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Applicability of counting statistics for a system with an infinite number of states is investigated.
The counting statistics has been studied a lot for a system with a finite number of states. While
it is possible to use the scheme in order to count specific transitions in a system with an infinite
number of states in principle, we have non-closed equations in general. A simple genetic switch
can be described by a master equation with an infinite number of states, and we use the counting
statistics in order to count the number of transitions from inactive to active states in the gene. To avoid
having the non-closed equations, an effective interaction approximation is employed. As a result, it
is shown that the switching problem can be treated as a simple two-state model approximately, which
immediately indicates that the switching obeys non-Poisson statistics. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4754537]

I. INTRODUCTION

Counting statistics is a scheme to calculate all statistics
related to specific transitions in a stochastic system. In the
counting statistics, a master equation with discrete states is
used to derive time-evolution equations for generating func-
tions related to the specific transitions. The scheme has been
used to investigate Förster resonance energy transfer, and
many successful results have been obtained.1–3 Although the
scheme is basically formulated for a system with a finite num-
ber of states, it is possible to use the scheme to investigate
a system with an infinite number of states. However, as ex-
emplified later, we have non-closed equations in general, so
that it would be needed to develop approximation schemes
suitable for specific systems. As a first step, it is important
to check whether an approximation scheme for the counting
statistics is available for the system with an infinite number of
states or not.

In the present paper, we focus on dynamics in genetic
switches. It has been shown that stochastic behavior plays an
important role in gene regulatory systems,4–6 and there are
many studies for the stochasticity in the gene regulatory sys-
tems from experimental points of view (e.g., see Refs. 7 and
8) and theoretical ones (e.g., see Refs. 9–16). Not only studies
by numerical simulations, but also those by analytical calcu-
lations have been performed. Some analytical expressions for
the static properties, i.e., stationary distributions for the num-
ber of proteins or mRNAs, have already been obtained. In ad-
dition, in order to investigate the role of the stochasticity in ge-
netic switches, dynamical properties, i.e., switching behavior
between active and inactive gene states, have also been stud-
ied. Basically, such dynamical properties have been investi-
gated by numerical simulations (e.g., see Ref. 17); only for
a simple system, analytical expressions for the first-passage
time distribution have been obtained.18 The genetic switch

a)E-mail: ohkubo@i.kyoto-u.ac.jp.

is described by a master equation with an infinite number of
states. Hence, if we can use the scheme of the counting statis-
tics in order to investigate the dynamical properties in the ge-
netic switches, it will be helpful to obtain deeper understand-
ing and intuitive pictures for the genetic switches.

The aim of the present paper is to seek the applicabil-
ity of the counting statistics in order to investigate the dy-
namical property in the genetic switches. It immediately be-
comes clear that a straightforward application of the counting
statistics derives intractable non-closed equations. In order
to obtain simple closed forms, we here employ an effective
interaction approximation.19 As a result, we will show that
the switching problem can be treated as a simple two-state
model approximately. This result immediately gives us intu-
itive understanding for the switching behavior and the non-
Poissonian property.

The present paper is constructed as follows. In Sec. II, we
give a brief explanation of a stochastic model for the genetic
switch. In Sec. III, the counting statistics is employed in or-
der to count the number of transitions in the genetic switch,
and, as a result, a simple two-state model is derived approxi-
mately. The derived approximated results are compared with
those of Monte Carlo simulations in Sec. IV. Section V gives
concluding remarks.

II. MODEL

A gene regulatory system consists of many components,
such as genes, RNAs, and proteins. Here, a simplified model
is used; mRNAs are neglected for simplicity, and an activated
gene assumes to directly increase the number of proteins. In
addition, in the simplified model, a repressed gene cannot pro-
duce any proteins. The above model has been used to investi-
gate the switching behavior in previous works, and, for exam-
ple, see Ref. 13 for details of the model.

0021-9606/2012/137(12)/125102/6/$30.00 © 2012 American Institute of Physics137, 125102-1
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FIG. 1. A schematic illustration of the self-regulating gene with repressed
binding interaction. When the regulatory proteins are combining the gene,
the gene is repressed and there is no production of proteins. If the regulatory
proteins are released from the gene, the gene becomes active and it can pro-
duce the proteins. We consider the transition between the active and inactive
states as a switch.

We summarize the model studied in the present paper in
Fig. 1. The binding interaction is assumed to be a repressed
one, and the gene is activated only when the regulatory pro-
teins are not binding the gene. The proteins are produced
from the gene in the active state with rate g, and proteins are
degraded spontaneously with rate d. The regulatory proteins
bind the gene with a rate function H(n), where n is the num-
ber of free proteins. For example, H(n) = hn for a monomer
interaction case, and H(n) = hn(n − 1)/2 for a dimer inter-
action case, where h is a rate constant for the binding. f is a
rate constant with which the regulatory proteins are released
from the repressor site of the gene.

We here give short comments for the model from
the viewpoint of experiments. Using this simplified model,
we can discuss the connection among the model parameters,
the number of proteins, and the switching behaviors. While
the number of proteins n can be observed or estimated experi-
mentally, as far as we know, there has not been an experimen-
tal technique to observe the attachment and detachment of the
regulatory proteins directly. We hope that the developments
of single-molecule observations in future would enable us to
give information about the switching dynamics.

III. COUNTING STATISTICS FOR THE NUMBER OF
TRANSITIONS

A. Master equation for the number of proteins

Analytical treatments for the self-regulating gene system
have been developed, and an exact solution is known for the
monomer interaction case, i.e., H(n) = hn.11, 18 In order to
simplify the analytical treatments, an additional assumption
has been used in some previous works;13, 19 i.e., some of the
proteins are assumed to be inert when the gene state is active.
The inert proteins cannot repress the gene, and it is not de-
graded. For the monomer interaction case, there is only one
inert protein; the number of inert protein for the dimer inter-
action case is two, and so on. Note that the assumption of
the inert proteins does not have physical meanings; this only
simplifies the analytical treatments (for details, see Ref. 13).
However, it has been shown that this assumption has little in-
fluence of the gene system, and then we employ the assump-
tion in the present paper.

Let αn and βn be states in which there are n free proteins
for the active and inactive states, respectively. The probabili-
ties for αn and βn at time t satisfy the following master equa-
tions:

dP (αn, t)

dt
= g[P (αn−1, t) − P (αn, t)]

+ d[(n + 1)P (αn+1, t) − nP (αn, t)]

−hnP (αn, t) + f P (βn, t), (1)

dP (βn, t)

dt
= d[(n + 1)P (βn+1, t) − nP (βn, t)]

+hnP (αn, t) − f P (βn, t), (2)

where P(αn, t) and P(βn, t) are probabilities for n free proteins
for the active and inactive states, respectively.

As stated in Sec. I, the exact solutions for stationary dis-
tributions of the number of proteins have been derived, and
those are expressed using the Kummer confluent hypergeo-
metric functions. For details, see Refs. 11 and 13.

B. Counting statistics

Using the concept of the counting statistics,1–3 it is pos-
sible to investigate dynamical properties, i.e., all statistics for
the switching behavior between the active and inactive states.
In the present paper, as an example, we calculate the number
of transitions from the inactive state to the active state. The
generating functions for the transitions are immediately ob-
tained from the master Eqs. (1) and (2). A brief explanation
of the counting statistics is given in the Appendix, and we
here give consequences of the counting statistics.

A probability, with which there are k transitions from the
inactive state to the active state during time t, is denoted by
P(k|t). The generating function for P(k|t) is defined as

F (λ, t) =
∞∑

k=0

P (k|t)λk, (3)

where λ is a counting variable. The generating function gives
all information related to “inactive → active” transitions. Ac-
cording to the scheme of counting statistics, we split F(λ, t)
into restricted generating functions {φ(αn, λ, t)} and {φ(βn,
λ, t)}, where φ(αn, λ, t) and φ(βn, λ, t) are the generating
functions for the system in states αn and βn at time t, respec-
tively. Using the scheme of the counting statistics, we obtain
the following time-evolution equations for the restricted gen-
erating functions {φ(αn, λ, t)} and {φ(βn, λ, t)}:

dφ(αn, λ, t)

dt
= g[φ(αn−1, λ, t) − φ(αn, λ, t)]

+ d[(n + 1)φ(αn+1, λ, t) − nφ(αn, λ, t)]

−hnφ(αn, λ, t) + λf φ(βn, λ, t), (4)

dφ(βn, λ, t)

dt
= d[(n + 1)φ(βn+1, λ, t) − nφ(βn, λ, t)]

+hnφ(αn, λ, t) − f φ(βn, λ, t). (5)
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Although Eqs. (4) and (5) are similar to Eqs. (1) and (2), note
that the final term in the right hand side of Eq. (4) has a factor
λ. The factor λ is introduced in order to count the number of
transitions, and we can count the number of transitions related
to this term (for details, see Appendix). Using the above re-
stricted generating functions, the generating function F(λ, t)
is calculated as

F (λ, t) =
∞∑

n=0

{φ(αn, λ, t) + φ(βn, λ, t)} . (6)

Next, we introduce the following generating functions for
φ(αn, λ, t) and φ(βn, λ, t):

α(λ, z, t) ≡
∞∑

n=0

φ(αn, λ, t)zn, (7)

β(λ, z, t) ≡
∞∑

n=0

φ(βn, λ, t)zn. (8)

It is straightforward to derive the time-evolution equations for
the new generating functions α(λ, z, t) and β(λ, z, t) from
Eqs. (4) and (5),

dα(λ, z, t)

dt
= (z − 1)

[
gα(λ, z, t) − d

∂α(λ, z, t)

∂z

]

−hz
∂α(λ, z, t)

∂z
+ λfβ(λ, z, t), (9)

dβ(λ, z, t)

dt
= −(z − 1)d

∂β(λ, z, t)

∂z

+hz
∂α(λ, z, t)

∂z
− fβ(λ, z, t). (10)

Using the generating function α(λ, z, t) and β(λ, z, t), the gen-
erating function F(λ, t) is given by

F (λ, t) = α(λ, z = 1, t) + β(λ, z = 1, t), (11)

and therefore it is enough to solve the following time-
evolution equations in order to calculate the generating func-
tion F(λ, t):

dα(λ, t)

dt
= −h

∂α(λ, z, t)

∂z

∣∣∣∣
z=1

+ λfβ(λ, t), (12)

dβ(λ, t)

dt
= h

∂α(λ, z, t)

∂z

∣∣∣∣
z=1

− fβ(λ, t), (13)

where we define α(λ, t) ≡ α(λ, z = 1, t) and β(λ, t) ≡ β(λ, z
= 1, t).

Note that Eqs. (12) and (13) contain the derivative of α(λ,
z, t) with respect to z. Hence, the equations are not closed.
If these terms are expressed simply using α(λ, t), we will
have simultaneous differential equations written only by the
generating functions α(λ, t) and β(λ, t); i.e., we have closed
equations and hence the obtained equations may be solved
analytically. In the following analysis, an effective interaction
approximation is employed, and we will show that the above
statistics can be approximated by a simple two-state model.

C. Approximation for the interaction

In the effective interaction approximation, the interaction
function H(n) is replaced as a constant value. As shown in
Ref. 19, the dependence of H(n) on n makes it difficult to
obtain analytical results, and it has been shown that the ap-
proximation gives qualitatively good results.

Replacing the interaction function H(n) as

H(n) = h̃, (14)

where h̃ is a constant, we obtain the following equations in-
stead of Eqs. (12) and (13):

dα(λ, t)

dt
= − h̃α(λ, t) + λfβ(λ, t), (15)

dβ(λ, t)

dt
= h̃α(λ, t) − fβ(λ, t). (16)

Note that Eqs. (15) and (16) are written only by α(λ, t) and
β(λ, t). It means that the switching problem can be approxi-
mated as a simple two-state model if the effective interaction
h̃ is chosen adequately.

We here briefly explain the choice of the effective inter-
action h̃ using a simple example, i.e., the monomer binding
interaction case. For the monomer binding interaction, the in-
teraction function is calculated as follows.19 In this case, the
interaction function is hn. In order to obtain the effective in-
teraction h̃, the number of proteins n is replaced as the average
number of proteins, i.e.,

h̃ = h〈n〉α, (17)

where 〈n〉α is the expectation of the number of free regulatory
proteins under a condition that the gene is in the active state
(conditional expectation).

The conditional expectation can be calculated from the
stationary distribution of the number of proteins. Note that
the generating functions α(λ, z, t) and β(λ, z, t) are reduced
to generating functions for the stationary distribution of the
number of proteins when λ = 1. Hence, as shown in Ref. 19
they are written as follows:

α(z) ≡ lim
t→∞ α(λ = 1, z, t) = AF [a, b,N (z − 1)], (18)

β(z) ≡ lim
t→∞ β(λ = 1, z, t)

=
(

1 + h̃

f

)
AF [a − 1, b − 1, N (z − 1)] − α(z),

(19)

where A = f/(f + h̃) and

N = g

d
, a = 1 + f

d
, b = 1 + f + h̃

d
.

F(p, q, r) is the Kummer confluent hypergeometric function,

F (p, q, r) ≡
∞∑

n=0

(p)n
(q)n

rn

n!
, (20)
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where (p)n = p(p + 1)(p + 2)···(p + n − 1). We, therefore,
obtain

〈n〉α ≡ 1

α(1)

∂

∂z
α(z)

∣∣∣∣
z=1

= g(d + f )

d(d + f + h̃)
. (21)

By inserting Eq. (21) into Eq. (17), the following self-
consistent equation is derived:

h̃ = h
g(d + f )

d(d + f + h̃)
. (22)

Solving Eq. (22), we obtain

h̃ = −(d2 + f d) +
√

(d2 + f d)2 + 3hgd(d + f )

2d
. (23)

We finally comment on a solution of the simple two-state
model (Eqs. (15) and (16)). The simple two-state model can
be solved exactly,1, 3 and the probability distribution P(k|t) for
the number of “inactive → active” transitions during time t is
explicitly written as follows:

P (k|t) =
(

(1 − γ 2)T

2γ

)k
e−T

k!
√

8γ T /π

×{2γ (k + T )Ik−1/2(γ T ) + (1 + γ 2)T Ik+1/2(γ T )},
(24)

where T = (f + h̃)t/2, γ 2 = 1 − 4fβ(1)/(f + h̃), and In(z)
are modified Bessel functions of the first kind. This expression
(24) immediately gives us the non-Poissonian picture of the
phenomenon.

IV. NUMERICAL RESULTS

In order to check the validity of the analytical treatments
and the approximations, we here compare the analytical re-
sults with those of Monte Carlo simulations. The original ge-
netic switch explained in Sec. II was simulated using a stan-
dard Gillespie algorithm.20 The parameters used in the simu-
lation are as follows: d = 1, g = 50.0, h = 0.004, f = 0.1.
Note that these parameters were selected as one of the typical
values used in the previous works.13, 19

First, we consider the monomer binding interaction case.
According to the discussions in Sec. III C, the value of the
effective interaction h̃ is calculated as h̃ = 0.173. Figure 2(a)
shows the results of the analytical calculations (Eq. (24)) and
those of the Monte Carlo simulations. Although there are
quantitative differences, the results show that the approxi-
mated two-state model captures the essential features of the
phenomenon.

Next, we consider a dimer binding interaction case, i.e.,
H(n) = hn(n − 1)/2. In this case, the effective interaction is
calculated as follows:

h̃ = h
〈n(n − 1)〉α

2
. (25)
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FIG. 2. Probability distributions for the number of “inactive → active” tran-
sitions. (a) Monomer binding interaction case. (b) Dimer binding interaction
case. In each figure, filled circles and filled boxes are Monte Carlo results
for time t = 10 and t = 100, respectively. Solid and dashed lines correspond
to approximated analytical results of Eq. (24) for time t = 10 and t = 100,
respectively.

As shown in Ref. 19, the effective interaction h̃ is ob-
tained by solving the following self-consistent equation:

h̃ = h

2

1

α(1)

∂2

∂z2
α(z)

∣∣∣∣
z=0

. (26)

We here numerically solved the self-consistent equation
(Eq. (26)), and the calculated value of the effective interac-
tion is h̃ = 1.358. Using the calculated value, we depict the
analytical results and the corresponding Monte Carlo results
in Fig. 2(b). From the comparison, we confirmed that the ap-
proximated two-state model is available even in the dimer
binding interaction case. Although results are not shown, we
performed numerical simulations for some other parameters,
and checked the validity of the analytical treatments. For ex-
ample, even for parameter regions in which the probability
distribution of the number of proteins has bistability, the ap-
proximation scheme works well.

V. CONCLUSIONS

In the present paper, we studied an analytical scheme
to extract information related to the dynamical behavior in
genetic switches. Using an effective interaction approxima-
tion, a simple two-state model is obtained, and we confirmed
that the two-state model captures the features of the phe-
nomenon. Note that in the analytical treatments, we did not
neglect the stochastic properties of the system (except for the
effective interaction approximation); i.e., we can calculate all
statistics for transitions approximately, including higher order
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moments. It could be possible to apply the above effective ex-
pression for the transitions between the active and inactive
states to more complicated gene regulatory networks without
loss of the stochasticity; this would give us deeper understand-
ing for the switching behavior of the gene regulatory systems
including static, dynamical, and stochastic behaviors. In addi-
tion, the idea of the effective interaction may be similar to the
mean-field approximation in statistical physics; the interac-
tion is replaced with the average. It may be possible to develop
higher-order approximations using the analogy with the con-
ventional approximation schemes in statistical physics; this is
an important future work.

We discussed properties only in the stationary states,
because the effective interaction approximation has been
applied only for the stationary states at the moment; the
average number of proteins (or higher moments) should be
estimated adequately, and it was calculated by using the an-
alytical solutions for the stationary distributions of the num-
ber of proteins. Recently, exact time-dependent solutions for
a self-regulating gene have been derived.21 Hence, it may be
possible to extend the effective interaction approximation to
non-stationary states. If so, the effective interaction h̃ would
be time-dependent, and, at least numerically, it is possible to
calculate various moments for the counting statistics for time-
dependent systems.22 We expect that the simple description
developed in the present paper is available for various cases,
such as complicated regulatory systems and time-dependent
systems, and that the description gives new insights for the
regulation mechanisms and stochastic behaviors.
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APPENDIX: GENERATING FUNCTION FOR COUNTING
STATISTICS

Here, we give a brief explanation for the counting statis-
tics for readers’ convenience (for details, see Refs. 1–3). In
the framework of counting statistics, the quantity of interest
is the number of target transitions. It is needed to set multi-
ple target transitions in the genetic switches, and the genetic
switches have two states, i.e., active and inactive states. In
the following explanations, a simple setting, in which there is
only one transition matrix and only one target transition, will
be discussed because it is straightforward to apply the follow-
ing simple discussions to the genetic switches.

Let {Knm} be a transition matrix. We here derive the gen-
erating function for counting the number of events of a spe-
cific target transition iA → jA. Denote the probability, with
which the system starts from state m and finishes in state n
with k transitions from iA to jA during time t, as Pnm(k|t). In
order to calculate the probability Pnm(k|t), we here define a
probability G′

kl(t) with which the system evolves from state l
to state k, provided no iA → jA transitions occur during time
t. By using the probability G′

kl(t), the probability Pnm(k|t) is

calculated as

Pnm(k|t)
= G′

njA
(t) ∗ KjAiA (t)G′

iAjA
(t) ∗ · · · ∗ KjAiA (t)G′

iAjA
(t)︸ ︷︷ ︸

k−1

∗ KjAiA (t)G′
iAm(t), (A1)

where g1(t) ∗ g2(t) ≡ ∫ t

0 g1(t − t ′)g2(t ′)dt ′ denotes the con-
volution. This formulation means that an occurrence of the
target transition iA → jA is sandwiched in between situations
with no occurrence of the target transition, and it is repeated
k times.

Next, we construct the generating function φ̃nm(χ, t) of
the probability Pnm(k|t):

φ̃nm(χ, t) =
∞∑

k=0

λkPnm(k|t). (A2)

That is, the generating function φ̃nm(λ, t) gives the statistics
of the number of transition iA → jA during time t under the
condition that the system starts from state m and ends in state
n. The generating function φ̃nm(λ, t) satisfies the following
integral equation

φ̃nm(λ, t)

= G′
nm(t) +

∫ t

0
G′

njA
(t − t ′)λKjAiA (t ′)φ̃iAm(λ, t ′)dt ′, (A3)

and obeys the following time-evolution equation

d

dt
φ̃nm(λ, t)

=
∑

i

Kni(t)G
′
im(t) − δn,jAKjAiA (t)G′

iAm(t)

+ λG′
njA

(0)KjAiA (t)φ̃iAm(t)

+
∫ t

0

(
d

dt
G′

njA
(t − t ′)

)
λKjAiA (t ′)φ̃iAm(t ′)dt ′

=
∑

i

Kni(t)φ̃im(λ, t) − δn,jA (1 − λ)KjAiA (t)φ̃iAm(λ, t),

(A4)

where φ̃nm(λ, 0) = δn,m. In order to show Eq. (A4), we used
the following two facts. First, the probability of no target tran-
sitions, G′

nm(t), obeys

d

dt
G′

nm(t) =
∑

i

Kni(t)G
′
im(t) − δn,jAKjAiA (t)G′

iAm(t),

(A5)

where G′
nm(0) = δn,m. Second, the derivative of the convolu-

tion is given by

d

dt

∫ t

0
g1(t − t ′)g2(t ′)dt ′

= g1(0)g2(t) +
∫ t

0

(
d

dt
g1(t − t ′)

)
g2(t ′)dt ′. (A6)
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Using the generating function φ̃nm(λ, t), we construct re-
stricted generating functions {φn(λ, t)} as follows:

φn(λ, t) =
∑
m

φ̃nm(λ, t)pm(0), (A7)

where pm(0) is a probability distribution at initial time t = 0.
From Eqs. (A4) and (A7), the restricted generating function
satisfies

d

dt
φn(λ, t)

=
∑

i

Kni(t)φi(λ, t) − δn,jA (1 − λ)KjAiA (t)φiA (λ, t),

(A8)

and these equations should be solved with initial conditions
φn(λ, 0) = ∑

m φ̃nm(λ, 0)pm(0) = pn(0). The summation of
{φn(λ, t)} for n gives the objective generating function for
counting the number of events of the specific target transition.
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