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Scaling and Their Relationship with Shift-Invariance in Lifting-Timing
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This paper is concerned with the technique called discrete-time noncausal linear periodically time-varying
(LPTV) scaling for robust stability analysis. Noncausal LPTV scaling has already been shown to be effective
for reducing the conservativeness of robustness analysis in theoretical and numerical ways. However, there
still remain some issues to be resolved for further understanding and exploiting noncausal LPTV scaling, e.g.,
its relationship with the conventional analysis approach of causal linear time-invariant scaling. In this paper,
by introducing the key idea of shift-invariance in lifting-timing, we discuss the difference and corresponding
relationship between the conventional approach and noncausal LPTV scaling.
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1 Introduction

In this paper, we discuss the properties of discrete-time noncausal linear periodically time-varying
(LPTV) scaling (Hagiwara and Ohara 2007, 2010), which is an approach to the robustness
analysis of discrete-time linear time-invariant (LTI) and LPTV systems. The famous lifting
technique (Bittanti and Colaneri 2000, 2009) enables us to treat discrete-time LPTV systems as
if they were LTI. Hence, given an LPTV system (or an LTI system as a special case), we can
analyze its robust stability by applying the separator-type robust stability theorem (Iwasaki and
Hara 1998) to the lifted LTI system. Noncausal LPTV scaling is an idea that can be introduced
quite naturally in such an analysis by allowing some noncausal operations of signals through the
lifted treatment. Noncausality thus introduced in the scaling approach has been demonstrated
to be effective for reducing the conservativeness in the robustness analysis of LTI and LPTV
systems, both theoretically and numerically (Hagiwara and Ohara 2007, 2010). In particular, as
far as LTI systems are concerned, it has been proved that even if we confine ourselves to static
noncausal LPTV scaling, it induces some dynamic causal LTI scaling when it is interpreted in the
lifting-free (i.e., conventional) treatment. This property endows (even static) noncausal LPTV
scaling with a promising ability in achieving less conservative analysis, in spite of its simple
treatment. Such a feature of noncausal LPTV scaling has already been exploited also in the
development of robust controller synthesis methods (Hosoe and Hagiwara 2010a,b), and their
effectiveness in comparison with the µ-synthesis (Zhou and Doyle 1998) has also been confirmed.

Despite the promising properties on the practical side of noncausal LPTV scaling described
above as a new approach to robust control, however, its comprehensive properties have not
necessarily been revealed entirely. The missing arguments include, e.g., the characterization of
the class of dynamic causal LTI scaling in the lifting-free treatment that can equivalently be
dealt with by working instead on static noncausal LPTV scaling in the lifted treatment; or what
theoretical differences there are between noncausal LPTV scaling and the conventional causal
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LTI scaling. These issues must be resolved for further clarifying the advantages (or drawbacks)
of noncausal LPTV scaling compared with the conventional method and thus establishing a
further solid theoretical base for noncausal LPTV scaling. This paper aims at making a step
forward to such issues by clarifying further properties of noncausal LPTV scaling. In particular,
as a key idea, we introduce the notion of the timing of lifting into the framework of noncausal
LPTV scaling. The effect of shifting the lifting-timing can be studied easily by using what we
call the timing-shift matrix, and thus this matrix plays an important role throughout the paper.
More precisely, this paper introduces through this matrix the notion called shift-invariance (with
respect to lifting-timing) of the separator in the robust stability theorem, as well as that notion
of a class of separators. It is then shown that this notion plays a crucial role in revealing the
properties of noncausal LPTV scaling through its theoretical comparisons with causal LPTV
scaling and causal LTI scaling.

This paper is organized as follows. Section 2 states the robust stability analysis problem studied
in this paper, presents the basic idea of robust stability analysis in the lifted framework, and
reviews the definitions of causal/noncausal LPTV scaling and the associated causal/noncausal
separators. Section 3 confines itself to the robust stability analysis of LTI systems, and revisits
and slightly extends the existing results about the relationship between causal/noncausal LPTV
scaling and the conventional causal LTI scaling. Section 4 introduces the timing shift about lifting
and the timing-shift matrix, as well as the shift-invariance notion of a separator and a class of
separators, and then discusses the implication of the presence (or lack) of shift-invariance on the
properties of noncausal LPTV scaling. Section 5 introduces shift-invariant reconstruction of a
given class of noncausal LPTV separators that is not necessarily shift-invariant, and shows an
important equivalence relationship between the two approaches: one is noncausal LPTV scaling
with the reconstructed class of separators, while the other is the dynamic causal LTI scaling
(in the lifting-free framework) with the associated separator class induced by the given class
of noncausal LPTV separators. The implication of such a relationship is further discussed, and
important observations are given on the properties of noncausal LPTV scaling.

2 Robust stability analysis based on noncausal LPTV scaling

This section states the robust stability analysis problem studied in this paper, and reviews an ap-
proach to the problem called discrete-time noncausal LPTV scaling (Hagiwara and Ohara 2007,
2010), naturally introduced through the discrete-time lifting treatment (Bittanti and Colaneri
2000, 2009).

2.1 Robust stability analysis problem

This paper studies the robust stability problem of the discrete-time closed-loop system Σ shown
in Fig. 1 consisting of the nominal system G and the uncertainty ∆. The nominal system G is
assumed to be internally stable, finite-dimensional, linear N -periodic, and represented by

xk+1 = Akxk + Bkuk, yk = Ckxk + Dkuk (1)

where Ak, Bk, Ck and Dk are N -periodic matrices, xk ∈ Rn, uk ∈ Rp, and yk ∈ Rp. The
uncertainty ∆ is assumed to belong to some given set ∆ satisfying the following assumption.

Assumption 1 Every ∆ ∈ ∆ is stable, finite-dimensional and linear N -periodic, and ∆ is
star-convex with a center at the origin (i.e., k∆ ∈ ∆ whenever ∆ ∈ ∆ and 0 ≤ k ≤ 1).

The above problem reduces to the robust stability problem of LTI systems when N = 1, and
this paper is largely interested in applying the discrete-time noncausal LPTV scaling technique
to such a case. This means that if we are given an LTI system Σ , then we view it as a special
case of an N -periodic system with a prescribed N , unless stated otherwise.
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Figure 1. Closed-loop system Σ .

2.2 Separator-type robust stability theorem via lifting

This subsection gives a brief review of the lifting technique (Bittanti and Colaneri 2000, 2009)
and a separator-type robust stability theorem via lifting.

The operation of getting new signal representations

ûκ :=
[
uT

κN , uT
κN+1, · · · , uT

κN+N−1

]T
, ŷκ :=

[
yT

κN , yT
κN+1, · · · , yT

κN+N−1

]T
(2)

from the discrete-time signals u and y is called the lifting of signals. This converts the treatment
of systems with input u and output y into that of systems with lifted input û and lifted output ŷ,
and such treatment is called the lifting of systems. The resulting lifted representations of systems
are called N -lifted systems. By defining x̂κ := xκN , we can describe the N -lifted nominal system
Ĝ by

x̂κ+1 = Âx̂κ + B̂ûκ, ŷκ = Ĉx̂κ + D̂ûκ (3)

All the coefficient matrices of Ĝ can be constructed with the coefficient matrices in (1). We
denote the transfer matrix of Ĝ by Ĝ(z); it is called the N -lifted transfer matrix of G. We can
also get the N -lifted representation ∆̂ and the N -lifted transfer matrix ∆̂(z) from ∆. Through
these ideas, we can get the lifted representation Σ̂ (Fig. 2) from the closed-loop system Σ .

It follows that Σ is robustly stable with respect to ∆ if and only if Σ̂ is with respect to
∆̂ := {∆̂

∣∣ ∆ ∈ ∆}. Here, we have the following robust stability theorem via lifting.

Theorem 1 Suppose that G is internally stable and N -periodic, and ∆ satisfies Assumption 1.
If Σ is well-posed, ∀∆ ∈ ∆, then Σ is robustly stable with respect to ∆ if and only if there exists
Θ̂(z) = Θ̂(z)∗ (∀z ∈ ∂D) such that[

I

Ĝ(z)

]∗
Θ̂(z)

[
I

Ĝ(z)

]
≤ 0 (∀z ∈ ∂D) (4)[

∆̂(z)
I

]∗
Θ̂(z)

[
∆̂(z)

I

]
>0

(
∀∆∈∆,
∀z∈∂D

)
(5)

where ∂D := {z ∈ C : |z|=1} denotes the unit circle.

Remark 1 If we assume Σ is LTI, then by letting N = 1, Assumption 1 and Theorem 1 reduce,
respectively, to the assumption for LTI uncertainties and the usual separator-type robust stability
theorem (Iwasaki and Hara 1998) from which the above theorem immediately follows. We refer
to them as Assumption 1LTI and Theorem 1LTI, respectively. Similarly, we use the labels (4)LTI

and (5)LTI to refer to the inequalities corresponding to (4) and (5) with N = 1, respectively.

-û
Ĝ

ŷ

¾∆̂

Figure 2. Lifted closed-loop system bΣ .
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By Theorem 1LTI mentioned in the above remark, the robust stability of LTI systems can
be analyzed without the lifting technique, and this is nothing but the conventional causal LTI
scaling (or frequency-dependent scaling). We call such a framework for robust stability analysis
the lifting-free framework, but this is in sharp contrast with the fundamental standpoint of the
present paper; as mentioned before, this paper is rather interested in viewing LTI systems as N -
periodic systems and then applying Theorem 1. We call such a framework the lifted framework.
To clearly discriminate these two frameworks, the (lifting-free) transfer matrices of G and ∆ will
be denoted by G(ζ) and ∆(ζ), respectively, and the corresponding separator will be denoted by
Θ(ζ), where ζ is used to denote the z-variable in the lifting-free framework.

In the following arguments, if the separator Θ̂(z) satisfies (4) and (5), then we say that it
is eligible with respect to (4) and (5) (or simply in the lifted framework). Similarly, if Θ(ζ)
satisfies (4)LTI and (5)LTI, then we say that it is eligible with respect to (4)LTI and (5)LTI (or in
the lifting-free framework). In addition, if there exists an eligible Θ(ζ) ∈ Θ(ζ) (or Θ̂(z) ∈ Θ̂(z)),
then we say that the separator class Θ(ζ) (or Θ̂(z)) is eligible.

2.3 Definition of noncausal LPTV scaling

By Theorem 1, the robust stability problem of the closed-loop system Σ̂ (i.e., Σ ) reduces to
searching for separators Θ̂(z) satisfying (4) and (5) against the given ∆. This naturally leads
to the idea of noncausal LPTV scaling reviewed in the following. For facilitating extensive
discussions in the following, however, it is important to introduce noncausal LPTV scaling in
contrast with causal LPTV scaling. This is carried out by classifying the separators Θ̂(z) in
Theorem 1 into two types (Hagiwara and Ohara 2007, 2010).

First, causal LPTV separators are defined as follows.

Definition 1 We call a separator given by Θ̂(z) =
[
V̂1(z) V̂2(z)

]∗
Λ̂

[
V̂1(z) V̂2(z)

]
a causal

LPTV separator, where V̂1(z) and V̂2(z) are the N -lifted transfer matrices of causal N -periodic
systems V1 and V2 with p inputs, respectively, and Λ̂ = Λ̂∗ is a constant matrix of the form
Λ̂ = diag[Λ1, · · · ,ΛN ] with the size of Λi being the same for all i = 1, · · · , N . In particular, if we
take static V1 and V2, then we call the corresponding separator a static causal LPTV separator.

The approach to robust stability analysis based on causal LPTV separators is called causal
LPTV scaling.

On the other hand, more general noncausal LPTV separators have been defined as follows.

Definition 2 We call a separator given by Θ̂(z) = V̂ (z)∗Γ V̂ (z) a noncausal LPTV separator,
where V̂ (z) is the transfer matrix of a causal LTI system V̂ with 2Np inputs defined directly on
the lifted time axis κ in (3) 1 and Γ = Γ ∗ is a constant matrix. In particular, if we take a static
V̂ , then we call the corresponding separator a static noncausal LPTV separator.

The approach to robust stability analysis based on noncausal LPTV separators is called non-
causal LPTV scaling. Even though Definition 2 is more general than Definition 1, in general,
they degenerate into an identical definition when N = 1. We refer to the degenerated separators
as causal LTI separators (in the lifting-free framework).

3 Noncausal LPTV scaling applied to LTI system

This paper discusses the properties of noncausal LPTV scaling that follows naturally from
Theorem 1 as a method for robust stability analysis, where we place particular emphasis on

1This means that bV is not required to be an N -lifted representation of a system in the original time axis k in (1) before the
application of lifting.
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(but do not limit our attention exclusively to) the case when Σ is LTI. In that case, we have
two alternatives for robust stability analysis: lifted framework (i.e., noncausal LPTV scaling)
and lifting-free framework (i.e., the conventional causal LTI scaling). Whichever framework one
may take, however, it is generally difficult to search for eligible separators, and thus one often
introduces some tractable class of separators within which the search of eligible separators is
to be carried out. It should be remarked that, under such a restrictive search, the inequalities
(4) and (5) as well as (4)LTI and (5)LTI in these theorems become a conservative sufficient
condition for robust stability. With this in mind, this paper aims at studying the properties of
noncausal LPTV scaling that are expected to be useful in clarifying its ability in reducing the
aforementioned conservativeness in the analysis, particularly in comparison with the conventional
causal LTI scaling.

To facilitate the arguments that motivate the study in the remainder of this paper, this section
first introduces some important results suggesting possible advantages of noncausal LPTV scaling
over causal LTI scaling. Some of these results have in fact been reported in our preceding studies
(with or without proof), but such remarks will be deferred to the end of this section to avoid
distracting the attention of the reader. Instead, we opt to suggest immediately after these results
some open problems that are not covered by these results. These problems will motivate further
discussions about the properties of noncausal LPTV scaling studied in the remainder of this
paper.

For readability, we explicitly state Assumption 1LTI introduced in Remark 1.

Assumption 1LTI Every ∆ ∈ ∆ is stable, finite-dimensional and LTI, and ∆ is star-convex
with a center at the origin.

Then the first result is as follows.

Theorem 2 Suppose that G is LTI, and ∆ satisfies Assumption 1LTI. If there exists an eligible
causal LTI separator Θ(ζ) in the lifting-free framework, there exists an eligible causal LPTV
separator Θ̂(z) in the lifted framework. In particular, if a causal LTI separator given by

Θ(ζ) =
[
V1(ζ) V2(ζ)

]∗ Λ
[
V1(ζ) V2(ζ)

]
(6)

in the lifting-free framework is eligible, the separator

Θ̂(z) =
(

1
N

V̂i(z)∗Λ̂V̂j(z)
)

i,j=1,2

(7)

is eligible in the lifted framework.

An important implication of the above theorem is that if we apply causal/noncausal LPTV
scaling to LTI systems, we can perform at least as good robust stability analysis as causal
LTI scaling. The separator in the lifted framework given in this theorem, i.e., (7), satisfies the
requirement in Definition 1 in a particular way, that is, with LTI systems V1 and V2, and with
the constraint Λi = Λj (i, j = 1, · · · , N). Hence, we refer to the separator of the form (7)
constructed from the causal LTI separator (6) (in the lifting-free framework) as an equivalent
causal LTI separator in the lifted framework. We denote such an embedding mapping from (6) to
(7) by Θ̂(z) = Ê[Θ(ζ)]. Similarly, we call the treatment with such separators causal LTI scaling
in the lifted framework. The validity of introducing such terms can be verified in a strong sense
since not only Theorem 2 but also a sort of its converse holds as follows.

Theorem 3 Suppose that G is LTI, ∆ satisfies Assumption 1LTI, and a causal LTI separator
Θ(ζ) described by (6) is given. If the embedded separator Θ̂(z) = Ê[Θ(ζ)] equivalent to Θ(ζ) is
eligible in the lifted framework, Θ(ζ) is eligible in the lifting-free framework.

Remark 2 Even though this section is confined to the case when Σ is LTI, we can similarly
define causal LTI scaling for LPTV systems; such scaling refers to the approach in the lifted
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framework that uses only equivalent causal LTI separators constructed from causal LTI separators
in the lifting-free framework. The properties of causal LTI scaling for LPTV systems will be
discussed in Section 4.

The following is another important result closely related to the advantage of noncausal LPTV
scaling over causal LTI scaling.

Theorem 4 Suppose that G is LTI, and ∆ satisfies Assumption 1LTI. If a noncausal LPTV
separator Θ̂(z) is eligible in the lifted framework, the causal LTI separator

Θ(ζ) = T (ζ)∗Θ̂(ζN )T (ζ) (8)

is eligible in the lifting-free framework, where

T (ζ) := diag[Tp(ζ), Tp(ζ)], Tp(ζ) :=


ζ−(N−1)Ip

...
ζ−1Ip

Ip

 . (9)

This theorem implies that if we find an eligible separator Θ̂(z) in the lifted framework, it imme-
diately means that we have also found an eligible separator Θ(ζ) in the lifting-free framework.
In particular, even if we were to confine ourselves to the search of static noncausal LPTV sepa-
rators Θ̂ (which is nothing but a constant matrix) in the lifted framework, it would induce some
frequency-dependent scaling (i.e., dynamic causal LTI scaling) in the lifting-free framework by
(8). Furthermore, it follows from Theorem 2 that the induced scaling in the lifting-free frame-
work is ensured to be, at least, as effective as the static causal LTI scaling in that framework.
This might suggest that static noncausal LPTV scaling could possibly replace dynamic causal
LTI scaling, which sounds attractive because static separators are much more tractable than
general dynamic separators.

However, Theorems 2 and 4 alone are deficient in the theoretical depth for affirming the above
prospect. In other words, the properties of noncausal LPTV scaling have not been revealed
completely, and there still remain important issues that should be investigated much further.
For example, let us take a class Θ̂

noncausal

0 (z) of noncausal LPTV separators, and denote by

Θ(ζ) :=
{
T (ζ)∗Θ̂(ζN )T (ζ)

∣∣ Θ̂(z) ∈ Θ̂
noncausal

0 (z)
}

(10)

the class of separators Θ(ζ) in the lifting-free framework given by (8) with Θ̂(z) ∈ Θ̂
noncausal

0 (z).
An important unresolved issue is whether the eligibility of the class Θ(ζ) always implies that

of the original class Θ̂
noncausal

0 (z), or to put it another way, whether it is ensured that we can
convert the problem of searching for an eligible Θ(ζ) ∈ Θ(ζ) equivalently into that of searching

for an eligible noncausal LPTV separator Θ̂(z) ∈ Θ̂
noncausal

0 (z). If this question has an affirmative

answer, then the prospect mentioned above is also resolved affirmatively by taking Θ̂
noncausal

0 (z)
to be the set of static separators.

This paper aims at making a step forward to answering the question raised above by revealing
further properties of noncausal LPTV scaling. To proceed in that direction, the idea of shifting
the timing of lifting (timing-shift of lifting) plays a crucial role. Hence, we first study in Section 4
some fundamental properties of noncausal LPTV scaling with respect to the timing-shift of
lifting, where we deal with N -periodic systems as well as LTI systems. We then proceed the
arguments about the timing-shift in Section 5 for the special case when Σ is LTI. In particular, we
discuss further relationship and difference between noncausal LPTV scaling and the conventional
causal LTI scaling, and provide a partial answer to the question raised above.
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Before closing this section, we give some remarks about the proof of the above theorems.
Regarding Theorem 2, its special case confining only to static separators has been given in our
previous paper (Hagiwara and Ohara 2010) in a less explicit form; see Theorem 2 and its proof
therein. A similar but again less explicit assertion has been given about a general case in the
earlier conference previous paper (Hagiwara and Ohara 2007), in which the proof was omitted
because of limited space. Hence, the proof of this theorem is given in Appendix A, which is
indeed important in the following arguments because the ideas therein are closely related with
the discussions of this paper (in particular, Theorem 6 to be derived later). On the other hand,
Theorem 3 is asserted for the first time in this paper (except for the case of static separators,
which is again asserted by Theorem 2 in Hagiwara and Ohara (2010) in an implicit way), whose
proof is given in Appendix B. Finally, Theorem 4 is nothing but Theorem 1 in Hagiwara and
Ohara (2010), which, together with the other two theorems, strongly motivates the further
studies in the remainder of this paper.

4 Timing-shift in noncausal LPTV scaling

The previous section confined itself to the case when Σ is LTI. This section returns to the
treatment of N -periodic systems, introduces the idea of timing-shift about the lifting treatment
in noncausal LPTV scaling, and discusses the properties of noncausal LPTV scaling in connection
with timing-shift.

4.1 Timing-shift matrix and its properties

To begin with, the timing of lifting (or lifting-timing for short) means the basic time in-
stant that we take in the lifting treatment of signals and systems. For example, for a sig-
nal fk related with N -periodic system H, the lifted representation of fk is usually given by
f̂κ = [fT

κN , fT
κN+1, · · · , fT

κN+N−1]
T . However, when we consider the lifting-timing denoted by l,

then by definition, the lifted representation is given by f̂
(l)
κ = [fT

κN+l, f
T
κN+1+l, · · · , fT

κN+N−1+l]
T .

Under the lifting-timing l, we denote the resulting lifted system by Ĥ(l), and its associated
transfer matrix by Ĥ(l)(z). Obviously, it is enough to consider the lifting-timing l only in
{0, 1, · · · , N − 1}, and if H is LTI, its lifted representation Ĥ(l) obtained by regarding H as
N -periodic is independent of the lifting-timing l. However, this is not the case if H is not LTI.
Hence, we can easily see that lifting-timing could be an important factor to study especially
when the system Σ is LPTV. Nevertheless, we will eventually see that it is equally important
even when Σ is LTI.

Even though shifting the lifting-timing is equivalent to shifting signals before applying the
standard lifting with l = 0, its effect can easily be treated in the lifted framework (i.e., after
lifting has been applied) by introducing the (backward) timing-shift matrix

Sp(z) :=
[

0 z−1Ip

I(N−1)p 0

]
. (11)

Let us denote the z-transform of the lifted signal f̂
(l)
κ by F̂ (l)(z). Then, ignoring the influence of

the “initial value fl,” we readily have F̂ (l)(z) = Sp(z)F̂ (l+1)(z). This immediately leads to

Ĥ(l+1)(z) = Sp(z)−1Ĥ(l)(z)Sp(z). (12)

It is immediate from the definition that the timing-shift matrix Sp(z) has the properties

Sp(z)Sp(z)∗ = Sp(z)∗Sp(z) = I (z ∈ ∂D), Sp(z)N = z−1I. (13)
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4.2 Effect of timing-shift in noncausal LPTV scaling

By applying the congruence transformation by the matrix Sp(z) on the conditions in Theorem 1
and noting (12), we are led to the following theorem.

Theorem 5 Suppose that G is N -periodic, and ∆ satisfies Assumption 1. Let us define

S(z) := diag[Sp(z), Sp(z)]. (14)

Then, Θ̂(z) = Θ̂(z)∗ (∀z ∈ ∂D) satisfies[
I

Ĝ(0)(z)

]∗
Θ̂(z)

[
I

Ĝ(0)(z)

]
≤ 0 (∀z ∈ ∂D) (15)[

∆̂(0)(z)
I

]∗
Θ̂(z)

[
∆̂(0)(z)

I

]
>0

(
∀∆∈∆,
∀z∈∂D

)
(16)

under the standard lifting-timing l = 0 if and only if it satisfies[
I

Ĝ(l)(z)

]∗
(S(z)l)∗Θ̂(z)S(z)l

[
I

Ĝ(l)(z)

]
≤ 0 (∀z ∈ ∂D) (17)[

∆̂(l)(z)
I

]∗
(S(z)l)∗Θ̂(z)S(z)l

[
∆̂(l)(z)

I

]
>0

(
∀∆∈∆,
∀z∈∂D

)
(18)

under at least one lifting-timing l = 0, · · · , N − 1, and also if and only if it satisfies (17) and
(18) under all l = 0, 1, · · · , N − 1.

According to this theorem, if we take a set of some tractable (e.g., static) separators denoted
by Θ̂0(z), the approach under the lifting-timing l = 0 that searches for eligible separators
Θ̂(z) ∈ Θ̂0(z) is, if it is interpreted under another lifting-timing l, equivalent to the approach
of searching for eligible separators (S(z)l)∗Θ̂(z)S(z)l such that Θ̂(z) ∈ Θ̂0(z). Hence, it is not
obvious, in general, whether the approach of searching for eligible separators Θ̂(z) ∈ Θ̂0(z)
under l = 0 is equivalent to that under another l that searches for eligible separators Θ̂(z)
within the same class Θ̂0(z). That is, even if we were to search for eligible separators within the
common tractable class Θ̂0(z) regardless of l, the effects obtained by noncausal LPTV scaling
might vary in general, depending on the underlying lifting-timing l. If this is indeed the case, it
would be related with the fact that an eligible separator Θ̂(z) ∈ Θ̂0(z) under some lifting-timing
l may not satisfy

Θ̂(z) = S(z)∗Θ̂(z)S(z) (z ∈ ∂D). (19)

Hence, the remainder of this section is devoted to discussing the properties of causal LTI, causal
LPTV and noncausal LPTV scaling approaches, all in connection with the condition (19). In
particular, we suggest that noncausal LPTV scaling has different properties in this respect from
the other two approaches.

In the rest of this paper, we regard that separators are defined only on the unit circle ∂D,
and identify an operator with another if they take the same value for every z (or ζ) on the unit
circle. For example, I and z∗zI are regarded as the same separator.

(a) Causal LTI scaling We first consider causal LTI scaling (in the lifted framework, i.e.,
in the sense of Remark 2), assuming that Σ is N -periodic, in general. A causal LTI separator
(7) in the lifted framework is described by V̂1, V̂2 and Λ̂, which are the lifted representations of
the LTI systems V1, V2 and Λ, respectively (hence, V̂i = V̂

(0)
i = V̂

(l)
i , l = 0, 1, · · · , N − 1). This,
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together with (12), leads to

(Sp(z)l)∗Θ̂ij(z)Sp(z)l =(1/N)(Sp(z)l)∗V̂i(z)∗Λ̂V̂j(z)Sp(z)l

=(1/N)V̂i(z)∗(Sp(z)l)∗Λ̂Sp(z)lV̂j(z)

=(1/N)V̂i(z)∗Λ̂V̂j(z) = Θ̂ij(z) (i, j = 1, 2). (20)

This in particular implies that (19) holds, and it, together with Theorem 5, immediately leads
to the fact that a causal LTI separator in the lifted framework is eligible under one lifting-timing
l if and only if it is under every timing.

If a separator Θ̂(z) satisfies (19), we say that it is shift-invariant (with respect to lifting-
timing). Similarly, we say that the separator class Θ̂0(z) is shift-invariant if Θ̂0(z) =
{S(z)∗Θ̂(z)S(z) | Θ̂(z) ∈ Θ̂0(z)}. In particular, if every Θ̂(z) ∈ Θ̂0(z) is shift-invariant, we
say that the separator class Θ̂0(z) is strongly shift-invariant. Having introduced these terms,
we readily see that any class consisting of causal LTI separators is strongly shift-invariant, and
thus causal LTI scaling in the lifted framework leads to the same analysis results regardless of
the lifting-timing l.

(b) Causal LPTV scaling We next consider causal LPTV scaling. Then, it turns out that
the eligibility of a causal LPTV separator given by Definition 1 depends generally on lifting-
timing. This is because the systems V̂1, V̂2 and Λ̂ in Definition 1 are the lifted representations of
N -periodic systems for which (20) fails, in general. However, this only means that the eligibility
of a given causal LPTV separator depends on lifting-timing, and does not necessarily mean that
the eligibility of a class of causal LPTV separators does. For example, let us take the class Θ̂

causal

static

of static LPTV separators, and consider the static causal LPTV scaling based on Θ̂
causal

static . By
Definition 1, this class coincides with the set of matrices in the form of

Θ̂static =
(
diag[X1

ij , X
2
ij , · · · , XN

ij ]
)
i,j=1,2

(21)

where Xk
ij (i, j = 1, 2, k = 1, · · · , N) are constant matrices of the same size. Hence

S(z)∗Θ̂staticS(z) =
(
diag[X2

ij , · · · , XN
ij , X1

ij ]
)
i,j=1,2

∈ Θ̂
causal

static , (22)

and thus Θ̂
causal

static is a (non-strongly) shift-invariant class. This means that whether Θ̂
causal

static is
eligible does not depend on lifting-timing. Even when we consider dynamic causal LPTV sepa-
rators, a naturally constructed separator class would also become (non-strongly) shift-invariant
unless the LPTV systems V1 and V2 and the constant matrix Λ̂ in the causal LPTV separator
are restricted to some “distorted sets” that fail to be invariant under the one-step shift in the
lifting-free time axis k in (1); considering such distorted sets would never sound sensible, and
thus would be unnatural. Hence, the eligibility of a natural class of causal LPTV separators is
independent of lifting-timing, and hence causal LPTV scaling also leads virtually to the same
analysis results regardless of the lifting-timing l.

(c) Noncausal LPTV scaling We have so far discussed the relationship of lifting-timing
to two types of causal scaling approaches. We have then observed that all natural classes of
causal separators are shift-invariant, and thus their eligibility is virtually independent of the
lifting-timing l. However, noncausal LPTV scaling exhibits a different aspect, which could be
attributed to the fact that taking a general LTI systems V̂ in noncausal LPTV separators (recall
Definition 2) corresponds to ignoring causality to some limited extent, where causality is meant
here with respect to the original time axis k in (1) rather than κ in (3). To confirm the different

aspect, let us take, for example, the class Θ̂
noncausal

static of static noncausal LPTV separators, and
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Table 1. Robust stability analysis considering lifting-

timing l.

Timing l Noncausal-(D, G) Causal-(D, G)
0 0.5292 0.4567
1 0.6032 0.4567
2 0.6293 0.4567

consider the static noncausal LPTV scaling based on Θ̂
noncausal

static . By Definition 2, this class
coincides with the set of constant matrices. Hence, it follows that the z-dependent factors in
S(z)∗Θ̂staticS(z) do not vanish, in general, and thus it does not belong to Θ̂

noncausal

static . That is,

the class Θ̂
noncausal

static of static noncausal LPTV separators is not shift-invariant with respect to
lifting-timing. This fact is much different from that for static causal LPTV separators shown in
(22).

4.3 Numerical confirmation of the properties of causal/noncausal LPTV scaling

An outcome of the property of static noncausal LPTV scaling about the lack of shift-invariance,
stated in the previous subsection, should also be easy to confirm numerically by observing
the dependency of analysis results on the lifting-timing l. In fact, however, an example in that
direction can never be constructed if Σ is confined to be LTI. This is because the static noncausal
LPTV separator Θ̂ is eligible if and only if S(z)∗Θ̂S(z) is, since Ĝ(1) = Ĝ(0) and ∆̂(1) = ∆̂(0)

in Theorem 5 when Σ is LTI; due to this coincidence, the lack of shift-invariance in the class of
static noncausal LPTV separator does not lead to difference in the analysis results with respect
to the shift in the lifting-timing. We thus consider an example with an LPTV system Σ .
Example: Consider the 3-periodic system G given by

A0 =


0 1 0 0
0 0 1 0
0 0 0 1

0.1 0.1 −0.8 −1

 , A1 =


0 1 0 0
0 0 1 0
0 0 0 1

0.2 −0.4 0.01 0.2

 , A2 =


0 1 0 0
0 0 1 0
0 0 0 1

−0.4 −0.3 0.3 0.5

 ,

B0 =B1 =B2 =
[
0 0 0 1

]T
, C0 =

[
0.3 0.2 0.5 0.1

]
, C1 =

[
0.3 0.3 0.3 0.4

]
,

C2 =
[
0.2 0.6 0.4 0.2

]
, D0 =D1 =D2 =0, (23)

which we can confirm to be internally stable. In addition, we assume that the corresponding
scalar uncertainty ∆ = δ is static and LTI. The problem we study here is to find (a lower bound
of) the maximum δ such that the closed-loop system Σ is robustly stable against the uncertainty
set ∆ = {δ : |δ| < δ}.

The analysis results of the maximum δ obtained by static causal/noncausal LPTV scaling are
shown in Table 1, where we confined ourselves to the class of (D,G)-scaling type separators
(Fan et al. 1991) in both approaches. Such analysis can be carried out through the KYP lemma
(Rantzer 1996) and LMI optimization (see Hagiwara and Ohara (2010)).

Table 1 shows that the analysis results of δ obtained by noncausal LPTV scaling depend much
on the lifting-timing l. In contrast, we can confirm, also numerically, that the analysis results of
δ obtained by causal LPTV scaling are completely independent of l.

5 Shift-invariant reconstruction of separator classes in noncausal LPTV scaling and its
implication

This section introduces the idea of shift-invariant reconstruction of separator classes. With this
idea, the properties of noncausal LPTV scaling applied to LTI systems are clarified further,
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particularly from the viewpoint of its possible ability in replacing the conventional frequency-
dependent (i.e., dynamic causal LTI) scaling.

5.1 Shift-invariant reconstruction of separator classes

The previous section discussed by introducing the (backward) timing-shift matrix the properties
and effectiveness of noncausal LPTV scaling applied to LPTV systems. In particular, a central
issue there was on the difference in the properties between noncausal LPTV scaling and causal
LPTV or LTI scaling, and it was studied from the viewpoint of lifting-timing and its shift. An
important key in that study was whether the separator class taken in noncausal LPTV scaling is
shift-invariant with respect to lifting-timing. Motivated by this observation, suppose we are given
a (not necessarily shift-invariant) class of noncausal LPTV separators denoted by Θ̂

noncausal

0 (z),
and let us construct the separator class

Θ̂(z) :=

{
1
N

N−1∑
l=0

(S(z)l)∗Θ̂(z)S(z)l
∣∣ Θ̂(z) ∈ Θ̂

noncausal

0 (z)

}
. (24)

Then, every separator in Θ̂(z) is a noncausal LPTV separator by (11), and is shift-invariant
by (13). Hence, Θ̂(z) is strongly shift-invariant. Furthermore, it is easy to see that Θ̂(z) =

Θ̂
noncausal

0 (z) if and only if Θ̂
noncausal

0 (z) is strongly shift-invariant. Hence, Θ̂(z) 6= Θ̂
noncausal

0 (z)

whenever Θ̂
noncausal

0 (z) is not shift-invariant. We thus call the separator class Θ̂(z) the (strongly)

shift-invariant reconstruction of the separator class Θ̂
noncausal

0 (z). Similarly, we call

1
N

N−1∑
l=0

(S(z)l)∗Θ̂(z)S(z)l (25)

the shift-invariant reconstruction of the separator Θ̂(z).
This section is primarily concerned with the case when Σ is LTI, and provides some discussions

related to shift-invariant reconstruction so that further properties of noncausal LPTV scaling
applied to LTI systems can be clarified. In particular, we discuss the relationship between non-
causal LPTV scaling based on Θ̂(z) and causal LTI scaling based on the separator class Θ(ζ)
we have introduced earlier in (10). Note that both Θ̂(z) and Θ(ζ) are constructed from the

same class Θ̂
noncausal

0 (z). What we establish in this section is that, even though a direct relation-

ship between the classes Θ(ζ) and Θ̂
noncausal

0 (z) is still open, a direct relationship between the
former class Θ(ζ) and the shift-invariant reconstruction Θ̂(z) of the latter class can be clarified
completely. Implications of the success in this direction will also be discussed.

Remark 3 There is no inclusion relation between Θ̂
noncausal

0 (z) and its shift-invariant recon-

struction Θ̂(z), in general (see Fig. 3). This can be seen by considering the case Θ̂
noncausal

0 (z) =

Θ̂
noncausal

static . In this case, Θ̂
noncausal

static includes static noncausal LPTV separators that are not shift-
invariant (hence do not belong to Θ̂(z)) and result in dynamic separators (hence do not belong

to Θ̂
noncausal

static ) when shift-invariant reconstruction is applied to them. This does imply the lack of

mutual inclusion, but the intersection Θ̂(z) ∩ Θ̂
noncausal

static is nonempty because it equals the class

Θ̂
LTI

static of static causal LTI separators (in the lifted framework).
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lifted framework

lifting-free framework

shift-invariant reconstruction (24)

Θ̂
noncausal

0 (z) Θ̂(z)

Theorem 6

Θ(ζ)

(10)

Theorem 2,
Theorem 6

class of non-eligible sepa-
rators (by Corollary 1)

: direct mapping of classes

: induced mapping to a class of eligible separators by the
interpretation of noncausal LPTV scaling in the lifting-
free framework when Σ is LTI (through Theorem 4)

Figure 3. Relationship between some classes of separators and its implication in noncausal LPTV scaling.

5.2 Properties of shift-invariant reconstruction in noncausal LPTV scaling

The following theorem, whose proof is given in Appendix C, plays a crucial role in this section.

Theorem 6 Given a noncausal LPTV separator Θ̂(z), consider the causal LTI separator Θ(ζ)
induced in the lifting-free framework by (8). Then, the equivalent separator Ê[Θ(ζ)] in the lifted
framework coincides with the shift-invariant reconstruction (25) of Θ̂(z).

This theorem together with (10) and (24) implies that the shift-invariant reconstruction Θ̂(z) of

the separator class Θ̂
noncausal

0 (z) is nothing but the class {Ê[Θ(ζ)] |Θ(ζ) ∈ Θ(ζ)} of equivalent
embedded causal LTI separators in the lifted framework (see Fig. 3).

Combining our preceding arguments, we are led immediately to the following result about the
robust stability analysis of the LTI system Σ .

Corollary 1 Suppose that G is LTI and ∆ is a set satisfying Assumption 1LTI. Given a non-
causal LPTV separator Θ̂(z), the associated Θ(ζ) in (8) is eligible in the lifting-free framework
if and only if the shift-invariant reconstruction (25) of Θ̂(z) is eligible in the lifted framework. In

particular, given Θ̂
noncausal

0 (z), Θ(ζ) is eligible in the lifting-free framework if and only if Θ̂(z)
is in the lifted framework.

Proof Necessity follows from Theorem 2 and Theorem 6, while sufficiency follows from Theorem 3
and Theorem 6. ¤

5.3 Implication of the properties of shift-invariant reconstruction in noncausal LPTV
scaling

In the above, we have shown Theorem 6 and Corollary 1 as the main results in this section. We
next discuss some facts revealed by these new results so that the significance of these results can
be demonstrated. We refer to Fig. 3 to this end, in which the upper part is related to the use of
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Theorem 1 (i.e., the lifted framework), while the lower part is related to the use of Theorem 1LTI

(i.e., the lifting-free framework).

5.3.1 The classes Θ0(ζ) and Θ1(ζ), their inclusion relation, and their relevance to
shift-invariant reconstruction

Let us consider the two subclasses contained in Θ(ζ) in this figure. The inner subclass is
denoted by Θ0(ζ) while the outer by Θ1(ζ). By definition, Θ0(ζ) is such a set of the eligible
separators in the lifting-free framework that are obtained by applying (8) to all eligible sep-

arators Θ̂(z) ∈ Θ̂
noncausal

0 (z) in the lifted framework. Θ1(ζ) is defined similarly by replacing

Θ̂
noncausal

0 (z) with its shift-invariant reconstruction Θ̂(z). The introduction of the class Θ0(ζ) is
motivated by Theorem 4, but it is not ensured that Θ0(ζ) coincides with the subset consisting
of all eligible separators in Θ(ζ). This is because of the lack of the converse assertion in this the-

orem. This implies that the lifted framework with Θ̂
noncausal

0 (z) is not always equivalent to the
lifting-free framework with Θ(ζ), but could in fact be more conservative. As we have discussed
in Section 3, we have been interested in analyzing such a gap. The purpose of this subsection is
to show that the preceding arguments in this section about shift-invariant reconstruction suc-
cessfully lead to clarifying the gap. In fact, it will turn out that the separator class Θ1(ζ) (and

thus the shift-invariant reconstruction of Θ̂
noncausal

0 (z)) plays a crucial role in characterizing the
gap.

Before proceeding, we first remark that the inclusion between Θ0(ζ) and Θ1(ζ) implicitly

asserted in Fig. 3 is not trivial since there is generally no inclusion between Θ̂
noncausal

0 (z) and
Θ̂(z) (Remark 3). However, we indeed have Θ0(ζ) ⊂ Θ1(ζ), and Theorem 6 plays a crucial
role in its proof as follows. Let us take an arbitrary separator Θ(ζ) ∈ Θ0(ζ). By the definition

of Θ0(ζ), there exists an eligible separator Θ̂(z) ∈ Θ̂
noncausal

0 (z) such that the above Θ(ζ) is
represented by (8). On the other hand, the equivalent separator Ê[Θ(ζ)] in the lifted framework
corresponding to Θ(ζ) eligible in the lifting-free framework is eligible by Theorem 2, and it
belongs to Θ̂(z) by Theorem 6. By the definition of Θ1(ζ), this implies that Θ0(ζ) ⊂ Θ1(ζ).
This inclusion implies that we can carry out robust stability analysis in a less conservative fashion
by dealing with the shift-invariant reconstruction of separator classes in the lifted framework (at
the possible expense of increased complexity in the search of eligible separators).

5.3.2 Implication and significance of shift-invariant reconstruction

Regarding the significance suggested above about the introduction of the shift-invariant recon-
struction Θ̂(z) and the corresponding class Θ(ζ) in the lifting-free framework, we can reveal a
much more important and stronger result. In fact, it follows immediately from Corollary 1 that
Θ1(ζ) coincides with the class of all eligible separators in Θ(ζ). The implication of this fact on
the properties of noncausal LPTV scaling is as follows.

As we have discussed earlier, this paper is motivated by the possible ability of (static) noncausal
LPTV scaling in replacing the conventional frequency-dependent (i.e., dynamic causal LTI)
scaling, as suggested by Theorem 4. Due to the lack of the converse assertion of that theorem,
however, the degree of such an ability has not been fully clarified. In particular, it has not been
clear if (under some conditions) noncausal LPTV scaling with the separator class Θ̂

noncausal

0 (z)
is equivalent to the conventional causal LTI scaling with the separator class Θ(ζ) derived from

Θ̂
noncausal

0 (z) as in (10). What is established by the above observation is that, even though a

direct answer to the above question is still open, replacing Θ̂
noncausal

0 (z) with its shift-invariant
reconstruction Θ̂(z) in noncausal LPTV scaling does lead, when it is interpreted in the lifting-
free framework, equivalently to causal LTI scaling with Θ(ζ).

Before closing this section, we note that we could also derive the following result that is
somewhat relevant to the inclusion Θ0(ζ) ⊂ Θ1(ζ), as an immediate consequence of Theorem 5.
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Corollary 2 Suppose that G is LTI, ∆ satisfies Assumption 1LTI, and a class Θ̂
noncausal

0 (z) of

noncausal LPTV separators is given. If the class Θ̂
noncausal

0 (z) is eligible, the class Θ̂(z) is also
eligible.

We have seen in the above the significance of the main results of this paper (Theorem 6 and
Corollary 1) in clarifying the ability of noncausal LPTV scaling applied to the robust stability
analysis of LTI systems. This clearly demonstrates that the lifting-timing, timing-shift matrix
and shift-invariant reconstruction of separator classes are quite important also in the robust
stability analysis of the LTI system Σ , in spite of the fact that the lifted representations of LTI
systems are independent of lifting-timing. As such, the arguments of this paper are expected to
provide a basis for further studies on the properties and effectiveness of noncausal LPTV scaling
applied to LTI systems as well as LPTV systems.

5.4 Numerical confirmation of the inclusion relationship

This subsection numerically confirms the inclusion relationship Θ0(ζ) ⊂ Θ1(ζ) and the equiva-
lence relationship between noncausal LPTV scaling based on Θ̂(z) and causal LTI scaling based
on Θ(ζ) in terms of conservativeness in robust stability analysis, which are shown in Fig. 3.

We consider the internally stable LTI system G given by

[
A B
C D

]
=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0.1

−0.2 −0.62 0.01 0.6 −0.7 0.1 0
1 1 1 0 0 0.1 0.2
0 0 0 1 1 0 0


. (26)

In addition, we assume the corresponding uncertainties ∆ are static LTI and structured as given
by ∆ = diag[δ1 δ2]. The purpose here is to compute (a lower bound of) the maximum δ such that
the closed-loop system Σ is robustly stable against the uncertainty set ∆ = {∆ : ‖∆‖ < δ}. In
such analysis, we employ the idea of the (D,G)-scaling approach (Fan et al. 1991) and take the

following four types of separator classes: the first one is the class Θ̂
noncausal

static,(D,G) of static noncausal
LPTV separators of the (D,G)-scaling type under a prescribed N (which we take equal to 6),

which we view as Θ̂
noncausal

0 (z) in the preceding arguments. The other three are the class Θ(ζ)
constructed from the above class through (10), the class Θ̂(z) constructed from the same class
through (24), and the class Θstatic,(D,G) of static causal LTI separators of the (D,G)-scaling
type.

Note that the second and fourth are separator classes for the lifting-free framework; the reason
why we take the fourth is as follows: since the second is induced by static separators in the lifted
framework (and the third is asserted to have an ability equivalent to the second), we also take, for
reference, the fourth one so that we can also demonstrate the advantage of the lifted framework
over the lifting-free framework under the common setting using only static separators.

Remark 4 Separators in Θ(ζ) are dynamic, in general, and thus this class is less tractable than
the above two classes of static separators. However, since free parameters in such separators are
contained only in its “numerator part” by (8), no essential difference arises from the case of static
separators. That is, eligibility of Θ(ζ) can be checked without conservativeness through the KYP
lemma (Rantzer 1996) applied to the inequality (4)LTI, because (5)LTI is satisfied automatically

for any Θ̂ ∈ Θ̂
noncausal

static,(D,G), thanks to the properties of (D,G)-scaling. To avoid distraction and
concentrate on demonstrating the significance of the preceding arguments in this section, however,
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Table 2. Robust stability analysis with each class of

separators (N = 6).

Separator class δ
Θstatic,(D,G) 1.2115

Θ̂
noncausal

static,(D,G) 1.4091
Θ(ζ) 1.4942
Θ̂(z) 1.4942

the details are omitted about the numerical search process of separators (see Hosoe and Hagiwara
(2011) for details). Essentially the same comment applies to the treatment of Θ̂(z).

The numerical results of the analysis of δ are shown in Table 2, from which we can first
confirm that static noncausal LPTV scaling is less conservative than static causal LTI scaling in
the lifting-free framework. However, we also see that the former is still more conservative than
the dynamic causal LTI scaling in the lifting-free framework based on Θ(ζ). In other words, this

is an example in which noncausal LPTV scaling with the separator class Θ̂
noncausal

0 (z) fails to
equivalently check eligibility of the associated separator class Θ(ζ) in the lifting-free framework.
However, it can be also confirmed from Table 2 that the result obtained through noncausal
LPTV scaling based on Θ̂(z), which is the shift-invariant reconstruction of Θ̂

noncausal

static,(D,G), is no
more conservative than that of causal LTI scaling based on Θ(ζ). This confirms not only the
inclusion relationship Θ0(ζ) ⊂ Θ1(ζ) but also the equivalence in the ability of the two scaling
approaches with the separator classes Θ(ζ) and Θ̂(z) defined in the lifting-free framework and
lifted framework, respectively.

6 Conclusion

This paper developed a new direction for studying the properties of noncausal LPTV scal-
ing, which has been introduced as a new method for robust stability analysis by applying the
separator-type robust stability theorem and the discrete-time lifting technique. A key idea in
this direction was to consider the timing of lifting, and shift-invariance of separator classes was
introduced as a key notion relevant to the lifting-timing. It was then discussed that, compared
with causal LPTV scaling and the conventional frequency-dependent scaling (i.e., causal LTI
scaling), noncausal LPTV scaling has, in general, different properties about the shift-invariance
of the separator classes it deals with. It was also discussed how taking a different lifting-timing
in noncausal LPTV scaling could affect the robust stability analysis of LPTV systems. The
robust stability analysis of LTI systems with noncausal LPTV scaling, on the other hand, is
not affected by the lifting-timing. This, however, never implies that the idea of lifting-timing is
meaningful only in the treatment of LPTV systems. Instead, it was established that the idea of
shift-invariant reconstruction of separator classes plays an important role in clarifying further
properties of noncausal LPTV scaling applied to LTI systems. In particular, we have given a par-
tial answer to the open question about static noncausal LPTV scaling, i.e., how substantial and
promising its ability is in equivalently inducing frequency-dependent scaling in the conventional
lifting-free framework.
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Appendix A: Proof of Theorem 2

Let φ := exp(2πi/N), where i denotes the imaginary unit. Let us define the matrix

Up(ζ) :=
1√
N

[
Tp(ζ) Tp(φζ) · · · Tp(φN−1ζ)

]
, (A.1)

where Tp(ζ) is given in (9). It follows that Up(ζ) is a unitary matrix for ζ ∈ ∂D. Since

Ĝ(ζN )Tp(ζ) = Tp(ζ)G(ζ) (A.2)

holds (Bittanti and Colaneri 2000, Vaidyanathan 1993), we immediately see that

Ĝ(ζN )Up(ζ) = Up(ζ)G(ζ), (A.3)

where, given a ζ-dependent matrix M(ζ), we use the shorthand notation

M(ζ)=diag[M(ζ),M(φζ), · · · ,M(φN−1ζ)]. (A.4)

We now proceed to the proof of Theorem 2. Let us take an eligible causal LTI separator given
by (6), where V1 and V2 are LTI systems with p inputs. Since it satisfies (4)LTI and (5)LTI and
since φ ∈ ∂D, it also satisfies these two inequalities with ζ replaced by φiζ (i = 1, · · · , N − 1).
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In other words, we have [
I

G(ζ)

]∗
Θ(ζ)

[
I

G(ζ)

]
≤ 0 (∀ζ ∈ ∂D) (A.5)

[
∆(ζ)

I

]∗
Θ(ζ)

[
∆(ζ)

I

]
> 0

(
∀∆∈∆,
∀ζ∈∂D

)
. (A.6)

Through appropriate permutations of rows and columns, (A.5) and (A.6) are equivalently trans-
formed into [

I
G(ζ)

]∗ (
Θij(ζ)

)
i,j=1,2

[
I

G(ζ)

]
≤ 0 (∀ζ ∈ ∂D) (A.7)[

∆(ζ)
I

]∗ (
Θij(ζ)

)
i,j=1,2

[
∆(ζ)

I

]
> 0

(
∀∆∈∆,
∀ζ∈∂D

)
. (A.8)

Let us define

U(ζ) = diag[Up(ζ), Up(ζ)]. (A.9)

Then, by applying the congruence transformation with Up(ζ)∗ on (A.7) and (A.8), and by noting
the relation (A.3), we have[

I

Ĝ(ζN )

]∗
U(ζ)Θ(ζ)U(ζ)∗

[
I

Ĝ(ζN )

]
≤ 0 (∀ζ ∈ ∂D) (A.10)[

∆̂(ζN )
I

]∗
U(ζ)Θ(ζ)U(ζ)∗

[
∆̂(ζN )

I

]
> 0

(
∀∆∈∆,
∀ζ∈∂D

)
. (A.11)

Regarding the separator in (A.10) and (A.11), we have the following again from (A.3).

Up(ζ)Θij(ζ)Up(ζ)∗ =Up(ζ)Vi(ζ)∗ΛVj(ζ)Up(ζ)∗

=V̂i(ζN )∗Up(ζ)ΛUp(ζ)∗V̂j(ζN )

=V̂i(ζN )∗Λ̂Up(ζ)Up(ζ)∗V̂j(ζN )

=V̂i(ζN )∗Λ̂V̂j(ζN ) (∀ζ ∈ ∂D). (A.12)

This implies that the separator (7) is eligible in the lifted framework. This completes the proof.

Appendix B: Proof of Theorem 3

Suppose that Θ̂(z) = Ê[Θ(ζ)] given by (7) satisfies (4) and (5). Then, by post-multiplying (resp.
pre-multiplying) these inequalities with Tp(ζ) (resp. its complex conjugate transpose) and by
noting (A.2), we have [

I
G(ζ)

]∗
ΘTp

(ζ)
[

I
G(ζ)

]
≤ 0 (∀ζ ∈ ∂D) (B.1)[

∆(ζ)
I

]∗
ΘTp

(ζ)
[
∆(ζ)

I

]
>0

(
∀∆∈∆,
∀ζ∈∂D

)
, (B.2)
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where

ΘTp
(ζ) =

(
1
N

Tp(ζ)∗V̂i(ζN )∗Λ̂V̂j(ζN )Tp(ζ)
)

i,j=1,2

. (B.3)

Regarding the above separator ΘTp
(ζ), we have

1
N

Vi(ζ)∗Tp(ζ)∗Λ̂Tp(ζ)Vj(ζ) = Vi(ζ)∗ΛVj(ζ) (∀ζ ∈ ∂D) (B.4)

by (A.2), since V̂i (i = 1, 2) are the lifted representations of the LTI systems Vi (i = 1, 2), and
Λ̂ = diag[Λ, · · · ,Λ]. That is, ΘTp

(ζ) is nothing but the causal LTI separator in the lifting-free
framework underlying (7). This completes the proof.

Appendix C: Proof of Theorem 6

The noncausal LPTV separator Θ̂(z) can be described by

Θ̂(z) =
(
Θ̂ij(z)

)
i,j=1,2

, Θ̂ij(z) = V̂i(z)∗Γ V̂j(z) (C.1)

where V̂ (z) =: [V̂1(z) V̂2(z)]. Hence, Θ(ζ) given by (8) is described by

Θ(ζ) = (Θij(ζ))i,j=1,2 =
(
Tp(ζ)∗V̂i(ζN )∗Γ V̂j(ζN )Tp(ζ)

)
i,j=1,2

. (C.2)

According to the discussion in Appendix A, the derivation of the equivalent causal LTI sepa-
rator Θ̂(z) = Ê[Θ(ζ)] in the lifted framework corresponding to Θ(ζ) amounts to representing
(1/N)Up(ζ)Θij(ζ)Up(ζ)∗ in terms of ζN . Regarding this issue, we have

Up(ζ)Θij(ζ)Up(ζ)∗ =Up(ζ)Tp(ζ)∗V̂i(ζN )∗Γ V̂j(ζN ) Tp(ζ)Up(ζ)∗

=T̂p(ζN )∗Up(ζ)V̂i(ζN )∗Γ V̂j(ζN )Up(ζ)∗T̂p(ζN )

=T̂p(ζN )∗{IN ⊗ (V̂i(ζN )∗Γ V̂j(ζN ))}T̂p(ζN ) (C.3)

=T̂p(ζN )∗{IN ⊗ Θ̂ij(ζN )}T̂p(ζN ) (∀ζ ∈ ∂D), (C.4)

where ⊗ denotes the Kronecker product; in the reduction to (C.3), note that V̂i(ζN )∗Γ V̂j(ζN ) is
invariant under the replacement of ζ by φζ and that its size is p × p, which is the same as that
of the identity matrices in Tp(·) contained in Up(ζ). Hence, the causal LTI separator Ê[Θ(ζ)] in
the lifted framework equivalent to Θ(ζ) in the lifting-free framework is given by

Θ̂(z) =
(

1
N

T̂p(z)∗{IN ⊗ Θ̂ij(z)}T̂p(z)
)

i,j=1,2

. (C.5)
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To describe this separator in a simpler form, we first aim at giving an explicit form of T̂p(z). By
the definition of Tp(ζ), it can be realized with

[
AT BT

CT DT

]
:=


I(N−2)p 0(N−2)p×p

0p Ip

Ip 0p

I(N−2)p 0(N−2)p×p

0p×(N−2)p Ip

 . (C.6)

Hence, by the definition of lifting of systems, T̂p(z) can be realized with (ÂT , B̂T , ĈT , D̂T ) given
by 

AN
T AN−1

T BT AN−2
T BT . . . BT

CT DT

CT AT CT BT
. . .

...
...

. . . . . .
CT AN−1

T CT AN−2
T BT . . . CT BT DT

 . (C.7)

By direct calculations, we can obtain

Am
T =

[
I(N−1−m)p

0mp

]
, Am

T BT =

0(N−2−m)p×p

Ip

0mp×p

 , (C.8)

CT Am
T =

[
I(N−1−m)p

0(m+1)p

]
, CT Am

T BT =

0(N−2−m)p×p

Ip

0(m+1)p×p

 . (C.9)

In particular, AN
T = 0. Therefore, we obtain

T̂p(z) = z−1ĈT B̂T + D̂T =


Sp(z)N−1

...
Sp(z)
INp

 . (C.10)

Substituting (C.10) into (C.5) immediately leads to (25). This completes the proof.


