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Abstract

Sorin Popa initiated the study of Polish groups which are embeddable
into the unitary group of a separable II1 factor. Such groups are called
of finite type or said to belong to the class Ufin. We give necessary and
sufficient conditions for Polish groups to be of finite type, and construct
exmaples of such groups from I∞ and II∞ algebras. We also discuss
permanence properties of finite type groups under various algebraic oper-
ations. Finally we close the paper with some questions concerning Polish
groups of finite type.
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1 Introduction

In this paper we consider the following problem. Denote by U(M) the unitary
group of a von Neumann algebra M .

Problem 1.1. Determine the necessary and sufficient condition for a Polish
group G to be isomorphic as a topological group onto a strongly closed subgroup
of some U(M), where M is a separable finite von Neumann algebra.

S. Popa defined a Polish group to be of finite type if it has this embedding
property. Denote by Ufin the class of all finite type Polish groups. He initiated
the study of this class in an attempt to enrich the study of rapidly developing
cocycle superrigidity theory (cf. [7, 16, 20]). In particular, he proposed in [20]
the problem of studying and characterizing the class Ufin.

Secondly, this problem is motivated from our previous work [1] on infinite-
dimensional Lie algebras associated with such groups: Let M be a finite von
Neumann algebra on a Hilbert space H. Let G be a strongly closed subgroup
of U(M) and M be a set of all densely defined closed operators on H which are
affiliated to M . It is proved that the set

Lie(G) := {A∗ = −A ∈M ; etA ∈ G for all t ∈ R}
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is a complete topological Lie algebra with respect to the strong resolvent topol-
ogy (see also the related work of D. Beltita [3]). Since these Lie algebras turn
out to be non-locally convex in general when M is non-atomic, they are quite
exotic as a Lie algebra and their properties are still unknown. Therefore it
would be interesting to find non-trivial examples of such groups.

We give an answer in Theorem 2.7 to the above Problem by the aid of positive
definite functions on groups and their GNS representations, and characterize
locally compact groups or amenable Polish groups of finite type via compatible
bi-invariant metrics in Proposition 2.20 and Theorem 2.22 (the former is known,
but we give a new proof). Combining with Popa’s result [20], Theorem 2.7 gives
a necessary and sufficient condition for a Polish group to be isomorphic onto a
closed subgroup of the unitary group of a separable II1 factor. We then give
examples of Polish groups G of finite type using noncommutative integration
of E. Nelson [18]. Finally we discuss some hereditary properties of finite type
groups and pose some questions concerning Polish groups of finite type.

Notation. In this paper we often say a von Neuman algebra M is separable
if it has a separable predual, especially when the Hilbert space on which M
acts is implicit. This is known to be equivalent to the condition that M has
a faithful representation on a separable Hilbert space. We denote by Proj(M)
the lattice of all projections in M . A von Neumann algebra is said to be finite
if it admits no non-unitary isometry. When we consider a group G, its identity
is denoted as eG. However, we also use 1 as the identity when we consider a
concrete subgroup of the unitary group of a von Neumann algebra. We always
regard the unitary group of a von Neumann algebra as a topological group with
the strong operator topology.

2 Polish Groups of Finite Type and its Charac-
terization

In this section, we characterize Polish groups of finite type via positive definite
functions. We then characterize when locally compact groups or amenable Pol-
ish groups are of finite type via compatible bi-invariant metrics. To this end, we
review notions of SIN-groups, bi-invariant metrics and unitary representability.

2.1 Polish Groups of Finite Type

Recall that a Polish space is a separable completely metrizable topological space,
and a Polish group is a topological group whose topology is Polish.

We now introduce finite type groups after Popa [20].

Definition 2.1. A Hausdorff topological group is called of finite type if it is
isomorphic as a topological group onto a closed subgroup of the unitary group
of a finite von Neumann algebra.
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Remark 2.2. Popa [20] requires the topological group of finite type to be
Polish, whereas our definition of finiteness does not require any countability.
We will show in Theorem 2.7 that a Polish group G of finite type in our sense
coincides with Popa’s definition of finite type group. That is, G is isomorphic
onto a closed subgroup of the unitary group of a finite von Neumann algebra
acting on a separable Hilbert space.

All of second countable locally compact Hausdorff groups, the unitary group
of a von Neumann algebra acting on a separable Hilbert space are Polish groups.
Furthermore, separable Banach spaces are Polish groups as an additive group.
We denote the class of all Polish groups of finite type by Ufin.

Note that since a von Neumann algebra is finite if and only if its unitary
group is complete with respect to the left uniform structure, Polish groups of
finite type are necessarily complete. Thus we have the following simple conse-
quence.

Proposition 2.3. The unitary group of a von Neumann algebra M acting on
a separable Hilbert space is of finite type if and only if M is finite.

Another examples of Polish groups of finite type are given later.

2.2 Positive Definite Functions

A complex valued function f on a Hausdorff topological groupG is called positive
definite if for all g1, · · ·, gn ∈ G and for all c1, · · ·, cn ∈ C,

n∑
i,j=1

c̄icjf(g
−1
i gj) ≥ 0

holds. Moreover if a complex valued function f is invariant under inner auto-
morphisms, that is

f(hgh−1) = f(g), ∀g, h ∈ G,

then f is called a class function.
It is well-known that there is an one-to-one correspondence between the set

of all continuous positive definite functions on a topological group and the set
of unitary equivalence classes of all cyclic unitary representations of it. more
precisely, for each continuous positive definite function f on a topological group
G, there exists a triple (πf ,Hf , ξf ) consisting of a cyclic unitary representation
πf in a Hilbert space Hf and a cyclic vector ξf in Hf such that

f(g) = ⟨ξf , πf (g)ξf ⟩, g ∈ G,

and this triple is unique up to unitary equivalence. This triple is called the GNS
triple associated to f . Note that if G is separable, then so is Hf .

The GNS triple is of the following form for each continuous positive definite
class function.
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Lemma 2.4. Let f be a continuous positive definite class function on a topo-
logical group G and (π,H, ξ) be its GNS triple. Then the von Neumann algebra
M generated by π(G) is finite and the linear functional

τ(x) := ⟨ξ, xξ⟩, x ∈M,

is a faithful normal tracial state on M . In particular M is countably decompos-
able.

Proof . It is clear that τ is a normal state on M . Since f is a class function, it
is easy to see that τ is tracial on the strongly dense *-subalgebra of M spanned
by π(G). Therefore by normality, τ is tracial on M . Therefore we have only to
check the faithfulness of τ . Assume τ(x∗x) = 0. Since τ is a trace, we have

∥xπ(g)ξ∥2 = τ(π(g)∗x∗xπ(g)) = 0,

for all g ∈ G. By the cyclicity of ξ, x must be 0.

Example 2.5 (I. J. Schoenberg [21]). Let H be a complex Hilbert space. Note

thatH is an additive group. Then a function f defined by f(ξ) := e−∥ξ∥
2

(ξ ∈ H)
is a positive definite (class) function on H.

Example 2.6 (I. J. Schoenberg [21]). For all 1 ≤ p ≤ 2 a function fp defined

by fp(a) := e−∥a∥
p
p (a ∈ lp) is a positive definite (class) function on a separable

Banach space lp.

For more details about positive definite class functions, see [12].

2.3 The First Characterization

We now characterize Polish groups of finite type.

Theorem 2.7. For a Polish group G the following are equivalent.

(i) G is of finite type.

(ii) G is isomorphic as a topological group onto a closed subgroup of the
unitary group of a finite von Neumann algebra acting on a separable Hilbert
space.

(iii) A family F of continuous positive definite class functions on G gen-
erates a neighborhood basis of the identity eG of G. That is, for each
neighborhood V of the identity, there are functions f1, · · ·, fn ∈ F and
open sets O1, · · ·,On in C such that

eG ∈
n∩

i=1

f−1i (Oi) ⊂ V.

(iv) There exists a positive, continuous positive definite class function which
generates a neighborhood basis of the identity of G.
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(v) A family F of continuous positive definite class functions on G sepa-
rates the identity of G and closed subsets A with A ̸∋ eG. That is, for
each closed subset A with A ̸∋ eG, there exists a continuous positive defi-
nite class function f ∈ F such that

sup
x∈A

|f(x)| < |f(eG)|.

(vi) There exists a positive continuous positive definite class function which
separates the identity of G and closed subsets A with A ̸∋ eG.

Proof . (iv)⇔(vi)⇒(v)⇒(iii) and (ii)⇒(i) are trivial.
(iii)⇒(ii). SinceG is first countable, there exists a countable subfamily {fn}n

of F which generates a neighborhood basis of the identity of G. Let (πn, ξn,Hn)
be the GNS triple associated to fn andMn be a von Neumann algebra generated
by πn(G). Since eachMn is finite, the direct sumM :=

⊕
nMn is also finite and

acts on a separable Hilbert space H :=
⊕

n Hn (see the remark above Lemma
2.4). Put π :=

⊕
n πn, then π is an embedding of G into U(M). The image of

π is closed in U(M), as both G and U(M) are Polish.
(i)⇒(iii). Let π be an embedding of G into the unitary group of a finite

von Neumann algebra M . Since each finite von Neumann algebra is the direct
sum of countably decomposable finite von Neumann algebras, we can take of a
family of countably decomposable finite von Neumann algebras {Mi}i∈I with
M =

⊕
i∈I Mi. In this case π is also of the form π =

⊕
i∈I πi, where each

πi : G → U(Mi) is a continuous group homomorphism. Let τi be a faithful
normal tracial state on Mi and (ρi, ξi,Hi) be its GNS triple as a C∗-algebra.
Here each ρi is an isomorphism from Mi into B(Hi) and

τi(x) = ⟨ξi, ρi(x)ξi⟩, x ∈Mi,

holds. Now set fi := τi ◦ πi. Then each fi is a continuous positive definite class
functions on G and {fi}i∈I generates a neighborhood basis of the identity eG
of G.

(iii)⇒(iv). Let {fn}n be a countable family of continuous positive defi-
nite class functions generating a neighborhood basis of the identity of G with
fn(eG) = 1. Set

f ′n(g) := eRe(fn(g))−1

= e−1
∞∑
k=0

1

k!
[Re(fn(g))]

k
, g ∈ G,

then {f ′n}n is not only a family of continuous positive definite class functions
generating a neighborhood basis of the identity of G with f ′n(eG) = 1 but also a
family of positive functions. Define a positive, continuous positive definite class
function by f(g) :=

∑
n f
′
n(g)/2

n (g ∈ G). It is easy to see that f generates a
neighborhood basis of the identity of G.
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Remark 2.8. The proof of the above theorem is inspired by Theorem 2.1 of S.
Gao [9].

Remark 2.9. Popa (Lemma 2.6 of [20]) showed that a Polish group G is of
finite type if and only if it is isomorphic onto a closed subgroup of the unitary
group of a separable II1 factor. Therefore Theorem 2.7 gives a necessary and
sufficient condition for a Polish group to be isomorphic onto a closed subgroup
of the unitary group of a separable II1 factor.

2.4 SIN-groups and Bi-invariant Metrics

To discuss further properties of finite type groups, we consider the following
notions, say SIN-groups, bi-invariant metrics and unitarily representability.

A neighborhood V at the identity of a topological group G is called invariant
if it is invariant under all inner automorphisms, that is, gV g−1 = V holds for all
g ∈ G. A SIN-group is a topological group which has a neighborhood basis of
the identity consisting of invariant identity neighborhoods. Note that a locally
compact Hausdorff SIN-group is unimodular.

A bi-invariant metric on a group G is a metric d which satisfies

d(kg, kh) = d(gk, hk) = d(g, h), ∀g, h, k ∈ G.

It is known that a first countable Hausdorff topological group is SIN if and only
if it admits a compatible bi-invariant metric.

As Popa [20] pointed out, one of the most important fact of Polish groups
of finite type is an existence of a compatible bi-invariant metric.

Lemma 2.10. Each Polish group of finite type has a compatible bi-invariant
metric. In particular, it is SIN.

Proof . It is enough to show that for every finite von Neumann algebraM acting
on a separable Hilbert space H the unitary group U(M) has a compatible bi-
invariant metric. For this let τ be a faithful normal tracial state on M . Then a
metric d defined by

d(u, v) := τ((u− v)∗(u− v))
1
2 , u, v ∈ U(M),

is a compatible bi-invariant metric on U(M).

2.5 Unitary Representability

A Hausdorff topological group is called unitarily representable if it is isomorphic
as a topological group onto a subgroup of the unitary group of a Hilbert space.
All locally compact Hausdorff groups are unitarily representable via the left reg-
ular representation. It is clear that a Polish group of finite type is necessarily
unitarily representable. The following characterization of unitary representabil-
ity has been considered by specialists and can be seen in e.g., Gao [9].

Lemma 2.11. For a Polish group G the following are equivalent.

7



(i) G is unitarily representable.

(ii) There exists a positive, continuous positive definite function which sep-
arates the identity of G and closed subsets A with A ̸∋ eG.

2.6 Simple Examples

All of the following examples are well-known. The first three examples are
locally compact groups.

Example 2.12. Any compact metrizable group is a Polish group of fintie type.
This follows from the Peter-Weyl theorem.

Example 2.13. Any abelian second countable locally compact Hausdorff group
is a Polish group of finite type. Indeed its left regular representation is an
embedding into the unitary group of a Hilbert space and the von Neumann
algebra generated by its image is commutative (in particular, finite).

Example 2.14. Any countable discrete group is a Polish group of finite type.
For its left regular representation is an embedding into the unitary group of a
finite von Neumann algebra.

The following two examples suggest there are few other examples of locally
compact groups of finite type.

Example 2.15. Let G :=

{(
x y
0 1

)
∈ GL(2,K) ; x ∈ K×, y ∈ K

}
be the

ax+ b group, where K = R or C. By easy computations, we have(
a b
0 1

)(
x y
0 1

)(
a b
0 1

)−1
=

(
x −bx+ ay + b
0 1

)
,

so that the conjugacy class C

((
x y
0 1

))
of

(
x y
0 1

)
is

C

((
x y
0 1

))
=



{(
x ♯

0 1

)
; ♯ ∈ K

}
(x ̸= 1),

{(
1 ♯

0 1

)
; ♯ ∈ K×

}
(x = 1, y ̸= 0),

{(
1 0

0 1

)}
(x = 1, y = 0).

Thus for each n ∈ N there exists a matrix hn ∈ G such that hngnh
−1
n =(

1 1
0 1

)
, where gn :=

(
1 1/n
0 1

)
. Clearly, gn → 1 and hngnh

−1
n ̸→ 1. This

implies that the ax+ b group does not admit a compatible bi-invariant metric.
Hence it is not of finite type.
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Example 2.16. The special linear group SL(n,K) (n ≥ 2) is not of finite type

since the map

(
a b
0 1

)
7→
(
a b
0 a−1

)
is an embedding of the ax+ b group

into SL(2,K). Thus the general linear group GL(n,K) (n ≥ 2) is also not of
finite type.

Next we consider abelian groups. Note that an abelian topological group is
of finite type if and only if it is unitarily representable.

Example 2.17. Any separable Hilbert space is a Polish group of finite type.
This follows from Example 2.5 and Theorem 2.7.

Example 2.18. A separable Banach space lp (1 ≤ p ≤ ∞) is a Polish group of
finite type if and only if 1 ≤ p ≤ 2. The “if” part follows from Example 2.6 and
Theorem 2.7, but the “only if” part is non-trivial. For details, see [15].

Here is another counter example.

Example 2.19. Separable Banach space C[0, 1] of all continuous functions on
the interval [0, 1] is a Polish group but not of finite type. For, since every sep-
arable Banach space is isometrically isomorphic to a closed subspace of C[0, 1],
if C[0, 1] is of finite type, then any separable Banach space is a Polish group of
finite type. But this is a contradiction to the previous example.

2.7 Application to Locally Compact Groups

It is known that a second countable locally compact group is of finite type if
and only if it is a SIN-group (see e.g., Theorem 13.10.5 of J. Dixmier [?]). We
give a new proof of this fact using Theorem 2.7. We thank the referee for letting
us know the above literature.

Proposition 2.20. A second countable locally compact Hausdorff group is of
finite type if and only if it is SIN.

Proof . Let G be a second countable locally compact Hausdorff SIN-group, µ be
the Haar measure on it and λ be its left-regular representation. For each com-
pact invariant neighborhood U of the identity, we define a continuous positive
definite function φU on G by

φU (g) := ⟨χU , λ(g)χU ⟩ = µ (U ∩ gU) , g ∈ G.

Note that, for each g, h, x ∈ G, we have

h−1x ∈ U ⇔ x ∈ hU = Uh⇔ xh−1 ∈ U,

and
(gh)−1x ∈ U ⇔ x ∈ ghU = gUh⇔ xh−1 ∈ gU.
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Also note that a locally compact SIN-group is unimodular. Thus we see that

φU (h
−1gh) = ⟨λ(h)χU , λ(gh)χU ⟩

=

∫
G

χU (h
−1x)χU ((gh)

−1x)dµ(x)

=

∫
G

χU (xh
−1)χgU (xh

−1)dµ(x)

=

∫
G

χU (x)χgU (x)dµ(x)

=

∫
G

χU (x)χU (g
−1x)dµ(x)

= φU (g).

This implies φU is a class function. It is not hard to check that a family {φU}U
generates a neighborhood basis of the identity of G. This completes the proof
by Theorem 2.7.

Remark 2.21. (1) R. V. Kadison and I. Singer [14] proved that every connected
locally compact Hausdorff SIN group is isomorphic as a topological group onto
a topological group of the form Rn×K, where K is a compact Hausdorff group.
(2) K. Hofmann, S. Morris and M. Stroppel [13] proved that every totally dis-
connected locally compact Hausdorff group is SIN if and only if it is a strict
projective limit of discrete groups.

2.8 A Characterization for Amenable Groups

Next, we characterize (not necessarily locally compact) amenable Polish groups
of finite type. Recall that a Hausdorff topological group G is amenable if
RUCB(G) admits a left-translation invariant positive functionalm ∈ RUCB(G)∗

with m(1) = 1, where RUCB(G) is a complex Banach space of all right-
uniformly continuous bounded functions on G. Such a m is called an invariant
mean.

Theorem 2.22. A unitarily representable amenable Polish group is of finite
type if and only if it is SIN.

Proof . Let G be a unitarily representable amenable Polish SIN-group and let
f be a positive, continuous positive definite function on G which separates the
identity of G and closed subsets A with A ̸∋ eG (see Lemma 2.11 ). We may
and do assume f(eG) = 1. For each x ∈ G, we define a positive function
Ψx,f : G→ [0, 1] by

Ψx,f (g) := f(g−1xg), g ∈ G.

We show that Ψx,f ∈ RUCB(G). Fix an arbitrary ε > 0. Since the positive
definite function f is right-uniformly continuous, there exists a neighborhood V
of eG such that

|f(g)− f(h)| < ε

10



holds whenver g, h ∈ G satisfy hg−1 ∈ V . There exists a neighborhood W of
eG such that W =W−1 and W ·W ⊂ V holds. Since G is SIN, there exists an
invariant neighborhood U of eG with U ⊂ W . Let g, h ∈ G satisfy hg−1 ∈ U .
By the invariance of U , it holds that h ∈ Ug = gU and therefore that g−1h ∈ U .
Then we see that

(h−1xh)(g−1xg)−1 = h−1xhg−1x−1g ∈ h−1xUx−1g

= h−1Ug = Uh−1g

= U(g−1h)−1 ⊂W ·W−1

⊂ V,

which implies

|Ψx,f (h)−Ψx,f (g)| = |f(h−1xh)− f(g−1xg)| < ε.

Hence Ψx,f is right-uniformly continuous and we have Ψx,f ∈ RUCB(G)+. Let
m ∈ RUCB(G)∗ be an invariant mean. Put

ψf (x) := m(Ψx,f ), x ∈ G,

then ψf (x) is clearly a positive, positive definite class function on G with
ψf (eG) = 1. We show that ψf is continuous. Since m is continuous, it suf-
fices to show that G ∋ x 7→ Ψx,f ∈ RUCB(G)+ is continuous. Let x, y ∈ G. By
Krein’s inequality, we have

||Ψx,f −Ψy,f ||2 = sup
g∈G

|f(g−1xg)− f(g−1yg)|2

≤ 2 sup
g∈G

|1− Ref(g−1yx−1g)|

= 2 sup
g∈G

|1− f(g−1yx−1g)|.

Fix ε > 0. Since f is right-uniformly continuous, there exists an invariant
neighborhood V of eG such that |f(x) − f(y)| < ε holds for x, y ∈ G with
yx−1 ∈ G. Then for x, y ∈ G with yx−1 ∈ V , we have g−1yx−1g ∈ g−1V g = V .
Therefore it holds that

|1− f(g−1yx−1g)| = |f(eG)− f(g−1yx−1g)| < ε.

Hence we have
||Ψx,f −Ψy,f ||2 ≤ 2ε.

Therefore G ∋ x 7→ Ψx,f ∈ RUCB(G)+ is continuous, hence so is ψf . We next
show that ψf separates the identity of G and closed subsets A with A ̸∋ eG.
Fix such a closed set A. Since Ac = G \A is an open neighborhood of eG, there
exists an open invariant neighborhood V of eG contained in Ac. Then we have
A ⊂ V c and eG /∈ V c. Since f separates eG and V c, we have

δ := sup
g∈V c

|f(g)| < 1.

11



It then follows, by the invariance of V c, that for x ∈ V c,

||Ψx,f || = sup
g∈G

|f(g−1xg)| ≤ sup
g∈V c

|f(g)| ≤ δ,

which implies

sup
x∈A

|ψf (x)| ≤ sup
x∈V c

|ψf (x)| = sup
x∈V c

|m(Ψx,f )| ≤ sup
x∈V c

||Ψx,f || ≤ δ < 1.

Therefore ψf separates A and eG. This completes the proof by Theorem 2.7.

Remark 2.23. The above proof is inspired by the proof of Theorem 2.13 of J.
Galindo [8].

3 More Examples of Finite Type Groups

In this section we will give nother examples of Polish groups of finite type. To
construct such examples we need to start not from finite von Neumann algebras,
but from semifinite von Neumann algebras, say of type I∞ or of type II∞. In
the end of this section we also review other known examples of Polish groups of
finite type.

3.1 L2-unitary Groups U(M)2

Let M be a semifinite von Neumann algebra on a Hilbert space H equipped
with a normal faithful semifinite trace τ . A densely defined, closed operator
T on H is said to be affiliated to M if for all u ∈ U(M ′), uTu∗ = T holds.
Denote by M the set of all densely defined, closed operators on H which are
affiliated to M . Recall that L2(M, τ) is a Hilbert space completion of the space
nτ := {x ∈M ; τ(x∗x) <∞} by the inner product

⟨x, y⟩ := τ(x∗y), x, y ∈ nτ .

We define ||x||2 := τ(x∗x)
1
2 for x ∈ L2(M, τ).

Definition 3.1. We call U(M)2 := {u ∈ U(M); 1 − u ∈ L2(M, τ)} the L2-
unitary group of (M, τ).

Note that when M is not a factor, U(M)2 depends on the choice of τ too.
In the sequel we show the following theorem.

Theorem 3.2. Let M be a separable semifinite von Neumann algebra with a
normal faithful semifinite trace τ . Then U(M)2 is a Polish group of finite type,
where the topology is determined by the following metric d,

d(u, v) := ||u− v||2, u, v ∈ U(M)2.
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To prove the theorem, we need some preparations. In the sequel we consider
M to be represented on H = L2(M, τ) by left multiplication. Recall that a
closed operator T ∈ M on L2(M, τ) is called τ -measurable if for any ε > 0,
there exists a projection p ∈ M with ran(p) ⊂ dom(T ) and τ(1 − p) < ε.
Note that L2(M, τ) can be identified with the set of closed, densely defined and
τ -measurable operators T such that

||T ||22 := τ(|T |2) =
∫ ∞
0

λ2dτ(e(λ)) <∞,

where e(·) is a spectral resolution of |T | = (T ∗T )
1
2 and T = u|T | is the polar

decomposition of T (for more details about non-commutative integration, see
vol II of [22]).

Lemma 3.3. LetM be a semifinite von Neumann algebra with a normal faithful
semifinite trace τ . Then U(M)2 is a topological group.

Proof . This can be shown directly, using the equalities:

||x∗||2 = ||x||2, ||uxv||2 = ||x||2,

for all x ∈ L2(M, τ) and u, v ∈ U(M).

Lemma 3.4. LetM be a semifinite von Neumann algebra with a normal faithful
semifinite trace τ . Let U be a densely defined closed τ -measurable operator on
L2(M, τ) affiliated to M . Then dom(U) ∩M is dense in L2(M, τ).

Proof . Let ε > 0. Let ξ ∈ L2(M, τ). Since M ∩ L2(M, τ) is dense, there
exists ξ0 ∈ M ∩ L2(M, τ) such that ||ξ − ξ0||2 < ε. On the other hand, the
measurability of U implies the existence of an increasing sequence {pn}∞n=1 of
projections inM such that pnL

2(M, τ) ⊂ dom(U) for all n and pn ↗ 1 strongly.
Therefore there exists n0 ∈ N such that

||ξ0 − pn0ξ0||2 < ε.

By the choice of ξ0, pn0
ξ0 ∈ dom(U) ∩M and

||ξ − pn0ξ0||2 ≤ ||ξ − ξ0||2 + ||ξ0 − pn0ξ0||2
≤ ε+ ε = 2ε.

Since ε is arbitrary, it follows that dom(U) ∩M is dense in L2(M, τ).

Lemma 3.5. LetM be a semifinite von Neumann algebra with a normal faithful
semifinite trace τ . d is a complete metric on U(M)2.

Proof . Suppose {un}∞n=1 is a d-Cauchy sequence in U(M)2. Since L
2(M, τ) is

complete, there exists V ∈ L2(M, τ) such that ||(1 − un) − V ||2 → 0. Define
U := 1− V . Then ||U − un||2 → 0. We show that U is bounded and moreover
U ∈ U(M)2. Since U is closed and dom(U)∩M is dense by Lemma 3.4, to prove
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the boundedness of U it suffices to show that U is isometric on dom(U) ∩M .
Let ξ ∈ dom(U) ∩M . Since ξ is bounded, we have

||(U − un)ξ||22 = τ(ξ∗(U − un)
∗(U − un)ξ)

= τ((U − un)ξξ
∗(U − un)

∗)

≤ ||ξ||2τ((U − un)(U − un)
∗)

= ||ξ||2||U − un||22 → 0,

which implies
||Uξ||2 = lim

n→∞
||unξ||2 = ||ξ||2,

for all ξ ∈ dom(U) ∩M . Therefore U |dom(U)∩M is isometric and U is bounded.
Since ||U∗ − u∗n||2 = ||U − un||2, it holds that U∗ is an isometry too, which
means U is a unitary. Finally, it is clear that U = 1− V ∈ U(M)2.

Proof of Theorem 3.2. Since M is separable, the separability of U(M)2 follows
from the separability of L2(M, τ). Therefore by Lemma 3.5, U(M)2 is a Polish
group. By Schoenberg’s theorem (see Example 2.5),

φ(u) := e−||1−u||
2
2 , u ∈ U(M)2,

is a continuous, positive definite class function on U(M)2. It is easy to see that
φ generates a neighborhood basis of the identity of U(M)2. Therefore the claim
follows from Theorem 2.7.

Remark 3.6. U(M)′′2 =M.

Proof . Clearly U(M)′′2 ⊂ M . Let p be a finite projection in M . Then 2p ∈
L2(M, τ) and 1− 2p ∈ U(M)2. Therefore p ∈ U(M)′′2 . Since M is semifinite, M
is generated by finite projections. Therefore U(M)′′2 =M .

When M = B(H), U(M)2 is the well-known example of a Hilbert-Lie group
and is denoted as U(H)2.

3.2 Non-isomorphic Properties of U(M)2

J. Feldman [?] gave a complete description of a group isomorphism between the
unitary groups of type II1 von Neumann algebras. In particular, in the proof of
Theorem 4 of [?], he uses the following simple observation: let p be a projection
in a von Neumann algebra M , then up := 1 − 2p is a self-adjoint unitary in
M . Using this correspondence, he deduced that the group isomorphism π :
U(M1) → U(M2) between type II1 von Neumann algebras M1,M2 induces an
order isomorphism between their projection lattices, thereby proving that the
isomorphism π is lifted to a ring *-isomorphism π : M1 → M2 (which may not
preserve the scalar multiplication) in such a way that

π(u) = θ(u)π(u), for all u ∈ U(M1)
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holds, where θ is a multiplicative map from U(M1) to Z(U(M2)). Let H be an
infinite dimensional Hilbert space. Using his idea, we show that whenM is a II∞
factor and N is a finite von Neumann algebra, then U(M)2, U(H)2 and U(N)
are mutually non-isomorphic. In this subsection, no separability assumptions
are required.

Proposition 3.7. Let M be a II∞ factor. Then U(M)2 is not isomorphic onto
U(H)2.

Proof . Let τ be a normal faithful semifinite trace on M , Tr be the usual
operator trace on H. We denote their corresponding trace 2-norms by || · ||2,τ
and || · ||2,Tr, respectively. We prove the claim by contradiction. Suppose there
exists a topological group isomorphism φ : U(M)2 → U(H)2. Let p be a nonzero
finite-rank projection in B(H). Then 1− 2p ∈ U(H)2 and let

q :=
1

2
(1− φ−1(1− 2p)).

It is easy to see that q ∈ L2(M, τ) is a nonzero finite projection in M . Let
k ∈ N. Since M is a II∞ factor, there exists a projection 0 < qk ≤ q in M such

that limk→∞ τ(qk) = 0. Define pk := 1−φ(1−2qk)
2 . Since

||qk||22,τ = τ(qk) → 0 (k → ∞),

1− 2qk → 1 holds in U(M)2, which in turn means

1− 2pk = φ(1− 2qk) → φ(1) = 1 in U(H)2.

However, since the topology of U(H)2 is given by the operator trace 2-norm, it
holds that

2 ≤ ||2pk||2,Tr = ||1− (1− 2pk)||2,Tr → 0 (k → ∞).

This is clearly a contradiction. Therefore U(M)2 ̸∼= U(H)2.

Proposition 3.8. Let M be a type I∞ or type II∞ factor, N be a finite von
Neumann algebra. Then U(M)2 is not isomorphic onto U(N).

Proof . Let τ be a normal faithful semifinite trace onM . Let u ∈ Z(U(M)2) be
an element of U(M)2 which commutes with every element in U(M)2. Then for
any finite projection p ∈M , u(1−2p) = (1−2p)u holds. Therefore u commutes
with all finite projections in M . Since M is generated by its finite projections,
u ∈ Z(M) = C1 holds. Since u− 1 ∈ L2(M, τ), this forces u = 1. Therefore the
center of U(M)2 is {1}, while the center of U(N) contains C1.

Remark 3.9. We thank the referee for telling us the above simple proof and
the literature [?].
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3.3 Other Known Examples

The class Ufin has not been studied well. However, there are some known
examples other than the ones presented in §2.6.

Example 3.10. Normalizer groups NM (A) and N (E)
Let A be an abelian von Neumann subalgebra of a separable II1 factor M . The
normalizer group NM (A) of A, defined by

NM (A) := {u ∈ U(M);uAu∗ = A},

is clearly a strongly closed subgroup of U(M) and hence belongs to Ufin. This
group has been drawn much attention to specialists, especially when A is max-
imal abelian and NM (A) generates M as a von Neumann algebra. In such a
case, A is called a Cartan subalgebra. Similarly, the normalizer group N (E) for
a normal faithful conditional expectation E : M → N onto a von Neumann
subalgebra N ,

N (E) := {u ∈ U(M);uE(x)u∗ = E(uxu∗), for all x ∈M}

is also of finite type.

Example 3.11. The full group [R]
Let R be a II1 countable equivalence relation on a standard probability space
(X,µ). A. Furman showed that the full group [R] equipped with so-called
uniform topology is a Polish group of finite type (see §2 of Furman [7]).

4 Hereditary Properties of Finite Type Groups

In this section, we discuss several permanence properties of the class Ufin un-
der several algebraic operations. In summary, we will observe the following
permanence properties of finite type groups.

Operation Ufin?
Closed subgroup H < G YES

Countable direct product
∏

n≥1Gn YES

Semidirect product G⋊H NO
Quotient G/N NO

Extension 1 → N → G→ K → 1 NO
Projective limit lim

←−
Gn YES

As can be seen from the above table, finiteness property is delicate and can
easily be broken under natural operations.

Remark 4.1. (On the ultraproduct of metric groups) Let {(Gn, dn)}∞n=1 be a
sequence of finite type Polish groups with a compatible bi-invariant metric. It
is not difficult to show that the ultraproduct (Gω, dω) of {(Gn, dn)}∞n=1 along a
free ultrafilter ω ∈ βN \N is a completely metrizable topological group of finite
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type, but not Polish in general. We will discuss topological groups which are
embeddable into the unitary group of a (not necessarily separable) finite von
Neumann algebra elsewhere.

4.1 Closed Subgroup and Countable Direct Product

It is clear the class Ufin is closed under taking a closed (or even Gδ) subgroup.
Since a countable direct sum of separable finite von Neumann algebras is again
separable and finite, the class Ufin is closed under countable direct product.

4.2 Extension and Semidirect Product

The class Ufin is not closed under extension nor semidirect product.

Proposition 4.2. There exits a Polish group G not of finite type, which has a
closed normal subgroup N such that N and the quotient group G/N are of finite
type.

Proof . Let G be the ax+ b group (see Example 2.15). Since G does not have
a compatible bi-invariant metric, it is not of finite type. On the other hand, G
can be written as a semidirect product G = K⋊K×, where K× acts on K as a
multiplication. There fore the exact sequence

0 −→ K −→ G −→ K× −→ 1

gives a counter example for extension case.

Note that the above example also shows that the class Ufin is not closed
under semidirect product.

4.3 Quotient

The class Ufin is not closed under quotient.

Proposition 4.3. There exists an abelian Polish groups of finite type G such
that the quotient G/N of G by its closed subgroup is not of finite type.

Proof . Consider the separable Banach space A := l3 as an additive Polish
group. As we saw in Example 2.18, lp(1 ≤ p ≤ ∞) is unitarily representable
if and only if 1 ≤ p ≤ 2. On the other hand, every separable Banach space is
isomorphic onto a quotient Banach space of ℓ1 (see e.g., Theorem 5.1 of [6]). In
particular, although not of finite type, A = ℓ3 is a quotient of G := ℓ1 by its
closed subgroup N .

Remark 4.4. Note that even for abelian Polish groups, the situation can be
worst possible. It is known (chapter 4 of [2]) that there exists an abelian Polish
group A which has no non-trivial unitary representation. Such a group is called
strongly exotic. On the other hand, S. Gao and V. Pestov [10] proved that any
abelian Polish group is a quotient of ℓ1 by a closed subgroup N . Therefore,
strongly exotic groups are also quotients of finite type Polish groups.
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4.4 Projective Limit

The class Ufin is closed under projective limit.

Proposition 4.5. Let {Gn, jm,n : Gm → Gn(n ≤ m)}∞n,m=1 be a projective
system of Polish groups of finite type. Then G = lim

←−
Gn is a Polish group of

finite type.

Proof . Since the connecting map {jm,n} is continuous, it is clear that G can
be seen as a closed subgroup of

∏
n∈NGn. Since finiteness property passes to

direct product,
∏

n∈NGn is also a Polish group of finite type. Therefore its
closed subgroup G is also a Polish of finite type.

5 Some Questions

Finally let us discuss some questions to which we do not have answers at this
stage. Let Uinv denote the class of Polish groups with a compatible bi-invariant
metric. As we saw in Example 2.18, Uinv is strictly larger than Ufin (l3 is in Uinv

but not in Ufin). Therefore the unitarily representability is indispensable (this
was also pointed out by Popa). Furthermore, there exists a more interesting
example. Recently L. van den Dries and S. Gao [5] constructed a Polish group
G with a compatible bi-invariant metric, which does not have Lie sum (see [5]
for the definition). On the other hand, we proved in [1] that if G belongs to
the class Ufin, then G has Lie sum. Thus G is not of finite type. Therefore it
would be desirable to consider the following questions (the latter was posed in
Popa[20], §6.5):

Question 5.1. Is van den Dries-Gao’s Polish group unitarily representable?

Question 5.2 (Popa). Is a unitarily representable Polish SIN-group of finite
type?

Hopefully Theorem 2.7 will play the role for solving the above questions.
Also, since lp belongs to Ufin if and only if 1 ≤ p ≤ 2, it is worth considering
whether

Question 5.3. Let H be a separable infinite-dimensional Hilbert space. Does
U(H)p := {u ∈ U(H); 1− u ∈ Sp(H)} belong to Ufin for some 1 ≤ p < 2 ? Here
Sp(H) denotes the space of Schatten p-class operators.

Finally, let us remind that there is another candidate for a counterexample
to Question 5.2. Recall that a finite von Neumann algebra N equipped with a
normal faithful tracial state τ is said to have property (T) if for each ε > 0, there
exists a finite set F ⊂ N and δ > 0 with the property that whenever φ : N → N
is a unital completely positive τ -preserving map satisfying ||φ(x)− x||2 < δ for
all x ∈ F , then ||φ(a)− a||2 ≤ ε||a|| holds for all a ∈ N .

LetM be a separable II1 factor with property (T), Aut(M) be a Polish group
of all *-automorphisms of M equipped with the pointwise || · ||2-convergence

18



topology. Due to the property (T), this topology coincides with the topology of
uniform || · ||2-convergence on the closed unit ball M1. Since the latter topology
is given by the bi-invariant metric d defined by

d(α, β) := sup
x∈M1

||α(x)− β(x)||2, α, β ∈ Aut(M),

Aut(M) is a Polish SIN-group. By considering the standard representation,
Aut(M) is unitarily representable as well. Therefore it would be interesting to
check if Aut(M) is actually of finite type or not.
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