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Abstract. Despite the apparent need to study reversible reactions between molecules

confined to a two-dimensional space such as the cell membrane, exact Green’s functions

for this case has not been reported. Here we present exact analytical Green’s functions

for a Brownian particle reversibly reacting with a fixed reaction center in a finite

two-dimensional circular region with reflecting or absorbing boundaries, considering

either a spherically symmetric initial distribution, or a particle that is initially bound.

We show that the Green’s function can be used to predict the effect of measurement

uncertainties on the outcome of single particle/molecule tracking experiments in which

molecular interactions are investigated. Hence, we bridge the gap between previously

known solutions in one-dimension (Agmon N 1984 J. Chem. Phys. 81:2811) and

three-dimensions (Kim H and Shin K J 1999 Phys. Rev. Lett. 82:1578), and provide

an example of how the knowledge of the Green’s function can be used to predict

experimentally accessible quantities.
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1. Introduction

A theoretical study of the kinetics of colloid coagulation by Smoluchowski [1]

stimulated much of the theoretical research done in the study of bimolecular reactions.

Smoluchowski’s formulation, in the context of bimolecular reactions, involves solving

the diffusion equation in the presence of an infinite amount of available reactants

which react immediately at an interaction distance. These reactions are called diffusion

limited reactions as the rate of the reaction is controlled by the rate at which the

particles encounter. In general, the particles do not necessarily react during their first

encounter. In order to take this effect into account, Collins and Kimball suggested the

use of a different boundary condition, the so-called radiation boundary condition, which

allows for neutral encounters [2]. The radiation boundary condition was considered

by Naqvi and collaborators, who also gave an exact solution for the time-dependent

reaction rate in two-dimensions [3]. Later, Agmon and Szabo [4] gave a generalization

of Smoluchowski’s approach for the case of reversible reactions. Another approach to

this problem was developed by Noyes [5]. In Noyes’ theory, one considers a counterpart

of the system of interest, identical to the original system except that the reactants are

not consumed upon encounter. The central quantity in this theory is the probability

of first reencounter between a reference reactant and the rest of the reactants at time

t, given there was an encounter at t = 0. The reaction rate in the original system was

shown to be related to the reencounter time distribution in the nonreactive system, and

its asymptotic value was obtained [5]. More recently, Noyes’ approach has been revived,

and a calculation of the reencounter time distribution based on molecular dynamics

simulations was given [6]. It is also worthwhile to note that in this approach, the

transport of reactants does not need to be diffusive. Later on, Torney and McConnell

showed that Noyes and Smoluchowski theories are equivalent on a lattice [7]. Lastly, we

would like to note the recent work of Fange et al. [8] that establishes relations between

different spatially and temporally resolved models for reaction kinetics at different levels

of detail.

In this article, we present exact analytical solutions for a Brownian particle

reversibly binding to a fixed target in a finite two-dimensional circular domain,

by calculating the Green’s function of the Smoluchowski equation with appropriate

boundary conditions. We restrict our analysis to spherically symmetric initial

distributions, and the case where the particle and the target are initially bound.

Previously, Green’s functions for a pair of isolated particles undergoing reversible

reaction were given in one-dimension (1D) [9] and in three-dimensions (3D) [10], but a

solution for two-dimensions (2D) has been missing, despite the obvious importance of

chemical kinetics in 2D surfaces such as the cell membrane. We believe that our results

further expand the applicability of the already developed methods in the literature

to 2D systems. For instance, the knowledge of the Green’s function enables one to

calculate the survival probability, which is closely related to the time-dependent reaction

rate (see for instance Agmon and Szabo [4]). Moreover, we contribute to theory of
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reaction kinetics in a finite domain. It is well-known that the reaction rate in an

infinite 2D domain asymptotically vanishes due to insufficient influx of reactants due

to low dimensionality [11]. However, it is possible to define an asymptotic reaction

rate for a finite 2D domain, and our results can be applied to cases where spherical

symmetry exists. In addition, the probability distributions we obtain here can be used

to calculate quantities related to reencounter time statistics in finite 2D systems that

possess spherical symmetry, within the Noyes formalism [5, 6]. To give an example

of how our findings can be applied to practical problems, here we also provide a

calculation regarding the effect of measurement procedures on the outcome of single

particle/molecule tracking experiments conducted to investigate molecular interactions

in surfaces such as the plasma membrane of live cells. Moreover, our analytical results

can be used to simulate a 2D system of many particles that diffuse and reversibly react,

via the Green’s function reaction dynamics method [12, 13].

2. Green’s functions in a finite 2D disc with reflecting or absorbing

boundaries

2.1. For a particle and reaction center that are initially separated

Consider a Brownian particle in a circular region of radius b that interacts with a circular

target at r = a (see figure 1 (a) for an illustration of the problem). The probability

density of finding the particle at position ~r obeys the Smoluchowski equation [4]

∂ρ(~r, t)

∂t
= ∇ ·D(~r)

(
∇+

1

kBT
∇U(~r)

)
ρ(~r, t), (1)

where D(~r) is the relative diffusion coefficient, kB is the Boltzmann constant, T is the

temperature, and U(~r) represents the interaction potential. Here, we consider the case

in which particles only interact on contact, so that the interaction potential in equation

(1) is put to zero, and a reaction boundary condition is implemented. In 2D, and when

the initial distribution of the Brownian particle is spherically symmetric, equation (1)

reduces to
∂ρ

∂t
= D

1

r

∂ρ

∂r

(
r
∂ρ

∂r

)
, (2)

where the diffusion coefficient is taken to be constant. When the separation between the

Brownian particle and the target is equal to a, the particle can reversibly bind to the

target. To account for this, we employ the so called back reaction boundary condition

at r = a, which is given by [9, 10]

2πaD
∂ρ(r, s)

∂r

∣∣∣∣
r=a

= 2πaDkrρ(a, s)−Dkd [1− S(s)] , (3)

where k′
r = 2πaDkr and k′

d = Dkd are the rates of forward (association) and backward

(dissociation) reactions, respectively, S(s) is the probability that the reactants are not

forming a dimer at s, i.e. the survival probability, given by

S(s) = 1− 2πa

∫ s

0

du
∂ρ(r, u)

∂r

∣∣∣∣
r=a

, (4)
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Figure 1. a. Schematic illustration of a Brownian particle (red dot) reversibly

binding to a reaction center (orange disc), or target, at r = a, in a circular region

of radius b whose boundary is either reflective or absorbing. Dotted lines represent

the random trajectory of the particle. When the particle encounters the target, it

may bind reversibly, such that the association rate is k′r and the dissociation rate

is k′d, as described in the text. b. Illustration of the effect of uncertainty in

position measurements. The trajectories of two Brownian particles, or probes, that

can reversibly dimerize are shown. The red dots correspond to the particles, but their

measured positions could lie in a greater area shown by the larger (green) circles due to

measurement errors, as shown in detail in c (see section 3 for a detailed explanation).

When the particles are forming a dimer, their common trajectory is indicated by thick

red line segments. In single particle/molecule tracking experiments, the position of a

probe can be determined up to a certain precision, which can be much larger than the

radius of the molecule. Therefore, even if two molecules are not interacting, they will

look colocalized when the distance between them is comparable or smaller than the

position precision, such that it is not possible to say whether the molecules are bound

or not. These events can be referred as incidental colocalizations.

and we defined the time-like variable s = Dt for brevity in notation. In many physically

relevant situations, the particle and the target are in a finite space with reflecting or

absorbing boundaries, such that we consider one of the following boundary conditions

at r = b

∂ρ(r, s)

∂r

∣∣∣∣
r=b

= 0, (5)
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ρ(b, s) = 0, (6)

where equations (5) and (6) correspond to reflective and absorbing boundaries at

r = b > a, respectively.

It is extremely useful to note that the solution of equation (2) can be expressed as

ρ(r, s) = G(r, s|r0, 0) + f(r, s), where G(r, s|r0, 0) is the Green’s function for equation

(2) with reflective boundary condition at r = a, and f(r, s) is a function that vanishes

everywhere at s = 0 and satisfies the back reaction boundary condition, equation (3),

at r = a and that both functions satisfy reflecting or absorbing boundary conditions at

r = b. Let ρ(1)(r, s) = G(1)(r, s|r0, 0)+f (1)(r, s) and ρ(2)(r, s) = G(2)(r, s|r0, 0)+f (2)(r, s)

be the solutions of equation (2) that satisfy the reflective and absorbing boundary

conditions at r = b, respectively, and the back reaction boundary condition at r = a,

with the initial condition ρ(r, 0) = δ(r − r0)/2πr0. The functions G(1)(r, s|r0, 0) and

G(2)(r, s|r0, 0) are well-known, and are given by [14]

G(1)(r, s|r0, 0) =
∞∑

n=1

g(1)n (r|r0)e−α2
ns +

1

π(b2 − a2)

=
π

4

∞∑

n=1

J2
1 (bαn)

F (1)(αn)
C

(1)
0 (r, αn)C

(1)
0 (r0, αn)e

−α2
ns +

1

π(b2 − a2)
, (7)

G(2)(r, s|r0, 0) =
∞∑

n=1

g(2)n (r|r0)e−β2
ns =

π

4

∞∑

n=1

J2
0 (bβn)

F (2)(βn)
C

(2)
0 (r, βn)C

(2)
0 (r0, βn)e

−β2
ns, (8)

where

F (1)(αn) = J2
1 (aαn)− J2

1 (bαn),

C
(1)
0 (r, αn) = αn[J0(rαn)Y1(aαn)− Y0(rαn)J1(aαn)],

F (2)(βn) = J2
1 (aβn)− J2

0 (bβn),

C
(2)
0 (r, βn) = βn[J0(rβn)Y1(aβn)− Y0(rβn)J1(aβn)],

Jn(x) and Yn(x) are Bessel functions of the first and second kind, αn’s and βn’s

are the positive solutions of J1(aα)Y1(bα) − Y1(aα)J1(bα) = 0 and −J1(aβ)Y0(bβ) +

Y1(aβ)J0(bβ) = 0, respectively, and g
(i)
n (r|r0)’s are implicitly defined in the equalities.

In this study, we calculate f (1)(r, s) and f (2)(r, s) by the Laplace transform method.

The Laplace transform of equation (2) yields the well-known modified Bessel differential

equation [14] with the solution ρ̃(r, ǫ) = AI0(r
√
ǫ) +BK0(r

√
ǫ), where In(x) and Kn(x)

are modified Bessel functions of the first and second kind, respectively, tilde denotes

Laplace transform, and ǫ is the Laplace transform variable. The arbitrary constants A

and B are determined by imposing the boundary conditions, and the inverse Laplace

transform of the resulting expressions can be exactly calculated by directly evaluating

the Bromwich contour integral [14]. After long but straightforward calculations, which

are given in full detail in the Appendix, we obtain

f (1)(r, s) = kr

∫ s

0

duG(1)(r, s− u|r0, 0)
∞∑

n=1

h(1)
n (r)e−ω2

ns,
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h(1)
n (r) = πωn

Y1(bωn)J0(rωn)− J1(bωn)Y0(rωn)

2C ′
1(iωn)

, (9)

f (2)(r, s) = kr

∫ s

0

duG(2)(r, s− u|r0, 0)
∞∑

n=1

h(2)
n (r)e−γ2

ns,

h(2)
n (r) = iπγn

−Y0(bγn)J0(rγn) + J0(bγn)Y0(rγn)

2C ′
2(iγn)

, (10)

where ωn’s are the positive solutions of

C1(iω) = π[(kd − ω2)/2][J1(aω)Y1(bω)− J1(bω)Y1(aω)]

− (πkrω/2)[J0(aω)Y1(bω)− J1(bω)Y0(aω)],

and γn’s are the positive solutions of

C2(iγ) = iπ[(kd − γ2)/2][J0(bγ)Y1(aγ)− J1(aγ)Y0(bγ)]

− i(πkrγ/2)[J0(bγ)Y0(aγ)− J0(aγ)Y0(bγ)],

and C ′
i = dCi/dǫ. Finally, we can express the full solutions as

ρ(1)(r, t) = G(1)(r, t|r0, 0) +
kr

π(b2 − a2)

∑

m

h(1)
m (r)

1− e−ω2
mDt

ω2
m

+ kr
∑

m,n

h(1)
m (r)g(1)n (r|r0)

e−ω2
mDt − e−α2

nDt

α2
n − ω2

m

, (11)

ρ(2)(r, t) = G(2)(r, t|r0, 0) + kr
∑

m,n

h(2)
m (r)g(2)n (r|r0)

e−γ2
mDt − e−β2

nDt

β2
n − γ2

m

, (12)

where the sums over m and n run over all positive integers, and the C ′
i’s are explicitly

given by

C ′
1(iω) = −πJ1(aω)

4ω

[
b
(
kd − ω2

)
Y0(bω)−

2kd − akrω
2

ω
Y1(bω)

]

+
πJ1(bω)

4ω

[
a
(
kd − ω2

)
Y0(aω)−

2kd − akrω
2

ω
Y1(aω)

]

+
πJ0(aω)

4

[
bkrY0(bω)− a

kd − ω2

ω
Y1(bω)

]

− πJ0(bω)

4

[
bkrY0(aω)− b

kd − ω2

ω
Y1(aω)

]
, (13)

C ′
2(iγ) = −iπJ1(aγ)

4γ2

[(
γ2(−akr + 1) + kd

)
Y0(bγ) + bγ

(
kd − γ2

)
Y1(bγ)

]

− iπJ1(bγ)

4γ

[
bkrγY0(aγ)− b

(
kd − γ2

)
Y1(aγ)

]

− iπJ0(aγ)

4γ

[(
−akd + aγ2 + kr

)
Y0(bγ)− bkrγY1(bγ)

]

− iπJ0(bγ)

4γ2

[
−γ

(
−akd + aγ2 + kr

)
Y0(aγ)−

(
γ2(−akr + 1) + kd

)
Y1(aγ)

]
. (14)

The long-time behavior of the solutions are given by

ρ(1)(r, s → ∞) =
[
π(b2 − a2) + 2πakr/kd

]−1
, (15)
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ρ(2)(r, s → ∞) = 0. (16)

As expected, the steady state solution is a uniform distribution whose amplitude depends

on the ratio of forward and backward reaction rates for reflective boundaries, and

vanishes for absorbing boundaries.

In order to display an example of how the solution looks like, we plotted snapshots

of ρ(1)(r, t) as a function of r in figure 2, for three different values of the pair (kr, kd):

(0, 0), (10, 2), and (10, 0.1), in arbitrary units. Note that the distributions for different

cases are almost identical (see figure 2 (b)) until the particle comes appreciably close to

the reactive boundary, and approaches the predicted values in the long time limit, as

shown in figure 2 (f).

Before finishing this section, we would like to note that if instead we consider a

pair of isolated, mobile, and spherically symmetric interacting Brownian particles, the

results we gave would be applicable (when b ≫ a) provided that the diffusion coefficient

is replaced by the relative diffusion coefficient of the two particles. Because for a pair of

isolated particles in an isotropic medium, the problem can be reformulated as that of a

single particle, in which the particle diffuses around the origin with a diffusion coefficient

that equals the sum of those of the original particles, and reacts whenever it is at the

reaction distance from the origin [10].

2.2. For a particle that is initially bound to the reaction center

Another initial configuration that could be of interest in physical applications is

constituted by a particle that is bound to the reaction center. Starting from this initial

state, the particle will dissociate from the reaction center at a random time t, which is

exponentially distributed with mean 1/k′
d. Green’s functions for the case of an initially

separated particle-target pair can be used to express the probability distribution in

the case of initially bound particles. Let ρ(r, t|∗) and P (∗, t|r) be the probability

density for the distance between the particles given they were bound at t = 0, and

the probability that the particles are bound at time t given they were separated by r at

t = 0, respectively, where the asterisk stands for the bound state. As shown in Agmon

and Szabo [4] and Kim and Shin [10], solutions of the Smoluchowski equation with the

back reaction boundary condition satisfy a detailed balance relationship that enables us

to relate ρ(r, t|∗) and P (∗, t|r) through [4, 10]

ρ(r, t|∗) = kd
2πakr

P (∗, t|r),

=
kd

2πakr
(1− S(t|r)) . (17)

In the next section, we will make use of this result to calculate an observable quantity

in single particle/molecule tracking experiments.
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a. t = 0.001 b. t = 0.01
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e. t = 0.75 f. t = 100

Figure 2. Time evolution of ρ(1)(r, t), which is the probability distribution in the

presence of a reflecting boundary at r = b, given by equation (11). In each of the

subfigures a-f, three solutions with differing kr and kd values are plotted as a function

of r at different points in time, as indicated on the figures. The dataset shown with

+ signs (black), represent the case of no reaction; whereas the others shown with ×
signs (red) and dot marks (green) exemplify cases of reversible binding, with the latter

being more irreversible. Parameter values are in arbitrary units, and are given by:

D = 1, a = 0.1, b = 1, r0 = 3(a+ b)/4 in all curves, and the values of the pair (kr, kd)

are (0, 0), (10, 2), and (10, 0.1) for the data sets shown with +, ×, and dot marks,

respectively, and the horizontal lines correspond to the limiting values of ρ(1)(r, t) as

t → ∞ for each case, in the same order.

3. Colocalization probability of interacting molecules/particles

In this section, we describe how the results obtained so far can be used to calculate

the statistics of the outcome of observations made by single particle/molecule tracking

techniques in the presence of measurement uncertainties. We refer to studies in the cell

membrane, but our approach can be applied to any 2D system with spherical symmetry.

In single particle/molecule tracking experiments whose aim is to study molecular

interactions in the cell membrane, reactants are usually labelled with fluorescent probes

whose emission spectra are sufficiently different [15, 16]. When the distance between
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observed positions of two probes are less than a threshold value L, which depends on the

experimental setup, the molecules can be truly interacting, such as forming a dimer, or

they can just happen to be close together, which can be called incidental colocalization

(see figure 1 (b) for an illustration).

Below, we present a calculation for the time-dependent colocalization probability for

a mobile probe that behaves like a Brownian particle, and binds to a fixed probe at the

center of a circular region with reflective boundaries. We take measurement errors into

account by following a common scheme of modeling uncertainties in measured positions

of fluorescent probes [15]. We consider two initial conditions: 1) the probes are initially

not bound, and the position of the mobile probe is averaged over the circular region, 2)

the probes are initially bound, and dissociate thereafter. After obtaining an equation for

the colocalization probability, we display its behavior as a function of the magnitude of

measurement uncertainties and the threshold L. We hope that our results can be used

to gain insight into how measurement uncertainties would affect observed quantities

without the need to perform simulations.

Let (xm
1 , y

m
1 ) and (xm

2 , y
m
2 ) be the observed positions of probe 1 and probe 2, which

are the sums of true positions and measurement uncertainties. The components of the

observed position for the ith probe can be expressed as [15] xm
i = xt

i +∆xi + ∆xo
i and

ymi = yti + ∆yi + ∆yoi , where the superscript t stands for true, and ∆xi and ∆yi are

random variables corresponding to errors associated with the measurement of individual

probe positions, and ∆xo
i and ∆yoi represent the overlay error introduced when the

probe images are combined to produce a single image for distance measurements (see

figure 1 (c)). Note that it is sufficient to include the overlay error only for one of

the probes. In the experimental study by Koyama et al. [15] it was demonstrated

that the statistics of ∆u
(o)
i , where u ∈ {x, y}, can be well described by uncorrelated

Gaussian distributions with zero mean and standard deviation σ
(o)
u,i . Therefore, the

square of the measured distance between the probes is a random variable given by

R2 = (µx + ∆x1 − ∆x2 + ∆xo)2 + (µy + ∆y1 − ∆y2 + ∆yo)2, where µu = |ut
1 − ut

2|,
u ∈ {x, y}. Let X and Y be Gaussian random variables with mean and variance

µU = µu, σ2
U = σ2

∆u1
+ σ2

∆u2
+ σ2

∆uo , where U ∈ {X, Y } and u ∈ {x, y}. We note

that R2 = σ2
X (X/σX)

2+σ2
Y (Y/σY )

2 is a sum of two chi-squared random variables with

non-zero means [17], whose distribution is given by the convolution of two chi-squared

distributions with different means and variances, and can be expressed as

fR2(z|µX , µY ) =

√
zµXµY

4σX
2σY

2
e−(µ

2

X
σ−2

X
+µ2

Y
σ−2

Y )/2

×
∫ 1

0

dw
I− 1

2

(
µXσ

−2
X

√
zw

)
I− 1

2

(
µY σ

−2
Y

√
z(1− w)

)

(w(1− w))1/4 ez(wσ−2

X
+(1−w)σ−2

Y )/2
. (18)

When σX = σY = σ, this result reduces to

fR2(z|d) =
(
2σ2

)−1
e−(z+d2)/2σ2

I0
(
dσ−2

√
z
)
, (19)

where d =
√

µ2
X + µ2

Y is the true distance between the probes. As we considered

spherically symmetric solutions of the Smoluchowski equation, the Green’s function
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obtained in this study allows us to only consider the case where the error in x and

y directions are equal in magnitude. We should note that experimental observations

often indicate that error in orthogonal directions are of comparable magnitude [15].

Assuming that the error in x and y directions have the same magnitude enables us to

use our Green’s functions that are given in polar coordinates, and express the probability

that the probes will be colocalized at time t, denoted by Pclc(t|r0), by

Pclc(t|r0) = 2π

∫ L2

0

dz

∫ b

a

drfR2(z|r)rρ(r, t) + [1− S(t)]

∫ L2

0

dzfR2(z|a), (20)

where S(t) is the survival probability given in equation (4).

If the particle is initially bound to the reaction center, we can use equation (17) to

calculate the probability with which the probes look colocalized at time t, denoted by

Pclc(t|∗), which yields

Pclc(t|∗) = 2π

∫ L2

0

dz

∫ b

a

drfR2(z|r)rρℓ(r) + [1− S(t|∗)]
∫ L2

0

dzfR2(z|a), (21)

where S(t|∗) is equal to the integral of ρ(r, t|∗) (see equation (17)) over all space.

Note that Pclc(t) (regardless of the initial condition) is the probability that the

probes will look colocalized at time t given the threshold L and uncertainty σ, whether

the probes are actually bound or not.

In order to display the behavior of Pclc(t|r0) and Pclc(t|∗), we consider the case in

which a molecule reversibly binds to a fixed reaction center at r = a in a circular domain

of radius b with reflective boundaries. Two different initial conditions are employed:

one for which an average over all initial positions r0 ∈ (a, b) is carried out, as initial

conditions are usually not accessible, and another where we consider an initially bound

pair. In the biological context, the fixed reaction center may correspond to a temporarily

immobilized signaling platform that can reversibly recruit secondary molecules [18], and

the confining domain may be induced by the membrane skeleton [19], or other membrane

domains [20].

In figures 3-5, we plot the colocalization probabilities calculated by equations (20)

and (21) to explore the effects of the magnitude of the measurement uncertainty σ,

colocalization threshold L, and the effective rate parameters kr and kd. All plots in

figures 3, 4, and 5 are based on the same parameter values for D, a, and b, which

are: D = 8 µm−2s−1, a typical value estimated for diffusion in the plasma membrane

of live cells at microsecond timescale [19], a = 4 nm, which is approximately the sum

of the radii of two proteins, and b = 200 nm that we chose to consider a sub-micron

confining domain. We frequently consider σ = 45 nm and L = 100 nm, which are

representative values of position uncertainity and colocalization threshold in current

single particle/molecule tracking experiments [15].

In all panels of figure 3, colocalization probability for an initially unbound pair

is displayed as a function of time. All curves are obtained from equation (20), by

considering a reflective boundary at r = b, and averaging over all initial positions. In

figure 3(a-d), Pclc(t) vs time is plotted for three different values of σ, and each panel
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Figure 3. Colocalization probability averaged over all (unbound) initial conditions,

Pclc(t), as a function of time, displayed for different values of the measurement

uncertainty σ, colocalization threshold L, and the pair (kr, kd). Pclc(t) is obtained

by evaluating equation (20) with reflective boundary conditions, and averaging over

all initial positions. In all plots, we considered D = 8 µm−2s−1 (diffusion coefficient),

a = 4 nm, and b = 200. In plots a-d, we display Pclc(t) vs t, for three different values

of the measurement uncertainty, such that σ = 22.5 nm (solid red), 45 nm (dashed

green), 90 nm (dashed thick), and the value of L is fixed at 100 nm. Values of the

effective forward and backward rates, shown by using the notation (kr, kd), where kr
and kd are in units of µm−1 and µm−2, respectively, but the units will be omitted for

brevity in notation, vary through a-d, and are equal to (20,10) (a), (20,2) (b), (20,1)

(c), such that the dissociation rate decreases as we go from a to c. In d, we have

kr = 0, corresponding to a non-reactive system. We chose the value kr = 20 µm−1

arbitrarily, and the choices kd =10, 2, 1 µm−2 correspond to average dissociation times

of k′−1
d = (Dkd)

−1 of 12.5, 62.5, and 125 ms, respectively. In e-f, Pclc(t) vs t is shown

for different values of the colocalization threshold L, by keeping the value σ =45 nm

fixed. We consider a reactive system in e, with (kr, kd)=(20,2), whereas f corresponds

to the case of no reaction. In both plots, different curves correspond to different values

of L, such that L=200 nm (thick solid blue), 150 nm (solid red), 100 nm (dashed

green), 45 nm (thick dashed black).
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corresponds to a different value of the effective rate (kr,kd), such that (kr,kd)=(20,10)

(a), (20,2) (b), (20,1) (c), and panel (d) corresponds to a non-reactive system where

kr = 0. Note that kr, and kd are in units of µm−1 and µm−2, respectively. However, for

brevity, we will omit the units while using the notation (kr, kd) throughout the text and

figure captions. In panels a-c, we used an arbitrary nonzero value for kr, which is 20

µm−1, and varied the effective dissociation rate kd. Note that the choices kd =10, 2, 1

µm−2 correspond to average dissociation times of k′−1
d = (Dkd)

−1 of 12.5, 62.5, and 125

ms, respectively, and are comparable with recent experimental findings [21]. In order to

show the effects of measurement uncertainty, in panels a-d, we plotted Pclc(t) for three

different values of σ: σ = 22.5 nm (solid red line), 45 nm (dashed green line), 90 nm

(dashed thick line), while fixing the value of L at 100 nm. Note that σ affects both the

transient behavior and the asymptotic value of colocalization probability, suggesting that

it is essential to quantitatively account for measurement uncertainties while interpreting

the outcomes of single particle/molecule tracking experiments. Our results also suggest

that improving the precision with which probe positions are measured may or may not

have a strong effect on the time-dependent colocalization probability depending on how

much precision one is already working with. With the parameter values we considered

here, one can see in figure 3(a-d) that decreasing the measurement uncertainty from

90 nm to 45 nm has a much more dramatic effect than reducing it further from 45 nm

to 22.5 nm. Finally, the colocalization probabilities in a-c are higher than those in d,

where the particle does not bind to the reaction center at all, as expected. In panels e

and f of figure 3, we display the effect of L, for a fixed value of σ, σ = 45 nm. In e,

we consider a reactive system with (kr, kd)=(20,2), whereas in f, there is no possibility

of reaction, i.e. kr = 0. In both plots, different curves correspond to different values of

L, such that L=200 nm (thick solid blue), 150 nm (solid red), 100 nm (dashed green),

45 nm (thick dashed black). Note that asyptotic colocalization probabilities are lower

in f, as compared to e, due to the absence of interactions. As a final remark, we would

like to mention that finding the optimal value of L would depend on other parameters

including particle density and bleaching time of fluorescent dyes, where the latter also

affects the maximum possible length of particle trajectories, limiting the size of data

sets from which colocalization probability is calculated.

In figure 4, we show the results of the same analysis as we described above, but for

a probe that is initially bound to the target, and keeps undergoing reversible reactions

with the target after a dissociation takes place. In this case, we use equation (21) and

again consider a reflective boundary at r = b. The interpretation of results shown in

figure 4 are very similar to those in figure 3 we discussed above, with the only significant

difference being the colocalization probability decreasing as function of time, as one

would expect for an initially bound pair.

Lastly, we include figure 5 to demonstrate the behavior of colocalization probability

as a function of time, for different values of (kr, kd) where the ratio kr/kd is constant.

That is, we consider cases where the steady state is the same (see equation (15)), but

the kinetics is quite different. In panel a and b, we display plots of Pclc(t) and Pclc(t|∗),
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Figure 4. Colocalization probability for an initially bound pair, Pclc(t|∗), as a function
of time, shown for different values of the measurement uncertainty σ, colocalization

threshold L, and the pair (kr, kd). Pclc(t|∗) is obtained by evaluating equation (21)

with a reflective boundary condition at r = b. In all plots, we used the parameter

values: D = 8 µm−2s−1 (diffusion coefficient), a = 4 nm, b = 200 nm. In a-c, we

display Pclc(t|∗) vs t, for three different values of the measurement uncertainty, such

that σ = 22.5 nm (solid red), 45 nm (dashed green), 90 nm (dashed thick), and the

value of L is fixed at 100 nm. As in figure 3, values of the effective forward and

backward rates, shown by using the notation (kr, kd), where kr and kd are in units of

µm−1 and µm−2, respectively, but the units will be omitted for brevity in notation,

vary through a-c, and are equal to (20,10) (a), (20,2) (b), (20,1) (c), such that the

dissociation rate decreases as we go from a to c. We chose the value kr = 20 µm−1

arbitrarily, and the choices kd =10, 2, 1 µm−2 correspond to average dissociation times

of k′−1
d = (Dkd)

−1 of 12.5, 62.5, and 125 ms, respectively. In d, Pclc(t|∗) vs t is shown
for different values of the colocalization threshold L, by keeping the value σ =45 nm

fixed, for a reactive system with (kr, kd)=(20,2). In d, different curves correspond to

different values of L, such that L=200 nm (thick solid blue), 150 nm (solid red), 100

nm (dashed green), 45 nm (thick dashed black).

respectively, thus covering both initially unbound and bound states. In both panels,

different curves correspond to different values of (kr, kd), that are: (kr, kd)=(250,125)

(solid blue), (50,25) (dashed red), (10,5) (thick dashed green), (2,1) (thick solid black),

where the color or line style coding is the same between the panels. We again chose the

values of kr arbitrarily as in figure 3, and the choices kd =125, 25, 5, 1 µm−2 correspond

to average dissociation times of k′−1
d = (Dkd)

−1 of 1, 5, 25, and 125 ms, respectively.

Note that the duration of the transient is proportional to the average dissociation time,

as one would expect intuitively. In practical applications, unless the frame time is

sufficiently short, it can be difficult to distinguish cases with the same steady state,

but with very different kinetics. We believe that ours and similar calculations could be
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Figure 5. Colocalization probability for initially unbound and bound pairs as a

function of time, shown for different values of the the pair (kr, kd), while the ratio

kr/kd is a constant. In both plots, we used the parameter values: diffusion coefficient

D = 8 µm−2s−1, a = 4 nm, b = 200 nm, measurement uncertainty σ =45 nm,

and colocalization threshold L = 100 nm. In a, we display the behavior of Pclc(t),

colocalization probability for an unbound pair, vs t, obtained by evaluating equation

(20) with reflective boundary conditions. In b, we plot Pclc(t|∗), colocalization

probability for an initially bound pair, vs t, obtained via equation (21) with reflective

boundary conditions. In both plots, different curves correspond to different values

of (kr, kd), where kr and kd are in units of µm−1 and µm−2, respectively, but the

units will be omitted for brevity in notation, and are equal to (250,125) (solid blue),

(50,25) (dashed red), (10,5) (thick dashed green), (2,1) (thick solid black). We chose

the values of kr arbitrarily, and the choices kd =125, 25, 5, 1 µm−2 correspond to

average dissociation times of k′−1
d = (Dkd)

−1 of 1, 5, 25, and 125 ms, respectively.

useful in predicting how short the frame time should be in order to reliably investigate

molecular interactions via single particle/molecule tracking techniques.

Before we finish this section, we would like to note that there is one more source of

position uncertainty that we did not account for in the calculations above, which due to

the detector time averaging effect [22]. In single particle/molecule tracking experiments,

the camera obtains images by collecting photons from a probe for an extended period

of time. This measurement time can be less than or equal to the time between two

observations, i.e. the frame time. Therefore, if a probe moves during the measurement

time, its observed position will reflect the average position of the probe rather than its

actual position at that moment in time. As shown previously [22], this effect could be

significant, and should be accounted for in more detailed treatments of this problem. In

order to obtain analytical results about this aspect of the problem, we need to consider

the probe position averaged over the measurement time as the random position variable,
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given by

~̄r(n) =

∫ (n+1)∆t

n∆t

dt~r(t), (22)

where ∆t is the measurement time, which is taken to be equal to the frame time, and n

is the frame number. In principle, one may calculate the distribution of ~̄r(n) through

f(~R, n) =
〈
δ
(
~R − ~̄r(n)

)〉
, (23)

where the angular brackets correspond to an average over all possible realizations of

~r(t), and δ(~R− ~R0) denotes the Dirac-delta distribution centered at ~R0.

4. Discussion and Conclusions

In summary, we presented exact Green’s functions for a Brownian particle reversibly

reacting with a fixed target in a finite 2D disc with reflective or absorbing boundaries

considering spherically symmetric initial conditions, or an initially bound particle-target

pair. To our knowledge, this is the first time these results are given in a 2D space.

Therefore, our study also fills the gap between the known solutions in 1D [9] and 3D

(unbounded space) [10]. As we argue below, our theoretical results can be useful in

several different contexts.

In contrast to diffusion limited reactions in unbounded 3D space, asymptotic value

of the reaction rate in 2D was shown to be zero, and this was attributed to the insufficient

flux of reactants in 2D that cannot sustain a steady reaction rate [11]. However, it

is possible to talk about a non-zero reaction rate in 2D as long as the reactants are

confined to a finite region of space. In this respect, we hope that the result given here

for a domain with reflective boundaries will be useful in interpreting future experimental

data for reacting particles trapped in a confining domain.

To demonstrate a potential application of the Green’s functions given here,

we calculated the effect of measurement procedures on the outcome of single

particle/molecule tracking experiments conducted to investigate molecular interactions

in surfaces such as the plasma membrane of live cells (see figure 3), based on a common

scheme of modelling measurement uncertainties [15]. Imaging techniques that are

suitable for observing the dynamics of single particles/molecules all suffer from the

presence of an uncertainty in determining the position of a fluorescent molecule. This

uncertainty stems from the use of diffraction limited optics, overlaying of different

images, noise from detector electronics, etc. and impairs the measurement of distance

between interacting molecules [15, 16, 21]. Even though we dealt with a spherically

symmetric case, in this article, we addressed some of these problems by calculating the

influence of finite precision of position measurements on the probability of colocalization

as a function of time (also see figures 3-5), a quantity that can be measured. As we

remarked at the end of section 3, in this work, we did not give explicit results on the

detector time averaging effect. Nevertheless, we briefly outlined one of the ways of

solving this problem while closing section 3, and we would like to address this issue
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in our future work to provide a better prediction for the time-dependent colocalization

probability, and in many other relevant problems.

Finally, we would like to comment on the computational study of a system of

reactive Brownian particles, which attracts a great deal of attention and resulted in the

production of many general-purpose simulation packages such as Brownmove [23, 24]

ChemCell [25], Smoldyn [26], MCell [27], STOCHSIM [28]. We believe that our solution

for the case of absorbing boundaries can be useful in performing Green’s function

reaction dynamics simulations [12, 13, 29]. In this semi-analytical simulation method,

one needs to calculate the first arrival time of Brownian particles on the surface of

protective domains that are employed to reduce the many body problem to a number of

independent two-body problems. The first arrival problem can be solved by assuming an

absorbing boundary at the target surface [30]. In this respect, our Green’s functions can

be employed to perform numerically exact simulations of reversibly reacting Brownian

particles.
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Appendix A. Solution of the Smoluchowski equation in 2D with the

back-reaction boundary condition and spherically symmetric initial

distributions

Appendix A.1. Solution inside an annular domain with reflective outer boundary

Suppose that the particles U and N undergo reversible dimerization, i.e. U+N↔UN

with the forward rate k′
r when the distance between them is equal to a, and the product

UN dissociates with rate k′
d. If one of these particles is fixed, the other is a Brownian

particle, and the space is isotropic and homogeneous the probability density ρ(r, t) for

the distance between these particles at time t will evolve according to

∂ρ

∂t
= D

1

r

∂

∂r

(
r
∂ρ

∂r

)
, (A.1)

where D is the diffusion coefficient of the mobile particle. The boundary conditions are

chosen such that at r = a reaction or dissociation occurs, and at a greater distance b

the molecules are reflected. The reflective boundary condition is considered to study

the effects of confinement on reaction kinetics. We make the following definitions for

brevity in notation

s = Dt,
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kr =
k′
r

2πDa
,

kd =
k′
d

D
.

The boundary conditions and the initial condition are given by

2πaD
∂ρ(r, s)

∂r

∣∣∣∣
r=a

= 2πaDkrρ(a, s)−Dkd (1− S(s)) , (A.2)

∂ρ(r, s)

∂r

∣∣∣∣
r=b

= 0, (A.3)

ρ(r, 0) =
δ(r − r0)

2πr0
, (A.4)

where equation (A.2) is the so called back reaction boundary condition [9, 10], S(s)

is the probability that the particles are not bound at s, given the initial condition in

equation (A.4), and is expressed by

S(s) = 1− 2πa

∫ s

0

du
∂ρ(u, r)

∂r

∣∣∣∣
r=a

. (A.5)

Substituting the above expression for S(s), equation (A.2) reads

∂ρ(r, s)

∂r

∣∣∣∣
r=a

= krρ(a, s)− kd

∫ s

0

du
∂ρ(r, u)

∂r

∣∣∣∣
r=a

. (A.6)

The solution of equation (A.1) together with the boundary conditions and the initial

condition given in equations (A.3,A.4) and (A.6) can be expressed as

ρ(r, s) = G(1)(r, s|r0, 0) + f(r, s), (A.7)

where G(1)(r, s|r0, 0) is the Green’s function for equation (A.1) with reflective boundaries

at r = a and r = b, and f(r, s) is a function that satisfies the boundary conditions and

vanishes everywhere at s = 0. The form of G(1)(r, s|r0, 0) is well known [14], and is

explicitly given by

G(1)(r, s|r0, 0) =
1

π(b2 − a2)
+

π

4

∞∑

n=1

J2
1 (bαn)

F (αn)
C0(r, αn)C0(r0, αn)e

−α2
ns

=
1

π(b2 − a2)
+

∞∑

n=1

g(1)n (r|r0)e−α2
ns. (A.8)

where αn’s are the positive roots of

J1(aα)Y1(bα)− Y1(aα)J1(bα) = 0, (A.9)

and F (αn) and C0(r, αn) are given by

F (αn) =
[
J2
1 (aαn)− J2

1 (bαn)
]
, (A.10)

C0(r, αn) = αn [J0(rαn)Y1(aαn)− Y0(rαn)J1(aαn)] . (A.11)

In order to obtain the function f(r, s), we need to solve equation (A.1) with the

boundary conditions given in equations (A.3) and (A.6). Here we use Laplace transform
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to reduce equation (A.1) to an ordinary differential equation. Taking the Laplace

transforms of equations (A.1,A.3) and (A.6), we obtain the ordinary differential equation

d2f̃(r, ǫ)

dr2
+

1

r

df̃(r, ǫ)

dr
− ǫf̃(r, ǫ) = 0, (A.12)

as f(r, 0) = 0, with the boundary conditions

∂f̃(r, ǫ)

∂r

∣∣∣∣∣
r=a

=
ǫkr

ǫ+ kd

[
G̃(1)(a, ǫ|r0, 0) + f̃(a, ǫ)

]
, (A.13)

∂f̃(r, ǫ)

∂r

∣∣∣∣∣
r=b

= 0. (A.14)

equation (A.12) is the well-known modified Bessel differential equation whose solution

is

f̃(r, ǫ) = AI0(rω) + BK0(rω), (A.15)

where ω =
√
ǫ, and I0(x) and K0(x) are modified Bessel functions of order zero, of the

first and second kind, respectively. The integration constants A and B are found by

imposing the boundary conditions. Substituting the formal solution given by equation

(A.15) in equations (A.14) and (A.13), we get a system of equations for A and B[
I1(bω) −K1(bω)

I1(aω)− ω′I0(aω) −K1(aω)− ω′K0(aω)

][
A

B

]
=

[
0

ω′G̃(1)(a, ω|r0)

]
, (A.16)

where ω′ = ωkr/(ω
2 + kd). Solving for A and B, we obtain

A(ω) = −ωkrG̃
(1)(a, ω|r0)K1(bω)

[ (
ω2 + kd

)
[I1(bω)K1(aω)− I1(aω)K1(bω)]

+ ωkr [I1(bω)K0(aω) + I0(aω)K1(bω)]
]−1

,

B(ω) = I1(bω)
A(ω)

K1(bω)
,

Therefore, the full solution becomes

ρ̃(r, ω) = G̃(1)(r, ω|r0) + f̃(r, ω), (A.17)

f̃(r, ω) = A(ω)

[
I0(rω) +

K0(rω)I1(bω)

K1(bω)

]
(A.18)

With the knowledge of the solution in the Laplace domain, we can immediately calculate

the asymptotic distribution of r. Using the final value theorem for the Laplace transform,

we obtain

lim
s→∞

ρ(r, s) = lim
ǫ→0

ǫρ̃(r, ǫ) =
1

π(b2 − a2) + 2πakr/kd
. (A.19)

In order to find the solution in time domain, we need to be able to take the inverse

Laplace transform of the second term in the equation above. By using the convolution

theorem for the Laplace transform, we can write

f(r, s) = −kr

∫ s

0

duG(1)(r, s− u|r0, 0)L−1
{
ω [K1(bω)/C1(ω)] I0(rω)

+ ω [I1(bω)/C1(ω)]K0(rω)
}
(u), (A.20)
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where L−1 is the inverse Laplace transformation operator defined as

g(s) = L−1 {g̃(ǫ)} (s) = 1

2πi

∫ ξ+i∞

ξ−i∞

dǫeǫsg̃(ǫ), (A.21)

in which ξ is a real number larger than the real part of the right-most singularity of g̃,

and

C1(ω) =
(
ω2 + kd

)
[I1(bω)K1(aω)− I1(aω)K1(bω)]

+ ωkr [I1(bω)K0(aω) + I0(aω)K1(bω)] . (A.22)

Hence, we need to perform an integral of the form

I =
1

2πi

∫ γ+i∞

γ−i∞

dǫeǫs
√
ǫ
K1(b

√
ǫ)I0(r

√
ǫ) + I1(b

√
ǫ)K0(r

√
ǫ)

C1(
√
ǫ)

, (A.23)

To evaluate this contour integral, we investigate the location of the integrand’s

singularities. First of all, in the limit ǫ → 0, the integrand remains finite, with the

following limit

lim
ǫ→0

eǫs
√
ǫ
K1(b

√
ǫ)I0(r

√
ǫ) + I1(b

√
ǫ)K0(r

√
ǫ)

C1(
√
ǫ)

= − 2a

kd(a2 − b2)− 2akr
, (A.24)

which was used to obtain equation (A.19). A closer inspection of the integrand reveals

that is has simple poles along the negative x-axis. Finally, f(r, s) can be expressed as

f(r, s) = −kr

∫ s

0

duG(1)(r, s− u|r0, 0)

×
∞∑

n=1

e−ω2
nsiωn

K1(ibωn)I0(irωn) + I1(ibωn)K0(irωn)

C ′
1(iωn)

, (A.25)

where C ′
1 = dC1/dǫ, and ωn are the real and positive roots of C1(iω), which is given by

C1(iω) = π
kd − ω2

2
[J1(aω)Y1(bω)− J1(bω)Y1(aω)]

− π
krω

2
[J0(aω)Y1(bω)− J1(bω)Y0(aω)] . (A.26)

After expressing the modified Bessel functions with imaginary arguments as a

combination of Bessel functions of the first kind, we obtain

f(r, s) = πkr

∫ s

0

duG(1)(r, s− u|r0, 0)

×
∞∑

n=1

e−ω2
nsωn

Y1(bωn)J0(rωn)− J1(bωn)Y0(rωn)

2C ′
1(iωn)

, (A.27)

where

C ′
1(iω) = −π

J1(aω)

4ω

[
b
(
kd − ω2

)
Y0(bω)−

2kd − akrω
2

ω
Y1(bω)

]

+
πJ1(bω)

4ω

[
a
(
kd − ω2

)
Y0(aω)−

2kd − akrω
2

ω
Y1(aω)

]

+
πJ0(aω)

4

[
bkrY0(bω)− a

kd − ω2

ω
Y1(bω)

]

− πJ0(bω)

4

[
bkrY0(aω)− b

kd − ω2

ω
Y1(aω)

]
. (A.28)
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Finally, the solution as a function of time becomes

f(r, t) = kr

∫ s

0

duG(1)(r, s− u|r0, 0)
∞∑

n=1

h(1)
n (r)e−ω2

nDt, (A.29)

where

h(1)
n (r) = πωn

Y1(bωn)J0(rωn)− J1(bωn)Y0(rωn)

2C ′
1(iωn)

. (A.30)

Therefore, the full solution becomes

ρ(1)(r, t) = G(1)(r, t|r0, 0) +
kr

π(b2 − a2)

∑

m

h(1)
m (r)

1− e−ω2
mDt

ω2
m

+ kr
∑

m,n

h(1)
m (r)g(1)n (r|r0)

e−ω2
mDt − e−α2

nDt

α2
n − ω2

m

, (A.31)

where we use the superscript (1) to indicate that this solution pertains to the domain

with reflective outer boundary, to be consistent with the main text. Using equation

(A.19), we deduce

kr
π(b2 − a2)

∑

m

h
(1)
m (r)

ω2
m

=

{
[π(b2 − a2) + 2πakr/kd]

−1 − [π(b2 − a2)]
−1

, for kd > 0

− [π(b2 − a2)]
−1

, for kd = 0

Therefore, we can write

ρ(1)(r, t) =
∑

n

g(1)n (r|r0)e−α2
nDt − kr

π(b2 − a2)

∑

m

h(1)
m (r)

e−ω2
mDt

ω2
m

+ kr
∑

m,n

h(1)
m (r)g(1)n (r|r0)

e−ω2
mDt − e−α2

nDt

α2
n − ω2

m

+
1

π(b2 − a2) + 2πakr/kd
. (A.32)

The distribution of r, averaged over a time window [(ℓ−1)∆t, ℓ∆t], where ℓ = 1, 2, 3, ...,

is then given by

ρ
(1)
ℓ (r) =

1

∆t

∫ ℓ∆t

(ℓ−1)∆t

dtρ(1)(r, t) =
∑

n

g(1)n (r|r0)
e−α2

n(ℓ−1)D∆t
[
1− e−α2

nD∆t
]

α2
nD∆t

− kr
π(b2 − a2)

∑

m

h(1)
m (r)

e−ω2
n(ℓ−1)D∆t

[
1− e−ω2

nD∆t
]

ω4
mD∆t

+ kr
∑

m,n

h
(1)
m (r)g

(1)
n (r|r0)

(α2
n − ω2

m)D∆t

{
ω−2
n e−ω2

n(ℓ−1)D∆t
[
1− e−ω2

nD∆t
]

− α−2
n e−α2

n(ℓ−1)D∆t
[
1− e−α2

nD∆t
]}

+
1

π(b2 − a2) + 2πakr/kd
. (A.33)

The time integral of the derivative at r = a is given by
∫ t

0

du
∂ρ(1)(r, u)

∂r

∣∣∣∣
r=a

= kr
∑

n

g(1)n (r|r0)
e−α2

nDt − e−kdDt

kd − α2
n
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− k2
r

π(b2 − a2)

∑

m

h(1)
m (r)

e−ω2
mDt − e−kdDt

ω2
m (kd − ω2

m)

+ k2
r

∑

m,n

h
(1)
m (r)g

(1)
n (r|r0)

α2
n − ω2

m

{(
kd − ω2

m

)−1
[
e−ω2

mDt − e−kdDt
]

−
(
kd − α2

n

)−1
[
e−α2

nDt − e−kdDt
]}

+
(kr/kd)

[
1− e−kdDt

]

π(b2 − a2) + 2πakr/kd
. (A.34)

In obtaining these results, we used the following identities [14]

Kθ(ze
±iπ/2) = ±iπ

2
e∓iπθ/2 [−Jθ(z)± iYθ(z)] , Iθ(ze

±iπ/2) = e±iπθ/2Jθ(z),

Appendix A.2. Solution inside an annular domain with absorbing outer boundary

In this case, the Laplace transform of the boundary condition at r = b is

ρ̃(b, ǫ) = 0, (A.35)

while the boundary condition at a = 0 is the same as the previous case, given in equation

(A.13). Again, the solution can be written as a sum in the following form

ρ̃(r, ǫ) = G̃(2)(r, ǫ|r0, 0) + f̃(r, ǫ), (A.36)

where G̃(2)(r, ǫ|r0, 0) is the Laplace transform of the Green’s function of the diffusion

equation that satisfies equations (A.13) and (A.35). The Green’s function G(2)(r, s|r0, 0)
is well-known [14], and is given by

G(2)(r, s|r0, 0) =
π

4

∞∑

n=1

J2
0 (bβn)

F2(βn)
C0(r, βn)C0(r0, βn)e

−β2
ns =

∞∑

n=1

g(2)n (r|r0)e−β2
ns, (A.37)

where βn’s are the positive roots of

−J1(aβ)Y0(bβ) + Y1(aβ)J0(bβ) = 0, (A.38)

and F (βn) and C0(r, βn) are given by

F (βn) =
[
J2
1 (aβn)− J2

0 (bβn)
]
, (A.39)

C0(r, βn) = βn [J0(rβn)Y1(aβn)− Y0(rβn)J1(aβn)] . (A.40)

Similar to the previous case, f̃(r, ǫ) can be expressed by equation (A.15). This time, we

get the following system of equations for A and B[
I0(bω) K0(bω)

I1(aω)− ω′I0(aω) −K1(aω)− ω′K0(aω)

][
A

B

]
=

[
0

ω′G̃(2)(a, ω|r0)

]
, (A.41)

Solving for A and B, we obtain

A(ω) = ωkrG̃
(2)(a, ω|r0)K0(bω)

[ (
ω2 + kd

)
[I0(bω)K1(aω) + I1(aω)K0(bω)]

+ ωkr [I0(bω)K0(aω)− I0(aω)K0(bω)]
]−1

,

B(ω) = −I0(bω)
A(ω)

K0(bω)
,
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Therefore, the full solution becomes

ρ̃(r, ω) = G̃(2)(r, ω|r0) + f̃(r, ω), (A.42)

f̃(r, ω) = A(ω)

[
I0(rω)−

K0(rω)I0(bω)

K0(bω)

]
. (A.43)

Using the final value theorem for the Laplace transform we obtain

lim
s→∞

ρ(r, s) = lim
ǫ→0

ǫρ̃(r, ǫ) = 0, (A.44)

which is consistent with the fact that the steady state solution must vanish everywhere

due to the presence of the absorbing boundary. By using the convolution theorem for

the Laplace transform, we write

f(r, s) = kr

∫ s

0

duG(2)(r, s− u|r0, 0)L−1
{
ω [K0(bω)/C2(ω)] I0(rω)

− ω [I0(bω)/C2(ω)]K0(rω)
}
(u), (A.45)

where

C2(ω) =
(
ω2 + kd

)
[I0(bω)K1(aω) + I1(aω)K0(bω)]

+ ωkr [I0(bω)K0(aω)− I0(aω)K0(bω)] . (A.46)

Hence, we need to perform an integral of the form

I =
1

2πi

∫ ξ+i∞

ξ−i∞

dǫeǫs
√
ǫ
K0(b

√
ǫ)I0(r

√
ǫ)− I0(b

√
ǫ)K0(r

√
ǫ)

C2(
√
ǫ)

, (A.47)

To evaluate this contour integral, we investigate the location of the integrand’s

singularities. In the limit ǫ → 0, the integrand remains finite

lim
ǫ→0

eǫs
√
ǫ
K0(b

√
ǫ)I0(r

√
ǫ)− I0(b

√
ǫ)K0(r

√
ǫ)

C2(
√
ǫ)

= 0. (A.48)

A closer inspection of the integrand reveals that is has simple poles along the negative

x-axis. Finally, f(r, s) can be expressed as

f(r, s) = πkr

∫ s

0

duG(2)(r, s− u|r0, 0)

×
∞∑

n=1

e−γ2
nsiγn

−Y0(bγn)J0(rγn) + J0(bγn)Y0(rγn)

2C ′
2(iγn)

, (A.49)

where C ′
1 = dC1/dǫ, and γn are the real and positive roots of C1(iγ),

C2(iγ) = iπ
kd − γ2

2
[J0(bγ)Y1(aγ)− J1(aγ)Y0(bγ)]

− iπ
krγ

2
[J0(bγ)Y0(aγ)− J0(aγ)Y0(bγ)] , (A.50)

and its derivative is explicitly expressed as

C ′
2(iγ) = −iπJ1(aγ)

4γ2

[(
γ2(−akr + 1) + kd

)
Y0(bγ) + bγ

(
kd − γ2

)
Y1(bγ)

]

− iπJ1(bγ)

4γ

[
bkrγY0(aγ)− b

(
kd − γ2

)
Y1(aγ)

]
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− iπJ0(aγ)

4γ

[(
−akd + aγ2 + kr

)
Y0(bγ)− bkrγY1(bγ)

]

− iπJ0(bγ)

4γ2

[
−γ

(
−akd + aγ2 + kr

)
Y0(aγ)−

(
γ2(−akr + 1) + kd

)
Y1(aγ)

]
.(A.51)

Finally the solution as a function of time becomes

f(r, t) = kr

∫ s

0

duG(2)(r, s− u|r0, 0)
∞∑

n=1

h(2)
n (r)e−γ2

nDt, (A.52)

where

h(2)
n (r) = iπγn

−Y0(bγn)J0(rγn) + J0(bγn)Y0(rγn)

2C ′
2(iγn)

. (A.53)

The full solution becomes

ρ(2)(r, t) = G(2)(r, t|r0, 0) + kr
∑

m,n

h(2)
m (r)g(2)n (r|r0)

e−γ2
mDt − e−β2

nDt

β2
n − γ2

m

, (A.54)

where we use the superscript (2) to indicate that this solution pertains to the domain

with absorbing outer boundary, to be consistent with the main text. The distribution

of r, averaged over a time window [(ℓ− 1)∆t, ℓ∆t], where ℓ = 1, 2, 3, ..., is then given by

ρ
(2)
ℓ (r) =

1

∆t

∫ ℓ∆t

(ℓ−1)∆t

dtρ(2)(r, t)

=
∑

n

g(2)n (r|r0)
e−β2

n(ℓ−1)D∆t
[
1− e−β2

nD∆t
]

β2
nD∆t

+ kr
∑

m,n

h
(2)
m (r)g

(2)
n (r|r0)

(β2
n − γ2

m)D∆t

{
γ−2
n e−γ2

n(ℓ−1)D∆t
[
1− e−γ2

nD∆t
]

− β−2
n e−β2

n(ℓ−1)D∆t
[
1− e−β2

nD∆t
]}

(A.55)
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