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Basic experiments on the accelerator-driven system (ADS) at the Kyoto University Critical Assembly are carried out by combining
a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the
foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use
of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the
target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E
values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the
actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with
100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

1. Introduction

The accelerator-driven system (ADS) is a hybrid technique
combining a reactor core and an accelerator, which has been
used worldwide in research and development of nuclear
transmutation of minor actinides (MAs), long-lived fission
products (LLFPs), and next-generation neutron sources. In
ADS, a large number of high-energy neutrons are generated
directly at a heavy metal target when high-energy protons
produced by the accelerator are injected onto the target.
The high-energy neutrons can be utilized for maintaining
nuclear fission reactions in the reactor core and achieving
the purposes of the introduction of ADS. The current
research on ADS involved mainly an experimental feasibility
study with the use of critical assemblies and test facilities:
MASURCA [1–3], YALINA-booster and -thermal [4–6],
VENUS-1 [7], and the Kyoto University Critical Assembly
(KUCA) [8–14]. Moreover, numerical simulations [15–20]
were executed by the deterministic and stochastic approaches
for the evaluation of MAs and LLFPs in ADS. The new
ADS test facility of GUINEVERE [21] is being commissioned

to start actual operation in subcritical states after the first
critical experiments.

The Kyoto University Research Reactor Institute is pur-
suing an innovative research program (Kart & Lab.: Kuma-
tori Accelerator-Driven Reactor Test Facility & Innovation
Research Laboratory) to develop the fixed-field alternating
gradient (FFAG) [22–24] accelerator and to establish a new
neutron source by ADS in combination with KUCA and the
FFAG accelerator. With the coupling of the KUCA core and
the FFAG accelerator, the spallation neutrons generated by
100 MeV proton beams have been successfully injected into
the uranium-loaded [25] KUCA core. In the first injection
of spallation neutrons, the proton beam intensity and shape
were low and poor, respectively, resulting in large statistical
errors in the experiments, such as the reaction rate analyses.
On the other hand, the spallation neutrons generated at the
location of the tungsten target position were expected to
make a reasonable contribution to neutron multiplication
in the core region; however, the disadvantage of setting the
target outside the core was low neutron generation in the core
region by high-energy proton beams.
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To resolve this drawback and enhance neutron multi-
plication, additional ADS experiments on the reaction rates
were carried out by moving the tungsten target to another
location in the subcritical core. Here, special note was
taken of the effect of moving the target from the original
location on subcritical multiplication parameters, including
the neutron multiplication and the subcritical multiplication
factor. The numerical analyses of the subcritical experiments
were executed with the use of the Monte Carlo calculation
code MCNPX [26] together with the nuclear data library
JENDL/HE-2007 [27, 28]. The main objective of this study
was to examine the accuracy of the subcritical multiplication
parameters in the subcritical configurations of ADS by
comparing the measured and calculated reaction rates.
The preliminary (previous) experiments with high-energy
neutrons generated by 100 MeV protons from the FFAG
accelerator are shown in Section 2 and include descriptions
of the core configuration; experimental and numerical
results. The results of basic (additional) experiments on
moving the target are presented in Section 3, and the
conclusions are summarized in Section 4.

2. Preliminary ADS Experiments with
100 MeV Protons

2.1. Core Configuration. Among three cores designated A,
B, and C at KUCA, A and B are polyethylene solid-
moderated and solid-reflected cores, and C is a light water-
moderated and light water-reflected one. The three cores are
operated at a low mW power in the normal operating state,
whereas the maximum power is 100 W. The preliminary ADS
experiments were carried out in the A-core (Figure 1), which
contains polyethylene reflector rods and three different fuel
assemblies: normal, SV, and partial fuel assemblies (Figures
2(a), 2(b), and 2(c), resp.). The normal fuel assembly is
composed of 36-unit cells and upper and lower polyethylene
blocks about 591 and 537 mm long, respectively, in an
aluminum sheath 54 × 54 × 1520 mm3. For the normal
and partial fuel assemblies, a unit cell in the fuel region
is composed of a highly enriched uranium-aluminum fuel
plate 1.59 mm (1/16′′), and polyethylene plates 3.18 mm
(1/8′′) and 6.35 mm (1/4′′). The numeral 14 corresponds to
the number of fuel plates in the partial fuel assembly used to
reach the criticality mass. The horizontal dimensions of all
fuel and polyethylene plates are 5.08 × 5.08 mm2 (2′′× 2′′).

The tungsten target located outside the core is not
easily moved to the center of the core because control
and safety rods are fixed in the core and function as the
control driving system. The neutron guide composed of
several shielding materials, including iron (Fe), boron (B),
polyethylene, the beam duct, and a special fuel assembly
with a void (SV, Figure 2(b)), are installed. In the neutron
guide, the role of the SV assemblies is to direct the highest
number possible of the high-energy neutrons generated
in the target to the center of the fuel region, in order
to improve neutron multiplication. Moreover, to collimate
the high-energy neutrons, it was necessary to reduce the
thermal component moderated in the reflector region before

their reaching the fuel region. This reduction was achieved
by shielding unnecessary fast neutrons and by capturing
parasite thermal neutrons. For deflecting unnecessary fast
neutrons, the close vicinity in front of the target included the
Fe block around the guide void to shield the fast neutrons
from inelastic scattering. For capturing parasite thermal
neutrons, polyethylene blocks containing 10 wt% B around
the guide void were set around the Fe shielding near the
target and in the two rows next to the assemblies. The rest
of the neutron guide consisted of polyethylene assemblies
and one void space. Details of the neutron guide were as
described in [8, 9]. 100 MeV protons generated from the
accelerator were injected into a subcritical system with the
following parameters: 10 pA beam intensity; 30 Hz repetition
rate; 100 ns pulsed width; 1.0 × 106 1/s neutron yield.

2.2. Experimental Analyses. In the subcritical experiments,
gold (197Au) and indium (115In) foils were selected as
normalization factors for monitoring reactor power in the
core and neutron source generation at the target, respectively.
The difference between the normalization factors in the core
and at the target was attributable to the sensitivity of the
thermal neutrons and the high-energy neutrons, respectively.
The reaction rates of the 115In wire (1.5 mm diameter and
750 mm long) in the core and the 115In foil (10 × 10
× 1 mm3) at the target were normalized by those of the
197Au foil (8 mm diameter and 0.05 mm thick) emitted by
197Au(n, γ)198Au reactions attached in the core center (O, 15;
Figure 1), and of the 115In foil emitted by 115In(n, n′)115mIn
reactions attached at the original location of the target,
respectively. The experimental error in each activation foil
was estimated to be about 5%, including the statistical error
of γ-ray counts and the full width at half maximum (FWHM)
of the γ-ray spectrum peak. The experiments were carried
out within subcriticality level 770 pcm (0.77%Δk/k). Here,
the subcritical state was attained by the full insertion of C1,
C2, and C3 control rods and the full withdrawal of S4, S5
and S6 safety rods (Figure 1). The measured subcriticality
was obtained from the combination of both the control and
safety rod worth by the rod drop method and its calibration
curve by the positive period method. In the KUCA core,
the subcriticality was attained by the full insertion of all
control and safety rods within 2,000 pcm (0.20%Δk/k; keff =
0.98), and the representative subcriticality level around
3,000 pcm is achieved by the removal of fuel rods in the
ADS experiments. When the representative subcriticality is
obtained, as a result, the change in the core characteristics,
including the control rod worth, the neutron flux shape and
the neutron spectrum, is apparently observed in comparison
with before and after the removal of fuel rods. Therefore, the
ADS experiments were carried out within the subcritical level
attained by inserting the control and safety rods to maintain
the core characteristics from the viewpoint of reactor physics.

The effect of the subcritical multiplication parameters
was evaluated by thermal neutron flux distribution estimated
through the horizontal measurement of 115In(n, γ)116mIn
reaction rates by activation analysis of the In wire. The
wire was set in an aluminum guide tube within the 3 mm
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Figure 1: Top view of the KUCA A-core (A3/8′′P36EU(3)) in the ADS experiments.

gap between rows 13 and 14 (Figure 1), from the front of
the tungsten target to the center of the fuel region (13-14,
A–P; Figure 1), at the height of the axial center of the fuel
assembly. For comparison between the experiment and the
calculation, normalization was based on reactor power: the
197Au(n, γ)198Au reaction rate set in the center of the core
was measured. A global experimental error of about 5% was
considered significant on reaction rate measurements of the
In wire.

The subcriticality calculations were executed with the use
of the Monte Carlo multiparticle transport code, MCNPX,
in combination with nuclear data library JENDL/HE-2007.
The irradiation foils and the In wire were included in
the simulated geometry and transport calculation because
the effects of their reactivity are not negligible; reaction
rates were deduced from tallies taken in the reaction rate

experiments. Although better in the core region, an overall
statistical error of 5% remained in the reaction rate in the
present results. The results of eigenvalue calculations were
obtained after 1,000 active cycles of 50,000 histories each.
The deduced subcriticalities had statistical errors of 10 pcm
(0.01%Δk/k). The fixed-source calculations were executed by
a total of 1.0× 108 histories, which led to a statistical error of
less than 5% in the reaction rates.

The results of measured and calculated subcriticalities
are presented in Table 1. A comparison between the exper-
iments and the calculations demonstrated the ability of
MCNPX calculations to reproduce the subcriticality level
to within 2% of the C/E (calculation/experiment) value.
A comparison made of the measured and the calculated
reaction rate distributions to validate the calculation method
demonstrated that the calculated reaction rate distribution
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Figure 2: Schematic drawing of fuel assemblies in the A-core.

Table 1: Comparison between the measured and calculated subcrit-
icalities obtained from the experiments (Figure 1) and calculations
(MCNPX with JENDL/HE-2007).

Calculation (pcm) Experiment (pcm) C/E

773 760 1.02

(Figure 3) agreed approximately with the experimental one
within the statistical errors in the experiments; however,
the experimental errors were considerably larger than those
of the calculations. These larger errors were attributable to
the status of the proton beams, including the weak beam
intensity and the poor beam shape at the target.

3. Basic ADS Experiments with
100 MeV Protons

The neutron spectrum analyses were conducted numerically
for investigating anticipated high-energy neutrons at each
location for the injection of the high-energy protons before
the basic experiments, as shown in Figure 4. The high-energy
neutrons were attained in front of target location (A, 15)
and were dominant over the region of a few MeV neutrons
of energy. The further the distance was from the tungsten
target, including locations (E, 15), (J, 15), and (O, 15),
the more thermalized the neutron spectrum is: this fact
demonstrated that the high-energy neutrons generated at the
location of the original target should be little affected upon
neutron multiplication in the core, and the thermal neutrons
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moderated in the reflector region were compared to be less
than other locations.

For optimizing the effect of moving the target from its
original location, additional experiments were carried out in
the same core (Figure 5) as in a previous study described in
Section 2: the composition of the neutron guide was made
partly of lead (Pb) instead of Fe, thereby attaining neutron
multiplication around the target region by the injection of
high-energy neutrons into the shielding material, Pb. Also,
the effect of moving the target was investigated through
analyses of neutron multiplication, as in the previous study
[29] at KUCA. In the experiments, the 115In(n, γ)116mIn
reaction rates were measured in the core region, and neutron
multiplication was deduced by the reaction rate distribution,
when the tungsten target was moved from the original
location to another one close to the core center. Finally

Table 2: Comparison between the measured and calculated subcrit-
icalities obtained from the experiments (Figure 5) and calculations
(MCNPX with JENDL/HE-2007).

Case Calculation (pcm) Experiment (pcm) C/E

(A, 15) 706 772 0.91

(G, 15) 659 737 0.89

(K, 15) 674 740 0.91

the actual effect of moving the target was examined by
comparing the experimental and numerical analyses. As
in Section 3, the experiments were carried out around
subcriticality level 750 pcm (0.75%Δk/k), and subcriticality
was attained and then measured. Notably, the 100 MeV
protons generated from the accelerator were injected into
a subcritical system under the following parameters: 30 pA
beam intensity; 30 Hz repetition rate; 200 ns pulsed width;
1.0 × 107 1/s neutron yield.

3.1. Subcriticality. The numerical calculations were executed
with the use of MCNPX together with the JENDL/HE-
2007 library. The numerical evaluation of subcriticality by
JENDL/HE-2007 was in agreement with experimental data
and within a relative difference of 10% (Table 2), whereas
the accuracy of eigenvalue calculations was not good com-
pared with the previous analyses presented in Section 2. By
MCNPX, the eigenvalue calculations were executed for 5,000
active cycles of 10,000 histories. The subcriticalities in the
eigenvalue calculations had statistical errors within 10 pcm
(0.01%Δk/k). Since the reactivity effects of activation foils
and wire in the core are not negligible, they were included
in the simulated geometry and transport calculations.

3.2. Reaction Rate Distribution. The calculated reaction rate
was obtained by evaluating the volume tallies of activation
foils. The statistical error of the reaction rates in the fixed-
source calculations was within 5% after a total of 1.0 × 108

histories. The difference in the experimental results along
region (13-14, A–P; Figure 5) is shown in Figure 6(a), by
changing the location of the tungsten target to another one:
in front of the original target (A, 15); between the target
and the core (G, 15); in front of the fuel region (K, 15).
From the experimental results in Figure 6(a), the reaction
rate distribution was observed to be high in the SV and fuel
regions, when the tungsten target was set at location (G, 15),
although the core configuration of reaction rates varied in
the SV and fuel regions. Comparison of the experimental and
numerical results revealed the approximate reconstruction
of the 115In(n, γ)116mIn reaction rates by MCNPX with
JNEDL/HE-2007 shown in Figure 6(b), whereas the discrep-
ancy was found to be in some regions of (G, 15) by the
difference in experimental results in the core configuration.

3.3. Neutron Multiplication and Subcritical Multiplication
Factor. Neutron multiplication M and subcritical multi-
plication factor ks were experimentally and numerically
analyzed on the basis of the accuracy in Section 3.2, related to
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Figure 5: Top view of the KUCA A-core (A3/8′′P36EU(3)) in the ADS experiments.

the subcritical multiplication parameters. The methodology
of the theoretical basis used was as briefly described [29].

In the ADS study on the subcritical system, the neutron
multiplication M is defined as the ratio of total fission
neutrons F and the external neutron source rates S, to the
rate of external neutron source as follows:

M = F + S

S
. (1)

The neutron multiplication M is also expressed by the
subcritical multiplication factor ks, which is defined as the
ratio of the fission neutrons to the total neutrons in the
system by the fission and source neutrons as follows:

M = 1
1− ks

. (2)

In (1) and (2), ks can be expressed by F and S as follows:

ks = F

F + S
. (3)

Assuming that the fission reaction rate F is independent of
one-dimensional (x-direction) in the thermal neutron field,
the total fission neutrons can be expressed approximately
by the In reaction rates RIn of 115In(n, γ)116mIn reactions as
follows:

F =
∫
V

∫ ∞

0
νΣ f (r, E)φs(r, E)dr dE

≈
∫
a
RIn
(
x, y0, z0

)
dx,

(4)

where V indicates the whole volume in the system, ν the
average number of fission neutrons per fission reaction, Σ f
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the fission cross-section, φs the neutron flux at position r
with energy E in the presence of an external source, and
a the In wire along the fuel regions (SV and fuel regions;
Figure 5) in the core. The external neutron source rate S can
be expressed approximately by the In reaction rates RIn′ of
115In(n, n′)115mIn reactions in the same manner as that of
(4) as follows:

S =
∫
V

∫ ∞

0
s(r, E)dr dE ≈

∫
rs
RIn′(r)dr, (5)

where s (r, E) indicates the external neutron source rates
at position r with energy E, and rs the position of external
neutron source. The validity of approximation and the
applicability of the methodology mentioned above have
already been demonstrated in the previous study [29].

Finally, using (4) and (5), the neutron multiplicationr
M and subcritical multiplication factor ks in (1) and (3),
respectively, can be expressed approximately as follows:

M ≈
∫
a RIn

(
x, y0, z0

)
dx∫

rs RIn′(r)dr
+ 1, (6)

ks ≈
∫
a RIn

(
x, y0, z0

)
dx∫

a RIn
(
x, y0, z0

)
dx +

∫
rs RIn′(r)dr

. (7)

The measured reaction rates of the In wire (1.5 mm
diameter and 750 mm long) emitted by 115In(n, γ)116mIn
reactions in the core were normalized by those of the
197Au foil (8 mm diameter and 0.05 mm thick) emitted by
197Au(n, γ)198Au reactions attached at the core center (O, 15;
Figure 5), and the reaction rates of the In foil (10 × 10 ×
1 mm3) emitted by 115In(n, n′)115mIn reactions at moving the
target were normalized by those of the 115In foil (10 × 10 ×
1 mm3) emitted by 115In(n, n′)115mIn reactions attached at

the original location of the target. The experimental error in
each activation foil was estimated to be about 5%, including
the statistical error of γ-ray counts and FWHM of the γ-
ray spectrum peak. The calculated reaction rates of the
In wire and the Au foil in the core were included in the
simulated geometry and transport calculations and deduced
from tallies taken in the fixed-source calculations. Also the
calculated reaction rates of the In foil at the target was
obtained by the same manner of the previous fixed source
calculations, modeling the proton injection on the tungsten
target.

The C/E value of the experiments and calculations of
fission and source terms in (4) and (5), respectively, is shown
in Table 3. Comparing with absolute values, the accuracy of
fission term was within a relative difference of 20%, and
that of the source term was well within the allowance for
experimental error. The discrepancy between the measured
and the calculated fission terms was caused mainly by
the uncertainties of experimental values obtained from the
reaction rates of the In wire especially in locations (G, 15)
and (K, 15), because locations (G, 15) and (K, 15) were far
from that of original target, and the proton weak and poor
beams were in intensity and shape, respectively. As a result, it
was considered that the In wire was not sufficiently activated
to obtain the information on the thermal neutrons. As
shown in Table 4, the neutron multiplication was considered
to involve a large discrepancy caused by the evaluation of
the C/E values of fission and source terms; inversely, the
subcritical multiplication factor was considered fairly good
in the evaluation of C/E values. The constant values of
the measured and the calculated ks demonstrated that the
source term was not contributed largely to that of ks, since
the external source was located outside the core: the values
of M and ks in (1) and (2), respectively, were remarkably
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Table 3: Comparison between the measured and calculated fission and source terms obtained from the experiments (Figure 5) and
calculations (MCNPX with JENDL/HE-2007).

Fission term F Source term S

Case Calculation Experiment C/E Calculation Experiment C/E

(A, 15) 46.37 ± 1.51 43.53 ± 0.27 1.07 0.04 ± 0.01 0.02 ± 0.01 1.70

(G, 15) 77.05 ± 2.50 67.34 ± 0.38 1.14 0.01 ± 0.01 0.02 ± 0.01 0.53

(K, 15) 68.55 ± 2.26 55.81 ± 0.29 1.23 0.03 ± 0.01 0.03 ± 0.01 1.14

Table 4: Comparison between the measured and calculated neu-
tron multiplication and subcritical multiplication factor obtained
from the experiments (Figure 5) and calculations (MCNPX with
JENDL/HE-2007).

Neutron multiplication M

Case Calculation Experiment C/E

(A, 15) (1.15 ± 0.04) × 103 (1.83 ± 0.05) × 103 0.63

(G, 15) (6.25 ± 0.21) × 103 (2.88 ± 0.09) × 103 2.17

(K, 15) (2.04 ± 0.09) × 103 (1.88 ± 0.05) × 103 1.08

Subcritical multiplication factor ks
Case Calculation Experiment C/E

(A, 15) 0.99913 ± 0.00003 0.99945 ± 0.00001 1.00

(G, 15) 0.99984 ± 0.00003 0.99965 ± 0.00001 1.00

(K, 15) 0.99951 ± 0.00003 0.99947 ± 0.00001 1.00

dependent on that of F in (4), because of the location of the
target outside the core. While the accuracy of the neutron
multiplication was attributable to the experimental variation
of reaction rates of the In wire, the actual effect of setting
the tungsten target at location (G, 15) was found to be more
significant than setting the target in the original location.

4. Conclusions

The ADS experiments with 100 MeV protons were carried
out at KUCA to evaluate the subcritical multiplication
parameters using the reaction rates. Comparison of the
results of the experiments and the calculations by MCNPX
with JENDL/HE-2007 revealed the following.

In the first injection experiments, the subcriticality C/E
values of the experiments and the calculations were in fairly
good agreement within a relative difference of 2%, and
the calculated reaction rate distribution reconstructed the
experimental one, although the proton beams were observed
to be weak in intensity and poor in shape at the target. In
the basic experiments, the notable effect of moving the target
from the original location was clearly revealed in the analyses
of the subcritical multiplication parameters for attaining
further neutron multiplication in the core.

Further ADS study at KUCA needs to be conducted to
investigate experimentally the effect of the subcritical multi-
plication parameters presented in this study, when the sub-
criticality and the neutron spectrum are varied. The present
experimental data could be conducive to basic research of
ADS, such as the verification of precision in numerical
analyses by stochastic and deterministic approaches.
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