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ABSTRACT 1 

Viruses employ alternative translation mechanism to exploit cellular resources at the 2 

expense of host mRNAs, and to allow preferential translation. Plant RNA viruses often 3 

lack both a 5′ cap and a 3′ poly(A) tail in their genomic RNAs. Instead, 4 

cap-independent translation enhancer elements (CITEs) located in the 3′ untranslated 5 

region (3′ UTR) mediate their translation. Although eukaryotic translation initiation 6 

factors (eIFs) or ribosomes have been shown to bind to the 3′CITEs, our knowledge is 7 

still limited for the mechanism, especially for cellular factors. Here, we searched for 8 

cellular factors that stimulate the 3′CITE-mediated translation of Red clover necrotic 9 

mosaic virus (RCNMV) RNA1 using RNA aptamer-based one step affinity 10 

chromatography followed by mass spectrometry analysis. We identified the 11 

poly(A)-binding protein (PABP) as one of the key players in the 3′CITE-mediated 12 

translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence 13 

(ARS) in the viral 3′ UTR. The ARS is conserved among dianthoviruses. Mutagenesis 14 

and a tethering assay revealed that the PABP-ARS interaction stimulates 15 

3′CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 16 

3′CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 17 

3′ UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that 18 

dianthoviruses have evolved the ARS and 3′CITE as substitutes for the 3′ poly(A) tail 19 

and the 5′ cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and 20 

ribosomes to the uncapped/nonpolyadenylated viral mRNA. 21 

 22 

23 
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INTRODUCTION 1 

Initiation is a rate-limiting step in eukaryotic translation, and is tightly regulated. 2 

Eukaryotic mRNAs possess an m7GpppN cap structure at the 5′ end and a poly(A) tail 3 

at the 3′ end. These two structures cooperate to recruit eukaryotic initiation factors 4 

(eIFs) and the 40S ribosome subunit (57), and stimulate translation initiation (19). The 5 

m7GpppN cap serves as the binding site for eIF4F, which is composed of eIF4E, eIF4G, 6 

and eIF4A. eIF4E is an m7GpppN-cap-binding protein, and eIF4G is a scaffold protein 7 

that binds eIF4E, eIF4A, the poly(A)-binding protein (PABP), and mRNA. eIF4A is an 8 

RNA helicase that unwinds RNA duplex structures in an ATP-dependent manner (57). 9 

In plants, eIF4F is thought to be composed of only eIF4E and eIF4G (7), because 10 

eIF4A is purified as a single polypeptide and is not co-purified with eIF4F in wheat 11 

germ (35). Plants have a second form of eIF4F (eIFiso4F), which is composed of 12 

eIFiso4E and eIFiso4G (8). Both eIF4F and eIFiso4F enhance the translation of 13 

m7GpppN-capped mRNAs with an unstructured 5′ untranslated region (UTR), whereas 14 

only eIF4F can stimulate the translation of capped mRNAs with a highly structured 5′ 15 

UTR and uncapped mRNAs, including viral mRNAs (20). PABP binds to a poly(A) 16 

tail at the 3′ end of eukaryotic mRNAs via four RNA-recognition motifs (RRMs) 17 

located in its N-terminal portion, and simultaneously interacts with eIF4F via direct 18 

binding to eIF4G. This ternary interaction circularizes mRNA (30). The interaction 19 

between PABP and eIF4G stabilizes the association of eIF4F with the 5′ cap structure 20 

(30), and enhances the recruitment of the 43S ribosomal pre-initiation complex (43S 21 

PIC), which is composed of the eIF2–GTP–Met-tRNAi Met ternary complex, eIF5, eIF1, 22 

eIF1A, the 40S subunit, and eIF3 (25), to the 5′ capped mRNA through an interaction 23 

between eIF4G and eIF3 (7, 25). The PABP-eIF4G interaction also enhances the 24 

recruitment of the 60S ribosomal subunit joining (31).  25 

Viruses are obligate intracellular parasites that depend on host cells for their 26 
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replication. To exploit cellular resources at the expense of host mRNAs, and to allow 1 

preferential translation or proper translational regulation, positive-strand RNA viruses 2 

have developed diverse strategies, which, in many viruses, include cap- and 3 

poly(A)-independent translation mechanisms. For example, herpes-, polyoma-, nima-, 4 

picorna-, poty-, flavi-, dicistro-, and retroviruses recruit ribosomes at the internal 5 

ribosomal entry site (IRES) located in their 5′ UTR or intergenic region, which 6 

enhances the 5′-end-independent translation (3). All IRES elements, with the exception 7 

of dicistroviruses, bind a subset of eIFs and certain RNA-binding proteins to facilitate 8 

translation (18). 9 

Many plant RNA viruses lacking both a 5′ cap and a 3′ poly(A) tail have 10 

cap-independent translation elements (CITEs) in the 3′ UTR of their genomic RNAs. 11 

To date, at least six distinct classes of 3′CITEs have been identified (46). These 12 

different classes of 3′CITEs exhibit no similarity to each other regarding primary or 13 

secondary structure (46). The 3′CITEs do not act as an IRES although some cooperate 14 

with an IRES (39). The 3′CITEs interact with eIF4F and eIFiso4F (21, 47, 61, 67, 68) 15 

or the 60S ribosomal subunit (58). The binding of the eIF4F and eIFiso4F factors to the 16 

3′CITE are believed to facilitate ribosome recruitment to the 5′ end, either via 5′–3′ 17 

interaction that are mediated by a protein factor (21), or via an RNA–RNA interaction 18 

(16, 17, 24, 45, 47, 69). However, the nature of the factors, other than eIF4F/eIFiso4F, 19 

that are required for the 3′CITE-mediated translation remain unclear (46).  20 

To study the viral 3′CITE-mediated cap-independent translation mechanism, we 21 

used Red clover necrotic mosaic virus (RCNMV) as a model. RCNMV is a member of 22 

the Dianthovirus genus in the Tombusviridae family, and its genome consists of two 23 

RNA molecules, RNA1 and RNA2. These two RNAs lack both the 5′ m7GpppN cap 24 

and the 3′ poly(A) tail. Replication proteins and a capsid protein encoded in RNA1 are 25 

translated via a 3′CITE-mediated translation mechanism (26, 43, 53). The movement 26 
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protein that is required for cell-to-cell movement is encoded in RNA2, and translated 1 

via an unknown cap-independent translation mechanism (42). The 3′CITE of RCNMV 2 

RNA1 is composed of five stem-loop structures (3′SL1–5), and is categorized as a 3 

Barley yellow dwarf virus (BYDV)-like CITE (BTE) (46). BTE contains a 17 nt 4 

sequence (17 nt CS) conserved among dianthoviruses, necroviruses, umbraviruses, and 5 

luteoviruses. The 17 nt CS is essential for cap-independent translation of these viruses 6 

(32, 43, 66). The 17 nt CS contributes to form the 5′-proximal 3′SL1in the 3′ CITE of 7 

RCNMV RNA1 (43, 66). Previously, we showed that five-nucleotide substitutions 8 

(termed “Lm1” mutation) in the loop of the 3′SL1 completely abolished 9 

cap-independent translation of RCNMV RNA1 (43, 53). The BYDV BTE interacts 10 

with eIF4F through eIF4G and enhances BTE-mediated cap-independent translation 11 

(61). The BYDV BTE can also bind to eIFiso4F, albeit with lower affinity than to 12 

eIF4F (61). BYDV BTE-mediated translation requires a long-distance RNA–RNA 13 

interaction between the 5′ and 3′ UTRs of the BYDV RNA (24). In contrast to BYDV, 14 

our systematic mutagenesis studies suggest no or an insignificant role for such a 15 

long-distance RNA–RNA interaction in RCNMV 3′CITE-mediated cap-independent 16 

translation (53). This is supported by the fact that non-viral sequences at the 5′ end are 17 

sufficient to enhance RCNMV 3′CITE-mediated cap-independent translation 18 

efficiently in the protoplasts of cowpea, a natural host for this virus, although the 5′ 19 

UTR is required for the stability of RNA1 and for the enhancement of its translational 20 

activity in the protoplasts of tobacco BY-2 cells (53).  21 

In this study, we searched for host proteins that are associated with the 3′ UTR of 22 

RNA1 using RNA aptamer-based affinity chromatography and tandem mass 23 

spectrometry analysis in a cell-free viral translation/replication system. We identified 24 

PABP as a key player in the 3′CITE-mediated translation of RCNMV RNA1. We 25 

showed that PABP interacts directly with an A-rich sequence (ARS) in the 3′ UTR of 26 
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RNA1, and enhances 3′CITE-mediated translation. We also found that the ARS is 1 

needed for the recruitment of eIF4F/eIFiso4F factors to the 3′ UTR, and of the 40S 2 

ribosome to the viral mRNA. 3 
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MATERIALS AND METHODS  1 

Plasmid constructions. The constructs described previously that were used in this 2 

study include the followings: pUCR1-5′ UTR-S (27), pUCR1-3′ UTR-S (27), 3 

pUCR2-3′ UTR-S (27), pSR1f (28), pR1-Luc-R1 (53), pR1-Luc-Lm1 (53), 4 

pSP64-RLUC (43), pColdGST (40), and pBYL2 (41).  5 

   pBYLNtPABP.  An approximately 72 kDa protein that was copurified with the 6 

3′ UTR of RCNMV RNA1 was excised and subjected to LC/MS/MS analysis. 7 

Seventeen peptide matches were obtained for the poly (A)-binding protein (PABP) 8 

(gi|7673359). PABP cDNA fragments were amplified by RT-PCR from total RNA 9 

extracted from tobacco BY-2 cells using primers, oligo 1 10 

(GCTCAAGGTGCCATAGATAAGTTAAATGGTATG) and oligo 2 11 

(GCAGTCACTTGGACCACCTTGACTCACTCA), which were designed based on 12 

the Nicotiana tabacum PABP mRNA partial coding sequence (gi|7673358). Rapid 13 

amplification of cDNA ends (RACE) was used to obtain information about the 5′ and 14 

3′ proximal region of the mRNA. The full-length cDNA of PABP (AB673187) was 15 

amplified by RT-PCR from total RNA extracted from tobacco BY-2 cells using the 16 

primers, oligo 3 (CTGGCGCGCCATGGCGCAGATTCAGGTTCAGCACCAG) and 17 

oligo 4 (CTGGCGCGCCTCAAGAAACAAGGTTGTCATTG), digested with AscI, 18 

and used to replace the corresponding region of pBYL2.  19 

   pBYLNtPABP-F. A DNA fragment was amplified by PCR from pBYLNtPABP 20 

using primers, oligo 3 and oligo 5 21 

(CTGGCGCGCCTCACTTGTCATCGTCGTCCTTGTAGTCAGAAACAAGGTTGT22 

CATTGAG), digested with AscI, and used to replace the corresponding region of 23 

pBYL2. 24 

   pUCSLAB-S, pUCSLDEF-S, and pUCSLCDEF-S. Three DNA fragments were 25 

amplified by PCR from pUCR1 using primer pairs, oligo 6 26 
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(GCGAGCTCTAATACGACTCACTATAGTGTAGCCTCCACCCGAG) plus oligo 7 1 

(ATCCATGGCACTCTATTTTTTGCAATTTTAC), oligo 8 2 

(GCGAGCTCTAATACGACTCACTATAGGGTTTTCTTTTAGGTAGGAGCAC) 3 

plus oligo 9 (ATCCATGGGGTACCTAGCCGTTATACGAC), and oligo 10 4 

(GCGAGCTCTAATACGACTCACTATAGTAGGAGTAGTTCCCGTACCAG) plus 5 

oligo 9, respectively, digested with SacI and NcoI, and used to replace the 6 

corresponding region of pUCR1-3′ UTR-S, respectively.  7 

   pUCR1-3′ UTRDSLC-S. A DNA fragment was amplified by PCR from 8 

pUCR1-d3′SLC (26) using primers, oligo 6 and oligo 11 9 

(ATCCCGGGATCCGACCGTGGTGCCCTTGCGGGCAGAAGTCCAAATGCGAT10 

CCATGGGGTACCTAGCCGTTATACGAC), digested with SacI and SmaI, and used 11 

to replace the corresponding region of pUCR1. 12 

   pColdAscI. To create AscI site in pCold I vector (Takara), an oligo-DNA carrying 13 

an AscI site (ctGGCGCGCCagagct; the AscI site is in italics) was denatured and 14 

self-annealed, and the resulting double-stranded DNA was treated with T4 15 

Polynucleotide Kinase (Takara). Finally, the DNA fragment was cloned into pCold I 16 

vector that was digested with XbaI. 17 

   pCold H6-NtPABP-FLAG. To construct pCold H6-NtPABP-FLAG, 18 

pBYLNtPABP-F was digested with AscI, the resulting 2kb-DNA fragment containing 19 

C-terminal FLAG epitope-tagged PABP was purified by 1% agarose gel and cloned 20 

into the AscI site of pColdAscI. 21 

   pR1-Luc-ΔAms2bs. A DNA fragment was amplified by PCR from pR1-Luc-R1 22 

using the primer pair, oligo 12 (ATTCTAGATTGGTTCTTTTAAGTGTAGCC) plus 23 

oligo 13 (CCTCATGTCTGGGATCCGAGACTGCGTGTTCCCCTCTTG). Another 24 

fragment was synthesized using the primer pair, oligo 14 25 

(TCGGATCCCAGACATGAGGATCACCCATGTCTGCAGCATATGAGTACT) 26 
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and oligo 15 1 

(ACGGATCCACTAACATGGGTGATCCTCATGTTAGTACTCATATGCTGCAG). 2 

A PCR fragment was amplified from the mixture of these two DNA fragments using 3 

the primer pair, oligo 12 plus oligo 16 4 

(TCCCGCGGGTACGGGAACTACTCCTAGCACGGATCCACTAACATGGGTGA5 

TCC). The PCR product was digested with XbaI and SacI, and used to replace the 6 

corresponding region of pR1-Luc-R1. 7 

   pBYLMS2CP-NtPABP. A DNA fragment containing MS2 bacteriophage coat 8 

protein (MS2/CP) was amplified by PCR from pGNC (70), which was a generous gift 9 

from Dr. Anne E. Simon (University of Maryland), using the primer pair, oligo 17 10 

(GCGCCATGGCTTCTAACTTTACTCAGTTCGTTCTC) plus oligo 18 11 

(CCTGAATCTGCGCCTCGAGGTAGATGCCGGAGTTTGCTG). Another fragment 12 

containing PABP was amplified from pBYLNtPABP-F using the primer pair, oligo 19 13 

(CATCTACCTCGAGGCGCAGATTCAGGTTCAGCACCAGAG) plus  oligo 20 14 

(GTAGTTAACGTAACCATAACCAAGGGATCTCCTAG). A PCR fragment was 15 

amplified from the mixture of these two DNA fragments using the primer pair, oligo 16 

17 plus oligo 20. The PCR product was digested with NcoI and HpaI, and used to 17 

replace the corresponding region of pBYLNtPABP-F. 18 

   pBYLMS2CP-GFP. A DNA fragment containing MS2CP was amplified by PCR 19 

from pBYLMS2CP-NtPABP using the primer pair, oligo 21 20 

(GTTTTCCCAGTCACGAC) plus oligo 22 21 

(CTCCTTTACTCTCGAGGTAGATGCCGGAGTTTGCTGCG). Another fragment 22 

containing GFP was amplified from pBICGFP (59) using the primer pair, oligo 23 23 

(CTACCTCGAGAGTAAAGGAGAAGAACTTTTCAC) plus oligo 24 24 

(CTGGCGCGCCTCACTTGTCATCGTCGTCCTTGTAGTCCGCGATCGCTTTGT25 

ATAGTTCATCCATGCCATGTG). A PCR fragment was amplified from the mixture 26 
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of these two DNA fragments using the primer pair, oligo 21 plus oligo 24. The PCR 1 

product was digested with AscI, and used to replace the corresponding region of 2 

pBYL2.  3 

   pBYLMS2CP-MS2CP. A DNA fragment containing MS2CP was amplified by 4 

PCR from pBYLMS2CP-NtPABP using the primer pair, oligo 25 5 

(ACCTCGAGGCTTCTAACTTTACTCAGTTCG) plus oligo 26 6 

(TCCGCGATCGCGTAGATGCCGGAGTTTGCTGCGATTG). The DNA fragment 7 

was digested with XhoI and SgfI, and used to replace the corresponding region of 8 

pBYLMS2CP-GFP.  9 

   pUCSLABΔ1-S, pUCSLABΔ2-S, pUCSLABΔ3-S, pUCSLABΔ4-S, 10 

pUCSLAB-AC1-S, pUCSLAB-AC2-S, pUCSLAB-AC3-S, pUCSLAB-AC4-S, 11 

pUCSLAB-PA25-S, pR1-Luc-SLABΔ1, pR1-Luc-SLABΔ2, pR1-Luc-SLABΔ3, 12 

pR1-Luc-SLABΔ4, pR1-Luc-AC1, pR1-Luc-AC2, pR1-Luc-AC3, pR1-Luc-AC4, 13 

pR1-Luc-PA25, pRNA1-AC1, pRNA1-AC2, pRNA1-AC3, pRNA1-AC4,  and 14 

pRNA1-PA25. For pUCSLAB-S mutants shown in Fig. 2D, pR1-Luc-R1 mutants and 15 

pUCR1 mutants used in Fig. 4, which possess mutations in the SLAB region, their 16 

constructs were generated using PCR based mutagenesis and standard cloning 17 

techniques. Each construct was sequenced across its entire PCR-derived region to 18 

ensure that only the desired mutation was present. Details of the modified RNA 19 

sequence and/or structure are presented in Fig. 2D.  20 

   pR1-Luc-AC4-Lm1, pΔ5′-Luc-Lm1, pΔ5′-Luc-AC4, and pΔ5′-Luc-AC4-Lm1. 21 

pR1-Luc-R1 mutants in Figs. 7 were generated using PCR based mutagenesis and 22 

standard cloning techniques from the parental plasmid, pR1-Luc-R1. Each construct 23 

was sequenced across its entire PCR-derived region to ensure that only the desired 24 

mutation was present. Details of the modified RNA sequence and/or structure are 25 

presented in Fig. 7A. 26 
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   p12-mini-R1, p12-mini-Lm1, and p12-mini-AC4. A DNA fragments was 1 

amplified by PCR from psiCHECK2-let-7 8x (29) using the primer pair, oligo 27 2 

(ATTCGAGCTCTAATACGACTCACTATAGTCGCCACCACCATGGCTATGTTC3 

ATCGAGTCCGACCC) plus oligo 28 4 

(TATAGTTCTAGACGATCGCCTAGAATTACTGC). The DNA fragment was 5 

digested with SacI and XbaI, and used to replace the corresponding region of 6 

pR1-Luc-R1, pR1-Luc-AC4, and pR1-Luc-Lm1. 7 

   pR1-3′UTR-Lm1-STagT, pR1-3′UTR-AC4-STagT, 8 

pR1-3′UTR-AC4-Lm1-STagT. Three PCR fragments were amplified by PCR from 9 

pR1-Luc-Lm1, pR1-Luc-AC4, and pR1-Luc-AC4-Lm1, respectively, using the primer 10 

pair, oligo 6 and oligo 11, digested with SacI and SmaI, and used to replace the 11 

corresponding region of pUCR1. 12 

   RNA preparation. RNA transcripts derived from ‘pBYL’ plasmids were 13 

synthesized in vitro from NotI-linearized plasmids with T7 RNA polymerase. For 14 

m7G-capping of these transcripts, ScriptCapTM m7G Capping System (EPICENTRE 15 

Biotechnologies) was used. R2-3′ UTR-S was synthesized in vitro from 16 

XbaI-linearized pUCR2-3′ UTR-S with T7 RNA polymerase. The 17 

nonfunctional-capped (G-capped) 12-mini-R1, 12-mini-Lm1, and 12-mini-AC4 were 18 

synthesized in vitro from XmaI-linearized plasmids with T7 RNA polymerase, and 19 

capped with ScriptCapTM m7G Capping System in the absence of 20 

S-adenosyl-L-methionine. Other RNA transcripts were synthesized in vitro from 21 

XmaI-linearized plasmids with T7 RNA polymerase in the presence or absence of 22 

ApppG cap structure analog (New England Biolabs). Control mRNAs, R-Luc mRNA, 23 

was transcribed from EcoRI-linearized pSP64-RLUC and capped with ScriptCapTM 24 

m7G Capping System. All transcripts were purified with a Sephadex G-50 fine column 25 

(Amersham Pharmacia Biotech). The RNA concentration was determined 26 
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spectrophotometrically and its integrity was verified by agarose gel electrophoresis. 1 

All transcripts are named for their parent plasmids minus the “pUC”, “p”, or “pBYL” 2 

prefix. 3 

   Preparation of plant lysates. The preparation of BYL and BYLS20 4 

(membrane-depleted supernatant fractions of BYL) was described previously (27, 33). 5 

The lysate derived from Arabidopsis suspension cultured cell line MM2d (MM2dL) 6 

was prepared in a similar way of BYL preparation (33). Briefly, to remove vacuoles, 1 7 

ml of MM2d protoplasts (packed cell volume) were mixed with 5 ml of 24% percoll 8 

(GE healthcare) (v/v) overlaid on a 2 ml of 70% (v/v) and 7ml of 30% percoll gradient, 9 

and centrifuged at 9,000 rpm for 1.5 h at 25°C using an SW28 rotor (Beckman 10 

Coulter). All Percoll solutions contained 0.7 M mannitol, 20 mM MgCl2, and 5 mM 11 

PIPES-KOH (pH 7.4). After centrifugation, the evacuolated protoplasts were recovered 12 

from the interface between 30% and 70% percoll solution. The evacuolated protoplasts 13 

were suspended in equal volume of TR buffer (without KOAc) (30 mM HEPES-KOH 14 

(pH 7.4), 2 mM Mg(OAc)2, 2 mM DTT, and one tablet per 10 ml of Complete Mini 15 

protease inhibitor mixture (Roche Diagnostics)), homogenized with a dounce 16 

homogenizer, and centrifuged at 17,000 × g for 10 min at 4 °C. The supernatant was 17 

recovered and stored at -80°C.   18 

   Purification of host proteins that bind to the 3′ UTRs of RCNMV RNA1 and 19 

RNA2 in the evacuolated BY-2 extract. Modified Strepto Tag (STagT) (12) -fused 20 

viral RNA fragments (150 pmol) were incubated in 400 µl of the evacuolated BY-2 21 

extract (protein concentration: 15 mg /µl) at 4°C for 20 min. Subsequently, 8 µl of 22 

heparin (100 mg/ml) was added to the mixture. After further incubation for 40 min on 23 

ice, the sample was applied to a column containing 1.2 ml of streptomycin-conjugated 24 

Sepharose that was preequilibrated using column buffer (50 mM Tris–HCl (pH 7.5), 25 

100 mM NaCl, and 3 mM MgCl2). The column was washed with 10 ml of column 26 
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buffer, and the bait RNA–cellular protein complexes were eluted using 3 ml of column 1 

buffer containing 10 µM streptomycin. The elution fractions were concentrated 30-fold 2 

via acetone precipitation. The samples were subjected to sodium dodecyl sulfate 3 

polyacrylamide gel electrophoresis  (SDS–PAGE), followed by silver staining. The 4 

protein bands of interest detected on SDS–PAGE were excised and subjected to in-gel 5 

digestion with trypsin. The resulting peptides were extracted from the gels and 6 

subjected to liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis 7 

as described previously (60). Peak lists obtained from the MS/MS spectra were used to 8 

identify proteins using the Mascot search engine (Matrix Science).   9 

 10 

STagT pull-down assay 11 

RNA–protein interaction experiments using Strepto Tag were performed essentially as 12 

described previously (27). Briefly, two hundreds microliter of BYLS20 reaction mixture, 13 

in which FLAG-tagged proteins were expressed from 6.25 pmol of mRNAs, was 14 

incubated with STagT-fused RNA fragments (75-150 pmol) for 20 min on ice. The 15 

mixture was further incubated with 4 µl of heparin solution (100 mg/ml) for 40 min on 16 

ice. The sample was applied to a column containing 0.6 ml of streptomycin-coupled 17 

Sepharose that was preequilibrated with column buffer. The column was washed with 18 

2.5 ml of column buffer (50 mM Tris–HCl (pH 7.5), 100 mM NaCl, and 3 mM MgCl2), 19 

and then the protein-STagT-fused RNA complexes were eluted with 1.5 ml of column 20 

buffer containing 10 µM streptomycin. The elution fractions were concentrated 50-fold 21 

by acetone precipitation. The sample was subjected to SDS–PAGE, followed by 22 

ethidium bromide staining and western blotting with Anti-FLAG M2 monoclonal 23 

antibody (Sigma-Aldrich). 24 

   Luciferase reporter assay and negative-strand RNA synthesis in plant lysates. 25 

Luciferase reporter assays and negative-strand RNA synthesis in BYL and MM2dL 26 
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were performed essentially as described previously (26). For the tethering assay, 1 

MS2/CP-NtABP or other control proteins were expressed in BYL from capped mRNA 2 

(10 ng/µl). After 100 min of incubation, R1-Luc-AC4, R1-Luc-ΔAms2bs, or 3 

R1-Luc-R1 (0.5 nM) was added and incubated in the lysate for an additional 2 h. 4 

Aliquots of these samples were diluted using the passive lysis buffer (Promega) and 5 

assayed using the Luciferase reporter assay system (Promega). 6 

   Protoplast assay. Transfection of BY-2 protoplasts via electroporation, subsequent 7 

luciferase assay, and northern blotting were performed essentially as described 8 

previously (27, 53). PEG transfection was performed essentially as described 9 

previously (44). 10 

   Expression and purification of recombinant proteins. Expression and 11 

purification of recombinant proteins were performed essentially as described 12 

previously (40). H6-NtPABP-FLAG used in Fig. 3B was purified using TALON 13 

CellThru Resin (Clontech) and concentrated by VIVA SPIN 500 MWCO 30000 14 

(sartorius). 15 

   EMSA. Electrophoretic mobility shift assay (EMSA) was performed essentially as 16 

described previously (36). Ten picomoles of 32P-body-labeled RNAs (SLAB-S and the 17 

mutants) were incubated in 20 µl of binding buffer (25 mM HEPES-KOH (pH 7.5), 1 18 

mM Mg(OAc)2, 0.1 mM EDTA, 100 mM KCl, 10% glycerol, 1 mM DTT, and 0.5 19 

mg/ml yeast tRNA) for 15 min at 4°C in the presence or absence of RNA competitors 20 

(5 µg of poly(A), poly(G), and poly (C) (Sigma-Aldrich)) and the indicated amount of 21 

proteins. After incubation, 2.5 µl of 80% glycerol and 2.5 ml of 0.25 mg/ml heparin 22 

were added and the reaction mixture was incubated for an additional 10 min at 4°C. 23 

The RNA–protein complexes were resolved on a native 4% polyacrylamide gel, dried, 24 

and exposed to an imaging plate. Radioactive signals were detected using FLA-5100 25 

(Fujifilm Life Sciences). The signal intensity of the RNA–protein complexes was 26 
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quantified using Multi Gauge software (Fujifilm Life Sciences). 1 

   Sucrose density gradient centrifugation. A 25 µl portion of BYLS20 was 2 

incubated with 1 mM cycloheximide (CHX) and 250 µM sinefungin (SIN) in the 3 

absence or presence of 1 mM GMP-PNP at 25°C for 20 min. Subsequently, 10 nM 4 

[32P]-cap-labeled mini reporter RNAs (12-mini-R1, 12-mini-Lm1, and 12-mini-AC4; 5 

the cap structures at these 5′ ends were not methylated (Gppp); thus, canonical 6 

translation cannot occur using these transcripts) were added to the mixture, respectively, 7 

and incubated further for 20 min at 17°C. Reactions were stopped on ice, then layered 8 

over 5–25% linear sucrose gradients (10 mM HEPES-KOH (pH 7.5), 10 mM (for 80S 9 

formation) or 5 mM (for 48S formation) MgCl2, and 100 mM KCl) and sedimented via 10 

ultracentrifugation at 36,000 rpm using an SW41 Ti rotor (Bechman Coulter) for 2 h 11 

and 50 min at 4°C. Gradients were fractionated and analyzed using the Cerenkov 12 

counting technique. 13 

   Purification of eIF4F and eIFiso4F components from MM2dL. Two hundred 14 

microliter of MM2dL reaction mixture contained 0.75 mM ATP, 0.1 mM GTP, 25 mM 15 

creatine phosphate, 50 mM each of 20 amino acids mixture, 80 mM spermine, 0.1 U/µl 16 

creatine phosphokinase (Calbiochem) and 100 µl of MM2dL was incubated with 75 17 

pmol of STagT RNA at 17°C for 30 min. The sample was applied to a column 18 

containing 0.6 ml of streptomycin-coupled Sepharose that was pre-equilibrated with 19 

column buffer (50 mM Tris–HCl (pH 7.5), 100 mM NaCl, and 3 mM MgCl2). The 20 

column was washed with 2.5 ml of column buffer, and subsequently the protein-RNA 21 

complexes were eluted with 1.5 ml of column buffer containing 10 µM streptomycin. 22 

The elution fractions were concentrated 50-fold by acetone precipitation. The sample 23 

was separated on 5–20% SDS–PAGE gradient gels, followed by staining with nucleic 24 

acid staining regent GelRed (Biotium) and western blotting using anti-AteIF4E (15), 25 

anti-AteIF4G, anti-AteIFiso4E (15), anti-AteIFiso4G (37) antiserum (kindly provided 26 



 16 

by Dr. K. S. Browning), and anti-PABP antiserum (14) (kindly provided by Dr. 1 

Laliberté). 2 

3 
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RESULTS 1 

PABP binds specifically to the 3′ UTR of RCNMV RNA1. Strepto Tag affinity 2 

purification was performed to isolate cellular proteins that bind to cis-acting elements 3 

required for cap-independent translation of RCNMV RNA1. Strepto Tag is an RNA 4 

aptamer that binds to streptomycin (1, 64). Because the 3′ UTR of RNA1 is essential 5 

for 3′CITE-mediated cap-independent translation (43), the 3′ UTR of RNA1 was fused 6 

to a modified Strepto Tag (STagT) (12) to obtain R1-3′ UTR-S (Fig. 1A). A similar 7 

construct was also obtained for the 3′ UTR of RNA2, which was used as a control. 8 

These RNA fragments were incubated with the evacuolated tobacco BY-2 extract. The 9 

extract was applied to a streptomycin-coupled column and viral RNA-protein 10 

complexes were eluted using a buffer containing streptomycin. Affinity fractions were 11 

analyzed using SDS-PAGE and protein bands were visualized using silver staining 12 

(Fig. 1B). The band patterns of putative proteins in each purified fraction differed from 13 

each other, suggesting that some host proteins were copurified specifically with 14 

STagT-fused viral RNA fragments (Fig. 1B). The specific proteins in each affinity 15 

fraction were analyzed using mass spectrometry.  16 

Among the proteins identified using the approach described above, we focused on 17 

one specific and prominent band, corresponding to a 72 kDa protein that was 18 

copurified with the 3′ UTR of RCNMV RNA1 (Fig. 1B). Tryptic digested peptides 19 

derived from the 72 kDa band exhibited an MS/MS spectrum similar to that predicted 20 

for the PABP of Nicotiana tabacum. We cloned the cDNA of PABP (NtPABP; the 21 

DDBJ/EMBL/GenBank accession no. AB673187) from tobacco BY-2 cultured cells. 22 

To examine the interaction between NtPABP and the 3′ UTR of RNA1, we performed 23 

pull-down experiments using STagT-fused viral RNA fragments and the C-terminally 24 

FLAG-tagged NtPABP. This FLAG-tagged NtPABP was synthesized by in vitro 25 

translation in the 20,000 × g supernatant of an evacuolated tobacco BY-2 lysate 26 
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reaction mixture (BYLS20) (27, 33). Note that BYLS20 and the membrane containing 1 

lysate (BYL) were optimized for the efficient translation and replication of RCNMV 2 

RNA1 and RNA2 and they are different from the extract used in Fig. 1B. NtPABP was 3 

specifically pulled down by the STagT-fused 3′ UTR of RNA1 (Fig. 1C), thus 4 

confirming the specific interaction between PABP and the 3′ UTR of RCNMV RNA1.  5 

   NtPABP binds specifically to an internal A-rich sequence in the 5′ side of the 6 

3′ UTR of RNA1. To define the PABP-binding sequences in the 3′ UTR of RNA1, 7 

five STagT-fused RNA fragments (SLAB-S, SLC-S, ΔSLC-S, SLDEF-S, and 8 

SLCDEF-S) (Fig. 2A) were tested for their ability to bind FLAG-tagged NtPABP in 9 

BYLS20. An STagT pull-down assay showed that NtPABP was pulled down by 10 

SLAB-S, ΔSLC-S, but not by SLC-S, SLDEF-S, or SLCDEF-S, indicating that the 11 

SLAB region is necessary and sufficient for the interaction with NtPABP (Fig. 2B). To 12 

test whether NtPABP binds to SLAB region directly, EMSA was used with bacterially 13 

expressed tobacco PABP (H6-NtPABP-FLAG). H6-NtPABP-FLAG bound to SLAB-S, 14 

whereas recombinant GST did not bind to the RNA fragment. Moreover, the 15 

PABP–SLAB interaction was blocked by adding poly(A) and poly(G), but not poly(C) 16 

fragments (9, 11, 48) indicating that NtPABP binds to the SLAB region in the 3′ UTR 17 

directly and specifically (Fig. 2C).  18 

 To define further the nucleotide sequences required for the interaction with NtPABP, 19 

four RNA mutants with a series of deletions in SLAB (Fig. 2D) were tested using 20 

EMSA. SLABΔ1-S, SLABΔ2-S, and SLABΔ3-S bound to H6-NtPABP-FLAG with an 21 

affinity that was similar to that of SLAB-S (Fig. 2E), whereas SLABΔ4-S (lacking the 22 

3′ proximal region of SLAB) did not bind to H6-NtPABP-FLAG (Fig. 2E). Because 23 

the region deleted in SLABΔ4-S contains runs of four and six A residues and this 24 

A-rich sequence (ARS) is conserved among dianthoviruses (Fig. 2D), we investigated 25 

whether these A residues are involved in NtPABP binding. Four SLAB mutants in 26 
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which each of the A clusters in the ARS were replaced with a C cluster were tested 1 

using EMSA. With the exception of SLAB-AC1-S, all mutants failed to bind to 2 

H6-NtPABP-FLAG (Fig. 2F), suggesting the importance of the runs of four and six A 3 

residues for NtPABP binding. Another type of SLAB-S mutant (SLABPA25-S), in 4 

which the ARS was replaced completely by a 25 A cluster, bound to 5 

H6-NtPABP-FLAG with high affinity. This result suggests that no specific sequences 6 

between the runs of A residues in the ARS are required for the interaction with 7 

NtPABP, and that the runs of A residues, rather than the structure of the ARS are 8 

important for NtPABP binding. The importance of this ARS in the interaction with 9 

NtPABP was confirmed using an STagT pull-down assay. All SLAB mutants except 10 

for SLABPA25-S showed no or very low affinity for NtPABP in the pull-down assay 11 

(Figs. 2G and H), indicating that the entire SLAB region is required for the binding of 12 

PABP in plant lysates. Discrepancies between EMSA and STagT pull-down assay 13 

suggest that endogenous RNAs (e.g. tRNA, rRNA, and mRNA) act as strong 14 

competitors for the PABP binding to the ARS in plant lysates, and that binding of 15 

additional host factors and/or modified PABP to the upstream of the ARS is required 16 

for the stable interaction between PABP and ARS.  17 

   Poly(A) but not poly(C) inhibits the cap- and poly(A)-independent translation 18 

and the negative-strand RNA synthesis of RCNMV RNA1 in BYL. As PABP is 19 

one of the key players in the initiation of translation (57), we hypothesized that PABP 20 

is required for cap-independent translation of RCNMV RNA1. To address this, first we 21 

tested the effect of poly(A) fragments on 3′CITE-mediated cap-independent translation 22 

in BYL using a reporter RNA (R1-Luc-R1) carrying a firefly luciferase ORF and the 5′ 23 

and 3′ UTRs of RCNMV RNA1 (53). The translational activity of R1-Luc-R1 24 

decreased with the addition of poly(A) fragments at concentrations higher than 150 25 

ng/µl, whereas the addition of poly(C) fragments did not inhibit the translation (Fig. 26 
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3A). The repressed translational activity of R1-Luc-R1 was significantly restored by 1 

the recombinant PABP added back to the lysate (Fig. 3B). These results suggest that 2 

the sequestration of PABP by poly(A) fragments inhibits the cap-independent 3 

translation of R1-Luc-R1. It should be noted that both poly(C) and poly(A) fragments 4 

at low concentrations enhanced the translation of R1-Luc-R1 (Fig. 3B). This 5 

translational enhancement may have been caused by stabilization of reporter mRNAs 6 

via sequestration of ribonucleases by these polyribonucleotides (55).  7 

   Next, we investigated the effects of poly(A) fragments on the translation and 8 

negative-strand synthesis of RNA1 in BYL. Poly(A) fragments inhibited the 9 

accumulations of p27 and negative-strand RNA1 much more effectively than poly(C) 10 

fragments did (Figs. 3C, D, and E), suggesting that the sequestration of PABP by 11 

poly(A) fragments compromises the production of replication proteins and 12 

negative-strand RNA synthesis, and that PABP is important for these processes.  13 

 14 

The ARS located in the 3′ UTR of RNA1 enhances 3′CITE-mediated 15 

cap-independent translation and replication of RNA1.  16 

To investigate the roles of the PABP-binding region in the translation of RCNMV 17 

RNA1 in vivo, first we tested reporter R1-Luc-R1 mutants with the same mutations as 18 

those of the STagT-fused SLAB fragments (See Fig. 2D) for their translational activity 19 

in BY-2 protoplasts. All R1-Luc-R1 mutants, with the exception of R1-Luc-PA25 (in 20 

which the ARS was replaced with the sequence of 25A), exhibited a cap-independent 21 

translation activity that was 10 to 40% that of the wild type R1-Luc-R1 (Fig. 4A). Thus, 22 

the cap-independent translational activity of reporter RNA1 mutants correlated well 23 

with the PABP-binding capacities of SLAB-S mutants in BYL. Next, we performed a 24 

reporter assay in BYL using the same set of mutants. All mutations, with the exception 25 

of the replacement of the ARS with the sequence 25A, decreased 3′CITE-mediated 26 
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cap-independent translational activity in the reporter mRNAs, although the deleterious 1 

effects of the mutations were milder in BYL than in BY-2 protoplasts (Figs. 4A and B). 2 

These results suggest a more important role of the ARS in vivo. To validate the 3 

importance of the ARS for the cap-independent translation in viral context, we 4 

investigated translational activities of full-length RCNMV RNA1 and its derivatives 5 

carrying the same mutations as those of the STagT-fused SLAB fragments (see Fig. 6 

2D) in BYL. RNA1-AC4 was dramatically compromised for cap-independent 7 

translation (Fig. 4C), suggesting that the ARS is required for the 3′CITE mediated 8 

cap-independent translation of full-length RCNMV RNA1. 9 

   Next, to investigate the role of the ARS in RNA replication, RNA1 mutants in the 10 

ARS were tested for their ability to replicate in BY-2 protoplasts. All RNA1 mutants 11 

accumulated only a small amount, if any, of RNA1 (Fig. 4D). These results indicate 12 

that both A residues and other nucleotide sequences in the ARS are required for the 13 

replication of RCNMV RNA1 in vivo. 14 

 15 

Tethered PABP stimulates 3′CITE-mediated translation of reporter RNA1. 16 

To investigate whether the interaction between PABP and the 3′ UTR enhances the 17 

3′CITE-mediated translation of RCNMV RNA1, we used a tethering assay. An MS2 18 

bacteriophage coat protein (MS2CP)-fused NtPABP (MS2CP-NtPABP) was tethered 19 

to the 3′ UTR of R1-Luc-R1ΔAms2bs, which is a reporter RNA1 mutant in which the 20 

ARS in the 3′ UTR of RNA1 was replaced by the MS2CP binding site (Fig. 5A). The 21 

translational activity of R1-Luc-R1ΔAms2bs was similar to that of R1-Luc-AC4 22 

(negative control) in BYL in the absence of MS2CP-NtPABP (Fig. 5B). However, 23 

expression of MS2CP-NtPABP increased the translational activity of 24 

R1-Luc-R1ΔAms2bs by more than twice that of R1-Luc-AC4 in BYL (Fig. 5C), and 25 

the translational activity of R1-Luc-R1ΔAms2bs was comparable to that of R1-Luc-R1 26 
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(positive control) (Fig. 5D). Expression of FLAG-tagged NtPABP, MS2CP-fused 1 

green fluorescent protein (MS2CP-GFP), and MS2CP-fused MS2CP 2 

(MS2CP-MS2CP) failed to enhance the translational activity of R1-Luc-R1ΔAms2bs 3 

(Fig. 5D). These results suggest that MS2CP-NtPABP stimulates the translation of a 4 

reporter RNA1 carrying the MS2CP binding site in cis and in a manner that is specific 5 

to PABP.  6 

   Both the ARS and 3′CITE are required for the efficient cap- and 7 

poly(A)-independent translation of RCNMV RNA1. PABP has been proposed to 8 

stimulate cap- and poly(A)-dependent translation through various mechanisms 9 

including enhancement of mRNA binding to the 43S PIC and stimulation of joining of 10 

the 60S ribosome at the start codon (30, 31). How does PABP stimulate the translation 11 

of RCNMV RNA1 lacking both cap and poly(A) tail? First, we examined whether the 12 

ARS is involved in the stability of the viral RNA using R1-Luc-R1 and its mutants 13 

with deletions in the SLAB region. Mutations in the ARS (R1-Luc-Δ3 and R1-Luc-Δ4) 14 

did not enhance degradation of reporter RNAs (Figs. 6A and B), suggesting that PABP 15 

binding to the ARS is not involved in the stability of the viral RNAs. Next, we asked 16 

whether the 5′ UTR of RNA1 is required for the translational enhancement by PABP. 17 

Even though deletion of the viral 5′ UTR decreased the translational activity of 18 

R1-Luc-R1 by 70% in BY-2 protoplasts and by 40% in cowpea protoplasts (Fig. 7), the 19 

translational activity of this mutant (Δ5′-Luc-R1) was still 100- and 1500-fold higher 20 

than that of a triple mutant (Δ5′-Luc-AC4-Lm1; Fig. 7A) or a reporter mRNA lacking 21 

functional cap structure (A-capped LucpA60) in BY-2 and cowpea protoplasts, 22 

respectively (Figs. 7B and C). Furthermore, the translational activity of Δ5′-Luc-R1 23 

was 3-fold higher than that of a canonical mRNA (m7G-capped LucpA60) in cowpea 24 

protoplasts (Fig. 7C). These results support our previous studies showing that the 5′ 25 

UTR functions as a translational enhancer but is not essential for cap-independent 26 
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translation of RNA1 (53). Consistent with previous studies, the translational activities 1 

of the mutants with mutations in 3′CITE were at basal levels (Figs. 7B and C). The 2 

mutant lacking the ARS showed a 10-fold to 50-fold decrease in the 3′CITE-dependent 3 

translational activity, although the decreased level was lower than that by the mutation 4 

in 3′CITE (Figs. 7B and C). These results indicate that the ARS can function in the 5 

3′CITE-dependent translation independently of the 5′ UTR of RNA1, and that both the 6 

ARS and 3′CITE are required for the efficient cap- and poly(A)-independent 7 

translation of reporter RNA1s in vivo.  8 

   Both the ARS and 3′CITE are required for the efficient recruitment of the 40S 9 

ribosome subunit to the viral genomic RNA. Next, to investigate which step of 10 

translation is associated with the functions of the ARS and 3′CITE, we examined the 11 

effects of AC4 and Lm1 mutations on the formation of ribosome complexes using a 12 

sucrose density gradient assay. In this assay, we used short reporter mRNAs carrying a 13 

non-viral 5′ UTR, a Renilla luciferase-derived short ORF, and the viral 3′ UTR with 14 

and without AC4 or Lm1 mutation (12-mini-R1, 12-mini-Lm1, and 12-mini-AC4, 15 

respectively; Fig. 8A). We used the short reporter RNAs lacking the viral 5′ UTR, 16 

because the moderate enhancement of translation by adding the viral 5′ UTR is 17 

independent of the ARS and 3′CITE (Fig. 7), and also because shorter mRNAs are 18 

preferable for sucrose density gradient assays to provide high-resolution complex 19 

profiles (23). These transcripts were cap-labeled via a capping enzyme in the absence 20 

of S-adenosyl-L-methionine, producing transcripts that possessed a nonfunctional 21 

Gp*pp cap (p* indicates the position of 32P) at the 5′ ends. The cap-labeled transcripts 22 

were stable enough in the lysate to provide complex profiles in the sucrose density 23 

gradient assay. These nonfunctional Gp*pp-capped reporter RNAs were incubated in 24 

BYLS20 that had been incubated with two different inhibitors, sinefungin (SIN) and 25 

cycloheximide (CHX). SIN is a natural S-adenosyl-L-methionine analog that inhibits 26 
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methyltransferase activity (38). CHX blocks translational elongation, but not initiation. 1 

The incubated BYLS20 lysate was subjected to sucrose density gradient centrifugation, 2 

to assess the formation of the 80S and 48S initiation complexes. Both AC4 and Lm1 3 

mutations greatly decreased the formation of the 80S initiation complex (Fig. 8B). The 4 

accumulation of the 48S initiation complex was not observed in RNAs with either of 5 

the two mutations, nor in wild type 12-mini-R1, suggesting that the ARS and 3′CITE 6 

are required for the recruitment of the 40S ribosome subunit to the mRNA, rather than 7 

via subsequent scanning and 60S-joining steps. This idea was supported by the fact 8 

that the 48S initiation complex accumulated after the addition of GMP-PNP, which 9 

blocks 60S joining. As expected, this accumulation of the 48S initiation complex was 10 

also inhibited by AC4 and Lm1 mutations (Fig. 8C). Taken together, these results lead 11 

us to conclude that both the ARS and 3′CITE located in the 3′ UTR are required for the 12 

efficient recruitment of the 40S ribosome subunit to the viral RNA.  13 

   The ARS and 3′CITE recruit eukaryotic translation initiation factors 14 

coordinately to the viral 3′ UTR. Because both the ARS and 3′CITE are required for 15 

the enhancement of the recruitment of the 40S ribosome subunit to RNA1, we 16 

hypothesized that these two cis-acting elements function coordinately in recruiting eIFs, 17 

together with PABP, to the 3′ UTR of RNA1. To test this hypothesis, we performed 18 

STagT pull-down using R1-3′UTR-S and three RNA variants with AC4, Lm1, or both 19 

mutations in the 3′ UTR (R1-3′UTR-Lm1-S, R1-3′UTR-AC4-S, and 20 

R1-3′UTR-AC4-Lm1-S, respectively) (Fig. 9A). To use antibodies that detect eIFs, we 21 

developed an in vitro translation system (MM2dL) using the Arabidopsis MM2d 22 

cultured cell line. MM2dL recapitulated cap- and poly(A)-dependent canonical 23 

translation and cap-independent translation of RCNMV RNA1 (data not shown). Note 24 

that RCNMV translates and replicates efficiently in MM2d cultured cells (H. Iwakawa 25 

and T. Okuno, unpublished results). 26 
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   A. thaliana encodes eight PABP genes that fall into three distinct classes (4). The 1 

broadly and highly expressed class II is composed of the PAB2, PAB4, and PAB8 2 

genes, which encode AtPABP2 (68.7 kDa), AtPABP4 (71.7 kDa), and AtPABP8 (72.8 3 

kDa), respectively. These proteins are relatively homologous (4). The serum developed 4 

against AtPABP2 detects these three proteins equally well, but cannot be used to 5 

distinguish AtPABP4 from AtPABP8 because of identical migration on SDS-PAGE 6 

(14). R1-3′UTR-STagT pulled down endogenous eIF4E, eIF4G, eIFiso4G, and PABPs 7 

(AtPABP2 and AtPABP4/8) effectively (Fig. 9B), whereas it failed to pull down 8 

eIFiso4E (data not shown). The Lm1 mutation in the 3′CITE decreased the 9 

co-purification of eIF4E, eIF4G, and eIFiso4G, but did not affect that of PABPs (Fig. 10 

9B lane 3), indicating that the 3′CITE is required for binding to eIF4E, eIF4G, and 11 

eIFiso4G, but not to PABPs. Conversely, the AC4 mutation in the ARS compromised 12 

the pull-down efficiency of both PABP (AtPABP4/8) and the eIF4 proteins (Fig. 9B 13 

lane 4), indicating that this region is important for binding to both PABP (AtPABP4/8) 14 

and eIF4 factors. AC4 and Lm1 double mutations further decreased the efficiency of 15 

eIF4E pull-down (Fig. 9B, compare lane 5 with lanes 3 and 4).  16 

   R1-3′UTR-PA25-S, in which the ARS was replaced with a short poly(A) tract (25 17 

nt; a length that is sufficient for the binding of one PABP molecule), pulled down 18 

PABPs (AtPABP2/4/8) more efficiently than the wild type did, whereas the amount of 19 

eIF4E and eIFiso4G copurified was not affected much (Fig. 9C). eIF4G was below 20 

detectable levels in this experiment. These results suggest that the sequence of the ARS 21 

itself is not important; rather, the binding of PABP is important for the binding of eIF4 22 

factors to the 3′ UTR via the 3′CITE of RCNMV RNA1.  23 

 24 

25 
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DISCUSSION 1 

In this study, we identified PABP as a novel factor in the 3′CITE-mediated 2 

cap-independent translation of RCNMV RNA1. 3 

   PABP recognizes the internal ARS in the 3′ UTR of RNA1. PABP contains four 4 

RRMs (RRM1–4) in its N-terminal region. The RRMs are involved in the recognition 5 

of poly(A) sequences. PABP requires a minimum of 12 A residues to bind RNA (34, 6 

52), but its packing density is 25 A residues in yeast (52), or approximately 27 A 7 

residues in mammalian cells (2). In this study, we demonstrated that PABP binds 8 

directly to the SLAB region in the 3′ UTR of RCNMV RNA1. The SLAB region 9 

contained an ARS with runs of three, four, and six A residues and these A residues 10 

were essential for the binding to PABP. PABP binds to the 3′ UTRs of the oskar 11 

mRNA (62), the YB-1 mRNA (56), and the genomic RNA of the dengue virus (50). 12 

The 3′ UTRs of these mRNAs contain six tracts of 3–10 A residues (62), several tracts 13 

of 3–4 A residues (56), or runs of three and six A residues interspersed with a C 14 

residue (50), respectively. PABP also binds to the 5′ UTR of its own mRNA (51). In 15 

the yeast PABP mRNA, the region upstream of the initiator methionine codon contains 16 

runs of four, five, six, eight, and 11 A residues interspersed with U and C residues (51). 17 

These reports and the present study indicate that a continuous run of 12 or more A 18 

residues is not essential for PABP binding. This conclusion is supported by an in vitro 19 

selection/amplification experiment that showed that five A residues are sufficient for 20 

the specific binding of PABP in the context of a longer oligonucleotide (22). 21 

 The upstream sequence of the ARS may be important for the stable binding of 22 

PABP in plant cells, because deletions of the region upstream of the ARS dramatically 23 

reduced the interaction between STagT-fused SLAB and NtPABP in BYLS20. Given 24 

that the deletion of the upstream region did not affect the binding affinity between 25 

SLAB region and PABP in EMSA using recombinant PABP, it is possible that 26 
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endogenous RNAs could act as strong competitors for the PABP binding to the ARS in 1 

the plant lysates, and binding of additional host factors and/or modified PABP to the 2 

upstream of the ARS is required to enhance the binding affinity between PABP and the 3 

ARS. A purine-rich sequence that contains a run of 10 A/G residues resides in the 4 

upstream of the ARS. Because the full-length wheat PABP binds to both poly(A) and 5 

poly(G) (11), this purine-rich sequence is a good candidate for the second PABP 6 

binding site in the SLAB region. Because it is known that phosphorylated and 7 

hypophosphorylated PABP bind to the poly(A) RNA synergistically and cooperatively 8 

(36), two molecules of PABP in different phosphorylation states might bind 9 

synergistically to the 5′ purine-rich and 3′ ARS in the SLAB region. Alternatively, 10 

some other RNA binding proteins may bind to the upstream of the ARS and increase 11 

binding affinity of PABP to the ARS. 12 

Arabidopsis encodes eight PABPs that fall into three distinct classes (4). To date, 13 

little is known about the functional differences between these PABPs. In this study, we 14 

observed that AtPABP4 and/or 8 recognized both the ARS and the artificial 25 nt 15 

oligoA sequence in the same region, whereas AtPABP2 recognized only the 25 nt 16 

oligoA sequence. Therefore, the tobacco PABP identified in this study may be 17 

classified as an AtPABP4/8-class PABP, as the tobacco PABP also recognized both 18 

the ARS and the 25 nt oligoA sequence. These results suggest that each plant PABP 19 

has a distinct preference for RNA sequence recognition, thus exerting different 20 

regulatory functions on individual mRNAs in plants.  21 

   cis-elements that mimic poly(A) tail in 3′CITE-dependent translation. The 22 

ARS dramatically enhanced 3′CITE-mediated translation in RCNMV RNA1. Other 23 

viruses with BTE-type 3′CITE also require additional sequences or elements in the 24 

viral 3′ UTR besides the core 3′CITE to achieve efficient cap-independent translation 25 

in vivo. In BYDV, an uncapped reporter RNA carrying the 5′ UTR and the core BTE 26 
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(109 nt-long) alone in the 3′ UTR failed to translate efficiently in oat protoplasts. In 1 

contrast, a reporter RNA with the long viral 3′ UTR (1162 nt) translated well in a 2 

cap-independent manner. Interestingly, addition of poly(A) tail to the 3′ terminus 3 

stimulated cap-independent translation in the reporter RNA with the core BTE alone 4 

but did not in the reporter RNA with the long 3′ UTR (65). These results suggest that 5 

BYDV possesses a poly(A)-mimic elements in the long 3′ UTR. Tobacco necrosis 6 

virus (TNV) also has an additional cis-element that is required for cap-independent 7 

translation. This element is replaced functionally with a 60 nt poly(A) tail (54), 8 

suggesting that the element has a function similar to that of the poly(A) tail. Currently, 9 

it remains unclear what factor(s) bind to these cis-elements that enhance the 10 

BTE-mediated translation in BYDV and TNV. The poly(A)-mimic element in TNV 11 

contains neither an ARS nor an AC(A/G/U)AAY(A/C) consensus heptamer sequence, 12 

which is a human PABP-binding sequence (22). Therefore, it is unlikly that PABP 13 

directly binds to the 3′ RNA element. Host factors other than PABP may recognize the 14 

TNV RNA element and stimulate cap-independent translation. Alternatively, it is still 15 

possible that PABP interacts with the non-poly(A) RNA element of TNV via other 16 

RNA-binding proteins. Protein-mediated interactions between PABP and RNAs have 17 

been reported in a subset of cellular mRNAs in mammalian germ cells (6). The 18 

enhancement of 3′CITE-mediated cap-independent translation via direct or indirect 19 

PABP-binding to the 3′ UTR might widespread in positive-strand plant RNA viruses.  20 

   PABP stimulates eIF4F/iso4F binding to the 3′ UTR. PABP is thought to exert 21 

stimulatory effects at multiple stages of translation (57). PABP stimulates mRNA 22 

binding to the 43S PIC, at least partly by enhancing binding of the eIF4F complex to 23 

the m7G-capped 5′ end of mRNA (5, 31, 63). To enhance cap-dependent translation, 24 

PABP should bind to both poly(A)-tail of mRNA and eIF4G that interacts with 5′ 25 

m7G-cap via eIF4E (31). In this study, we found that PABP stimulated mRNA binding 26 
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to the 43S PIC at least partly by enhancing the binding of the eIF4F/eIFiso4F 1 

components to the 3′ UTR via the 3′CITE. This function of PABP as a strong enhancer 2 

for the recruitment of eIF4F/iso4F in the 3′CITE-dependent translation is reminiscent 3 

of that in cap-dependent translation. Although currently there is no information on 4 

whether PABP interacts with eIF4G/eIFiso4G on the 3′ UTR of RNA1, it is possible 5 

that the PABP-eIF4G/eIFiso4G interaction increases the binding affinity between the 6 

eIF4F/eIFiso4F complex and 3′ CITE of RCNMV RNA1. Alternatively, 7 

PABP-binding to the ARS may induce structural-changes in the 3′ UTR that make the 8 

3′CITE more accessible to eIF4s. Indeed, stable interaction between PABPs and PA25 9 

did not increase the binding of eIF4s to the 3′ UTR. This result suggests that stable 10 

binding of PABP to the 3′ UTR is not required, and that moderate affinity interaction is 11 

enough for the recruitment of eIF4s to the 3′ UTR. It is possible that once PABP binds 12 

to the ARS, RNA sequences near the 3′CITE can be folded properly. Further study will 13 

be needed to clarify the molecular mechanism underlying how PABP-ARS interaction 14 

enhances recruitment of eIF4s and ribosome to the viral RNA. 15 

   How does the 3′ UTR of RCNMV RNA1 stimulate the recruitment of the 16 

ribosome to the 5′ end? In this study, we demonstrated that both the ARS and 3′CITE 17 

in the 3′ UTR of RNA1 enhance the cap-independent translation of RCNMV RNA1. 18 

Previously, we showed that the cap-independent translation of RNA1 is 19 

scanning-dependent (53), suggesting that the ribosome is recruited to the uncapped 5′ 20 

end. How does the 3′ UTR of RCNMV RNA1 stimulate the recruitment of the 21 

ribosome to the uncapped 5′ end? In a current model for the 3′CITE-mediated 22 

cap-independent translation, the RNA-RNA interaction or protein-mediated interaction 23 

between the 5′ UTR and the 3′ UTR are thought to be required. The end-to-end 24 

comunication has been believed to deliver the eIF4F, which is bound to the 3′CITE, to 25 

the vicinity of the 5′ end for the recruitment of the ribosomes (24, 61). In fact, in a 26 
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tombusvirus, the 3′ UTR containing both an eIF4F-bound 3′CITE and a 1 

complementary sequence to the 5′ UTR of the virus stimulates cap-independent 2 

translation of a reporter RNA in trans (47), supporting the model that the RNA-RNA 3 

interaction delivers 3′CITE-bound eIF4F to the vicinity of the uncapped 5′ end. 4 

However, our present and previous studies (53) clearly demonstrate that the 5′ UTR is 5 

not essential for the cap-independent translation of RCNMV RNA1. These results 6 

suggest that the long-distant RNA-RNA or protein-mediated interactions between the 7 

5′ and 3′ UTRs of RNA1 are dispensable for the recruitment of the ribosome in 8 

RCNMV RNA1. This inexplicable type of cap-independent translation could have 9 

several, but not mutually exclusive explanations. First, host factors that bind to the 3′ 10 

UTR of RCNMV RNA1 may display an affinity for the highly negatively charged 5′ 11 

tri-phosphate terminus of the uncapped mRNA via the positively charged amino acid 12 

residues, and this affinity might deliver eIF4F/eIFiso4F factors to the vicinity of the 5′ 13 

end to recruit ribosomes. In fact, the N-terminal deleted eIF4G enhances the 5′ 14 

end-dependent translation of uncapped mRNA in mammals, suggesting that eIF4G 15 

recognizes the uncapped 5′ end of mRNA (13). Second, because the ARS and 3′CITE 16 

of RCNMV RNA1 increase the local concentration of eIF4F/eIFiso4F, and probably 17 

other translational initiation factors that are required for the recruitment of the 18 

ribosome, e.g. eIF4A and eIF4B, the inherent affinity of 43S PIC to the 5′ end of 19 

mRNA (49) could be enhanced by these factors. Third, the tertiary structure of the 20 

genomic and reporter RNAs may be sufficient to bring the eIF4F/eIFiso4F complex 21 

associated with the 3′ UTR of RCNMV RNA1 to the 5′ proximal region where the 22 

ribosome small subunit is recruited.  23 

  On the other hand, the 5′ UTR of RNA1 enhanced the translation of non-functional 24 

capped reporter mRNAs about 3-fold in BY-2 protoplasts (Fig. 7B). These results 25 

suggest that the 5′ UTR of RCNMV RNA1 possesses cis elements that enhance 26 
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cap-independent translation in addition to the cis elements required for the stability of 1 

mRNA (53). This relatively weak translational enhancer element(s) might play a role 2 

in the delivery of eIF4F/eIFiso4F factors to the 5′ end. The full-length RNA1 might 3 

possess additional RNA elements that function in long-distance interaction. The 4 

3′CITE in Saguaro cactus virus interacts with the 5′ part of genome by RNA-RNA 5 

interaction that involves a sequence downstream from the 5′ UTR (10). Such elements 6 

could enhance the recruitment of 40S ribosome to the 5′ end of the full-length RNA1. 7 

   The role of the ARS in the replication of RCNMV RNA1. Our results indicate 8 

that a 25 nt-long oligo(A) can replace the original ARS functionally, suggesting that 9 

PABP binding property, and not the ARS itself, is important for cap-independent 10 

translation of RCNMV RNA1. In contrast, substitution of the ARS with a 25 nt-long 11 

oligo(A) compromised the replication of RNA1. These results suggest that the ARS 12 

contains cis-acting elements that are required for viral RNA replication. The cis 13 

elements should be those required for positive-strand RNA synthesis, because our 14 

previous study showed that deletion of the ARS has no effect on the negative-strand 15 

RNA synthesis of RNA1 (26). Alternatively, the high affinity binding of PABP to the 16 

25 nt-long oligo(A) tract may inhibit the negative-strand RNA synthesis of the mutant 17 

RNA1 via the blockage of the elongation process by replicase toward the 5′ end. The 18 

dengue virus also interacts with PABP with a relatively low affinity via its 3′ UTR (50). 19 

The low-affinity binding of PABP to viral genomes may be important for achieving a 20 

balance between translation and replication in these viruses. 21 

 22 

23 
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FIGURE LEGENDS 1 

 2 

Fig. 1. PABP binds specifically to the 3′ UTR of RCNMV RNA1. (A) Schematic 3 

representations of RCNMV genomic RNAs and STagT-fused 3′ UTRs of RNA1 and 4 

RNA2 (R1-3′ UTR-S and R2-3′ UTR-S). Bold lines indicate the virus-derived 5 

sequence of STagT-fused viral RNA fragments. (B) Silver-stained SDS–PAGE gel 6 

showing eluted STagT-RNA fragments and host proteins from a Strepto Tag affinity 7 

purification. The 72 kDa band in the left gel was excised, digested with trypsin, and 8 

subjected to LC/MS/MS. The protein is NtPABP (AB673187). (C) STagT pull-down 9 

assay using R1-3′ UTR-S and R2-3′ UTR-S in BYLS20 expressing FLAG-tagged 10 

NtPABP. The right-most lane represents a mock pull-down sample. The input lane 11 

contains 1.6% of the extract used for the STagT pull-down assay. Purified bait RNAs 12 

(top) were visualized using ethidium bromide (EtBr) fluorescence. NtPABP-FLAG 13 

(bottom) was detected by western blotting using anti-FLAG M2 monoclonal antibody 14 

(Sigma-Aldrich). 15 

 16 

Fig. 2. NtPABP binds specifically to an internal A-rich sequence in the 3′ UTR of 17 

RNA1. (A) Schematic representation of STagT-fused viral RNA fragments. Bold lines 18 

indicate virus-derived sequences with the nucleotide numbers of RNA1 at the 5′ and 3′ 19 

ends. Dashed lines indicate deleted sequence. (B) STagT pull-down assay using 20 

truncated mutants of the 3′ UTR of RNA1 in BYLS20 expressing FLAG-tagged 21 

NtPABP. (C) Electrophoretic mobility shift assay (EMSA) for NtPABP with SLAB 22 

region. The specificity of the NtPABP-SLAB interaction was determined by adding 23 

RNA competitors (poly(A), poly(G), and poly(C); Sigma-Aldrich). (D) (Top) 24 

Schematic representation of STagT-fused viral RNA fragments. Bold lines indicate 25 

virus-derived sequences. Dashed lines indicate deleted sequences. Substituted 26 
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sequences are shown in boxes. (Bottom) Alignments of the SLAB region of RNA1 in 1 

dianthoviruses including RCNMV, Sweet clover necrotic mosaic virus (SCNMV), and 2 

Carnation ring spot virus (CRSV). Conserved nucleotides are highlighted with black 3 

boxes and white letters. Adenine residues are highlighted with red letters. (E and F) 4 

EMSA for NtPABP using SLAB and its mutants. (G and H) STagT pull-down assay 5 

using SLAB and its mutants in BYLS20 expressing FLAG-tagged NtPABP.  6 

 7 

Fig. 3. Poly(A) but not poly(C) inhibits the cap- and poly(A)-independent 8 

translation and the negative-strand RNA synthesis of RCNMV RNA1 in BYL. (A) 9 

R1-Luc-R1 was incubated in BYL in the presence of increasing amounts of poly(A) or 10 

poly(C) and was assayed for the expression of firefly luciferase. The mean ± s.d. (n = 11 

3) is shown. (B) Recombinant NtPABP significantly restored luciferase activity 12 

repressed by adding poly(A). R1-Luc-R1 was incubated in BYL in the presence of 13 

both 150 ng/µl of inhibitor (poly(A) or poly(C)) and increasing concentration of 14 

recombinant NtPABP (0, 0.5, 1, and 2.5 µM). Recombinant GST (2 µM) was used as a 15 

control in this assay. The level of expression of luciferase in the presence of poly(C) 16 

was defined as 100%. (C, D, and E) RNA1 was incubated in BYL in the presence of 17 

increasing amounts of poly(A) or poly(C). Total protein and RNA were used for 18 

western blotting using a p27 antiserum (first panel) and northern blotting using a 19 

negative-strand RNA1 detection probe (third panel) (26), respectively. EtBr-stained 20 

signals (second panel) represent the amount of transcripts used in this experiment. 21 

Coomassie Brilliant Blue (CBB)-stained host proteins (second panel) and EtBr-stained 22 

18S/26S rRNAs (fourth panel) were used as loading controls for western blotting and 23 

northern blotting, respectively. (D and E) Quantification of relative accumulations of 24 

p27 and the negative-strand RNA1 shown in panel C by using Image Gauge program 25 

(Fujifilm Life Sciences). The level of accumulation of p27 and negative-strand RNA1 26 
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in the absence of competitors was defined as 100%. The mean ± s.d. (n = 3) is shown.  1 

 2 

Fig. 4. The ARS enhances both cap/poly(A)-independent translation and 3 

replication of RNA1. 4 

(A) Uncapped R1-Luc-R1 and its derivatives carrying firefly luciferase (FL) were 5 

co-transfected with Renilla (RL) luciferase mRNA (internal control) into BY-2 6 

protoplasts via electroporation. The FL/RL luminescence was normalized to the value 7 

of the wild-type reporter RNA1 (R1-Luc-R1). The mean ± s.d. (n = 3) is shown. (B) 8 

Uncapped R1-Luc-R1 and its derivatives carrying firefly luciferase (FL) were 9 

incubated into BYL. The FL luminescence was normalized to the value of R1-Luc-R1. 10 

The mean ± s.d. (n = 3) is shown. (C) Uncapped RCNMV RNA1 and its derivatives 11 

were incubated in BYL. Samples were subjected to SDS-PAGE, which was followed 12 

by western blotting using anti-p27 antiserum. EtBr-stained signals represent the 13 

amount of transcripts used in this experiment. Coomassie Brilliant Blue (CBB)-stained 14 

host proteins were used as loading controls. (D) RNA1 and its derivatives were 15 

transfected into BY-2 protoplasts via electroporation. Total RNA was extracted and 16 

used for northern blotting with a positive-strand RNA1 detection probe (26). 17 

EtBr-stained 18S/26S rRNAs were used as loading controls for northern blotting. SR1f 18 

is a stable degradation product derived from the 3′ UTR of RNA1 (28).  19 

 20 

 21 

Fig. 5. Tethered PABP stimulated cap-independent translation of a reporter 22 

RNA1. (A) Schematic representation of the components used for the assay of tethered 23 

PABP function. R1-LucΔAms2bs is a reporter RNA1 variant that lacks the ARS, but 24 

contains tandem binding sites for the MS2 bacteriophage coat protein (MS2CP) in the 25 

3′ UTR. (B) The translational activity of R1-LucΔAms2bs was similar to that of 26 
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R1-Luc-AC4 (negative control) in BYL. The level of expression of luciferase from 1 

R1-Luc-AC4 was defined as 100%. The mean ± s.d. (n = 3) is shown. (C) The 2 

translational activity of R1-LucΔAms2bs was enhanced in the presence of 3 

MS2CP-NtPABP in BYL. The level of expression of luciferase from R1-Luc-AC4 was 4 

defined as 100%. The mean ± s.d. (n = 3) is shown. (D) MS2CP-NtPABP specifically 5 

enhanced the translational activity of R1-LucΔAms2bs in cis in BYL. The level of 6 

expression of luciferase from R1-Luc-R1 (positive control) in BYL expressing 7 

NtPABP was defined as 100%. The mean ± s.d. (n = 3) is shown. 8 

 9 

Fig. 6. Stability of a reporter RNA1 (R1-Luc-R1) and its derivatives. (A) BYL was 10 

incubated with R1-Luc-R1 and its derivatives. Total RNA was extracted at the 11 

indicated time points and used for northern blotting with the positive-strand detection 12 

probe (26). (B) The signal intensities were quantified with Image Gauge program 13 

(Fujifilm Life Sciences). Transcripts abundance for each reporter mRNA was 14 

normalized to 0.1-min time point, and fits to decaying exponential with IGOR pro 6 15 

(Wavemetrics).  16 

 17 

Fig. 7. Both the ARS and 3′CITE are required for the efficient cap- and 18 

poly(A)-independent translation in BY-2 and cowpea protoplasts. (A) Schematic 19 

representation of introduced mutations in the 5′ UTR, ARS, and 3′CITE of reporter 20 

RNA1. (B and C) Nonfunctional-capped (A-capped) R1-Luc-R1 and its derivatives, 21 

and functional-capped (m7G-capped) and nonfunctional-capped luciferase mRNA with 22 

or without poly(A) tail were co-transfected with Renilla luciferase mRNA (internal 23 

control) into BY-2 and cowpea protoplasts using PEG transfection regent and 24 

electroporation, respectively. The FL/RL luminescence was normalized to the value of 25 

Δ5′-Luc-AC4-Lm1. The mean ± s.d. (n = 3) is shown. 26 
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 1 

Fig. 8. Both the ARS and 3′CITE are required for the efficient recruitment of the 2 

40S ribosome subunit. (A) Schematic representation of a mini reporter RNA1 3 

carrying nonviral 12 nt leader sequence, a Renilla-luciferase-derived short ORF, and 4 

the 3′ UTR of RNA1 (12-mini-R1), and of its mutants (12-mini-AC4 and 5 

12-mini-Lm1). (B and C) BYLS20 containing CHX and SIN was incubated with 6 
32P-labeled 12-mini-R1 (black line), 12-mini-AC4 (blue line), and 12-mini-Lm1 (red 7 

line) in the absence (B) or presence (C) of GMP-PNP. The complexes were separated 8 

by sucrose density gradient centrifugation and the fractions were analyzed by 9 

Cherenkov counting. Radioactivity of each fraction is denoted as percentage of total 10 

counts recovered.  11 

Fig. 9. The ARS and 3′CITE recruit eukaryotic translation initiation factors 12 

coordinately to the viral 3′ UTR. (A) Schematic representation of the STagT-fused 3′ 13 

UTR of RNA1 and of its mutants. (B and C) STagT pull-down assay using the 3′ UTR 14 

of RNA1 and its mutants in an Arabidopsis MM2d cultured cell lysate (MM2dL). The 15 

input lane contains 1.6% of the extract used for the STagT pull-down assay. The 16 

sample was separated on 5–20% SDS–PAGE gradient gels, followed by the staining 17 

with nucleic acid staining regent GelRed (Biotium) and western blotting using 18 

AteIF4G, AteIF4E, AteIFiso4G, and AteIFiso4E antisera (kindly provided by Dr. K. S. 19 

Browning) and a AtPABP2 antiserum (kindly provided by Dr. J-F Laliberté). The 20 

antiserum against AtPABP2 detects three different types of Arabidopsis PABP 21 

(AtPABP2, AtPABP4, and AtPABP8). 22 

 23 
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