(mm) 

PTV 

(cc) 

Dose/fr. 

(Gy) 

Local 

control 

Time a 

(day)  
Current status 

1 61, M 70 II Lung Exist / active Yes Temporal No 23 5.98 7 C 95 Dead (systemic) 

2 46, F 80 II Breast Exist / inactive No Cerebellum No 28 7.11 7 C 404 Alive 

3 52, M 90 I CUP None No Temporal No 34 11.16 7 C 328 Lost to follow up 

4 66, M 80 II Lung Exist / active Yes Brainstem Yes 8 0.30 4 C 181 Dead (systemic) 

5 60, F 100 I Lung None Yes Parietal No 10 1.04 7 C 461 Alive 

6-1 57, F 100 II Breast Exist / inactive Yes Frontal No 28 11.40 8 N 1315 Alive 

6-2 58, F 80 II 
 

Exist / inactive Yes Cerebellum No 9 0.44 7 C 711 
 

7 54, M 100 I Lung None Yes Cerebellum No 31 10.08 7 C 526 Alive 

8 39, M 80 II HP Exist / inactive No Frontal Yes 28 9.78 7 C 138 Dead (systemic) 

9 49, F 100 II Lung Exist / active No Temporal No 16 2.70 7 R 187 Alive 

10-1 74, F 90 II Lung Exist / inactive Yes Parietal No 12 1.45 7 C 521 Alive 

10-2 74, F 90 II 
 

Exist / inactive Yes Brainstem Yes 8 0.44 5 C 521 
 

11-1 61, M 80 II Lung Exist / inactive Yes Temporal No 27 15.38 7 C 286 Dead (neurologic) 

11-2 61, M 80 II 
 

Exist / inactive Yes Parietal Yes 17 2.56 7 C 286 
 

11-3 62, M 70 II 
 

Exist / inactive Yes Temporal No 19 3.67 7 C 159 
 

12-1 84, F 40 III Kidney Exist / active No Brainstem Yes 3 0.08 7 C 434 Dead (neurologic) 

12-2 84, F 40 III 
 

Exist / active No Brainstem Yes 6 0.26 7 R 434 
 

13 54, F 80 II Lung Exist / active Yes Cerebellum No 28 5.79 7 C 92 Dead (systemic) 

14 59, F 90 II Breast Exist / active No Temporal No 18 5.08 7 C 229 Dead (systemic) 

15 71, M 100 II Lung Exist / inactive No Frontal No 16 2.49 7 C 715 Alive 

16 68, M 90 II Colon Exist / active No Parietal Yes 25 4.58 7 R 132 Lost to follow up 

17 68, M 100 II Lung Exist / inactive No Occipital No 23 7.13 7 C 280 Alive 

18 39, F 100 II Uterus Exist / active No Temporal No 28 6.28 7 C 154 Lost to follow up 

19-1 39, F 90 II Lung Exist / active Yes Frontal No 13 0.57 7 C 162 Dead (systemic) 

19-2 39, F 90 II 
 

Exist / active Yes Parietal No 16 2.05 7 R 92 
 

20 65, M 90 II Lung Exist / inactive No Frontal No 25 6.74 7 C 347 Alive 

21 53, M 80 II Lung Exist / active Yes Brainstem Yes 13 1.14 5 C 116 Dead (systemic) 


