Kyoto University Research Info	mation Repository	
Title	Synthesis and coordination behavior of Cu(I) bis(phosphaethenyI)pyridine complexes.	
Author(s)	Nakajima, Yumiko; Shiraishi, Yu; Tsuchimoto, Takahiro; Ozawa, Fumiyuki	
Citation	Chemical communications (2011), 47(22): 6332-6334	
Issue Date	2011-06-14	
URL	http://hdl.handle.net/2433/156702	
Right	© The Royal Society of Chemistry 2011.	
Туре	Journal Article	
Textversion	author	

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/chemcomm

COMMUNICATION

Synthesis and coordination behavior of Cu^I bis(phosphaethenyl)pyridine complexes

Yumiko Nakajima,*^{a,b} Yu Shiraishi,^b Takahiro Tsuchimoto^b and Fumiyuki Ozawa*^{a,b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

 Cu^{I} complexes bearing BPEP as a PNP-pincer type phosphaalkene ligand undergo effective bonding interactions with SbF₆⁻ and PF₆⁻ as non-coordinating anions to give [Cu(SbF₆)(BPEP)] and [Cu₂(BPEP)₂(μ -PF₆)]⁺, respectively

- ¹⁰ [BPEP = 2,6-bis(1-phenyl-2-phosphaethenyl)pyridine]. NMR and theoretical studies indicate a reduced anionic charge of the μ -PF₆ ligand, which is induced by the strong π -accepting ability of BPEP.
- Phosphaalkenes with P=C bond(s) are low-coordinate ¹⁵ phosphorus compounds that possess extremely low-lying π^* orbitals around the phosphorus atom, and thus exhibit strong π -acceptor properties towards transition metals.^{1,2} We have demonstrated with bidentate diphosphinidenecyclobutene ligands (DPCB-Y) that this property is useful for catalysis,
- ²⁰ leading to highly efficient organic transformations.³ More recently, we have developed 2,6-bis[1-phenyl-2-(2,4,6-tri-*tert*-butylphenyl)-2-phosphaethenyl]pyridine (BPEP) as a tridentate PNP-pincer type phosphaalkene ligand, which successfully stabilizes a coordinatively unsaturated 15-25 electron complex with a high-spin Fe¹ center.⁴
- This paper reports the synthesis and structures of BPEP complexes of copper. Although PNP-pincer type ligands are ongoing research topics in coordination chemistry,⁵ their copper complexes have been extremely limited.⁶⁻⁸ In this ³⁰ study, we found that BPEP forms a Cu^I complex of a highly
- electron-deficient nature, causing effective bonding interactions with "non-coordinating" anions such as SbF_6^- and PF_6^- . The BPEP ligand was introduced to CuBr in toluene at
- 90 °C (Scheme 1). The resulting [CuBr(BPEP)] (1) was 35 characterized by NMR spectroscopy and elemental analysis. While it has been shown that [CuBr(pnp)] [pnp = 2,6-bis(di*tert*-butylphosphinomethyl)pyridine] as a phosphine analogue adopts a three-coordinate structure without Cu–N bonding,⁶
- complex 1 has the four-coordinate structure with a distorted ⁴⁰ tetrahedral configuration as confirmed by X-ray diffraction analysis (see ESI). A similar structure has been found for the complex with a PNP-pincer type phosphinine ligand, and attributed to lower σ -donating ability of low-coordinate phosphorus ligands than phosphine ligands.⁷
- ⁴⁵ Complex **1** reacted with silver salts of non-coordinating anions (AgX; $X = SbF_6$ and PF_6) to afford complexes of the formula "CuX(BPEP)" [X = SbF₆ (**2a**), PF₆ (**2b**)]. Since both

Scheme 1 Mes* = 2,4,6-tri-*tert*-butylphenyl.

- ⁵⁰ complexes exhibited the same ³¹P NMR chemical shift (δ 213.3) in CD₂Cl₂, they should exist in ionic form in a polar solvent without direct interaction between [Cu(BPEP)]⁺ and X⁻.
- Complex **2a** readily coordinated with MeCN, CO, and ⁵⁵ [']BuNC in CD₂Cl₂ to form $[Cu(L)(BPEP)]^+SbF_6^-[L = MeCN$ **(3)**, CO**(4)**, [']BuNC**(5)**], respectively. The v(CO) band of**3** appeared at 2132 cm⁻¹ in the IR spectrum; the value is close tothat of free CO (2143 cm⁻¹). Complex**5**exhibited the v(NC)band at 2198 cm⁻¹. This value is higher than that of the $⁶⁰ phosphine analogue <math>[Cu('BuNC)(pnp)]^+SbF_6^-$ (2177 cm⁻¹).⁶ These data illustrate the highly electron-deficient nature of the copper center.

CODEC CONTROL CONTRO

cationic $[Cu(BPEP)]^+$ moiety to form a neutral complex in nonpolar C₆D₆. To examine this point, single crystals of **2a** ⁷⁵ were grown from a toluene solution (87%), and examined by X-ray diffraction analysis.

is journal is © The Royal Society of Chemistry [year]

Fig. 1 ORTEP drawing of 2a with 50% probability ellipsoids. Hydrogen atoms, disordered *tert*-butyl groups and disordered F6 atom were omitted for clarity. Selected bond distances (Å) and angles (deg): Cu–N 2.107(3), 5 Cu–P1 2.2526(11), Cu–P2 2.2612(11), Cu–F1 2.190(3), Sb–F1 1.916(3), Sb–F2 1.843(4), Sb–F3 1.859(5), Sb–F4 1.846(4), Sb–F5 1.850(5), N–Cu–F1 146.05(15), P1–Cu–P2 156.25(5), Cu–F1–Sb 143.9(2).

Figure 1 shows the structure of **2a**. The copper center has a distorted tetrahedral configuration with the N–Cu–F1 angle of 10 146.04(15)° and the P1–Cu–P2 angle of 156.25(5)°. The Cu–

- F1–Sb bond angle is $143.9(2)^{\circ}$, and the Sb atom adopts a typical octahedral configuration. The Cu–N and Cu–P lengths are in the range of PNP-pincer complexes (2.06–2.16 and 2.22–2.32 Å, respectively).^{6–8}
- ¹⁵ The most striking feature of **2a** is the significantly short Cu–F1 bond [2.190(3) Å], which is comparable to that of Cu¹ fluorides (~2.1 Å).¹⁰ Reflecting the occurrence of an effective bonding interaction between the Cu and F1 atoms, the Sb–F1 bond is elongated by 0.057–0.073 Å, compared with the other
- ²⁰ Sb-F bonds. To the best of our knowledge, this is the first example of a Cu^I complex with a coordinated SbF₆⁻ anion. Next, we attempted to crystallize PF₆ complex **2b** from a
- toluene solution. However, the crystalline product obtained was not 2b, but a cationic PF₆-bridged dimer of Cu(BPEP)
- ²⁵ units, having a PF₆⁻ counter anion (6). Figure 2 shows the X-ray structure of the cationic portion, which adopts C_i symmetry with the P3 atom at the point of symmetry. Two Cu(BPEP) units are connected by a μ-PF₆ group in a zigzag conformation. The length of the Cu–F1 bond is 2.241(2) Å, ³⁰ which is somewhat longer than that of **2a**, but still in the range
- of an effective bonding interaction between the Cu and F atoms.¹¹ Moreover, the P3–F1 bond [1.637(2) Å] is clearly longer than the other P–F bonds [1.586(2) and 1.588(2) Å].
- NMR spectroscopy revealed that the dimeric structure of **6** $_{35}$ was preserved in CD₂Cl₂, even in the presence of excess MeCN or CO. Furthermore, dynamic behavior on the NMR time-scale was observed within the molecule (Scheme 2).

$$(\mathsf{BPEP})\mathsf{Cu} \xrightarrow{\mathsf{F}}_{\mathsf{F}} \xrightarrow{\mathsf{F}}_{\mathsf{F}} \xrightarrow{\mathsf{F}}_{\mathsf{Cu}(\mathsf{BPEP})} \xrightarrow{\mathsf{F}}_{(\mathsf{BPEP})\mathsf{Cu}} \xrightarrow{\mathsf{F}}_{\mathsf{F}} \xrightarrow{\mathsf{F}}_{\mathsf{F}} \xrightarrow{\mathsf{F}}_{\mathsf{F}} \xrightarrow{\mathsf{Cu}(\mathsf{BPEP})} \operatorname{color indication:} \mathbf{F} = F1, \mathbf{F} = F2, \mathbf{F} = F3$$

Scheme 2

Figure 3(a) shows the ¹⁹F NMR spectrum measured at room temperature, showing two sets of doublets at δ -73.7 (¹J_{PF} = 711 Hz) and -77.8 (¹J_{PF} = 978 Hz). Since the chemical shift and ¹J_{PF} constant for the former signal were identical to those ⁴⁵ of Bu₄NPF₆, this signal is assigned to PF₆⁻ as the counter anion. Accordingly, the latter arises from the μ -PF₆ group. A

40

Fig. 2 ORTEP drawing of 6 with 50% probability ellipsoids. Hydrogen atoms and counter anion (PF₆[−]) are omitted for clarity. Selected bond ⁵⁰ distances (Å) and angles (deg): Cu–N 2.097(3), Cu–P1 2.2613(10), Cu–P2 2.2638(9), Cu–F1 2.241(2), P3–F1 1.637(2), P3–F2 1.586(2), P3–F3 1.588(2), N–Cu–F1 144.32(9), P1–Cu–P2 157.34(4), N–Cu–F1 144.32(9), Cu–F1–P3 128.95(13).

Fig. 3 (a) ¹⁹F and (b) ³¹P{¹H} NMR spectra of **6** in CD₂Cl₂ at 20 °C.

remarkable feature of the spectrum is the significantly weak intensity of the latter signal at δ -77.8. The ¹*J*_{PF} value (978 Hz) is clearly larger than that of the PF₆⁻ anion (711 Hz), and comparable to that of neutral PF₅ (938 Hz).¹²

⁶⁰ The ³¹P{¹H} NMR spectrum shown in Fig. 3(b) consists of two sets of signals at δ –17.3 (¹J_{PF} = 978 Hz) and –143.0 (¹J_{PF} = 711 Hz), arising from μ -PF₆ and PF₆⁻, respectively. The former signal appears as a triplet, while the latter shows septet coupling as expected for PF₆⁻; namely, the P–F couplings for ⁶⁵ four out of the six fluorine atoms are missing from the signal of the μ -PF₆ group. This phenomenon is rationalized by assuming effective interactions of the four fluorine atoms with copper centers having a quadrupole moment (I = 3/2) via the rapid motion illustrated in Scheme 2. This behavior was not ⁷⁰ frozen at –80 °C.

To gain further insight into the bonding interaction between copper and the μ -PF₆ group, DFT calculations were carried out. Initially, we attempted geometry optimization for a model compound of the cationic part of **6**, [(bpep)Cu-(μ -PF₆)-Cu-⁷⁵ (bpep)]⁺ (**6**'), in which the 2,4,6-tri-*tert*-butylphenyl (Mes*) and phenyl groups on the BPEP ligands were replaced by hydrogen atoms. However, although the dimeric structure of **6** was reproduced, distances between the Cu and F atoms were unreasonably shortened (Cu-F1 = 2.16 Å; Cu-F2 = 2.48 Å).

This journal is © The Royal Society of Chemistry [year]

^{2 |} Journal Name, [year], [vol], 00–00

This is probably due to the absence of the bulky Mes* groups. Therefore, the geometry of the Cu-(μ -PF₆)-Cu core was fixed to the X-ray structure, and the remaining portion was optimized assuming C_2 symmetry around the F3–Cu–F3* axis.

- ⁵ Figure 4 shows the optimized geometry of **6'** under the above structural constraints. The Mayer's bond orders (*B*) for Cu–F and P–F bonds are also presented. There is evidence for a bonding interaction between Cu and F1 (B = 0.32) and a weakening of the P3–F1 bond (B = 0.66). It is also observed ¹⁰ that the F2 atom interacts with the Cu atom with a bond order
- a that the F2 atom interacts with the Cu atom with a bond order of 0.13, despite the long distance between those atoms (3.054 Å). Bonding interactions of F atoms with Cu centers are also observed in several molecular orbitals (see ESI).
- Table 1 compares the charge distributions in $[(bpep)Cu-(\mu-15 \text{ PF}_6)-Cu(bpep)]^+$ (6') and $[Cu(bpep)]^+$ (2'), which were evaluated by natural population analysis. The μ -PF₆ group of 6' is charged to -0.84, meaning that the negative charge of the PF₆⁻ anion (-1.00) is reduced by bridging coordination with two molecules of 2'. Since the copper center of 6' is more
- ²⁰ positively charged than that of **2'**, it is concluded that the negative charge of the PF_6^- anion is distributed to the bpep ligand upon the formation of **6'**, very probably via π -backbonding between copper and bpep.

Complexes 2a and 2b undergo ionic dissociation in CD₂Cl₂

- ²⁵ as a polar solvent (*vide supra*). It was found that the complexes cleave the Si–N bond of Me₃SiN₃ to afford $[Cu_2(BPEP)_2(\mu-N_3)]^+X^-$ [X = SbF₆ (**7a**), PF₆ (**7b**)] in 96 and 36% yields, respectively, along with Me₃SiF (Scheme 3). The reactions probably proceed via cooperative activation of
- ³⁰ Me₃SiN₃ by the electrophilic copper center and nucleophilic fluoride ion. Since it is known that it is very difficult to dissociate a fluoride ion from SbF_6^- and PF_6^- as non-coordinating anions,¹³ the high reactivity of **2a** and **2b** should be attributed to the high electrophilicity of [Cu(BPEP)]⁺.
- In summary, we have reported novel Cu^I complexes bearing a phosphaalkene-based PNP-pincer ligand (BPEP). Thanks to the strong π -accepting ability of the P=C bonds, the $[Cu(BPEP)]^+$ species possesses a highly electron-deficient copper center, exhibiting strong affinity towards SbF₆⁻ and
- ⁴⁰ PF₆⁻ as non-coordinating anions. Thus, SbF₆⁻ is coordinated with [Cu(BPEP)]⁺ to form [Cu(SbF₆)(BPEP)] (**2a**) as a neutral species. On the other hand, PF₆⁻ formed [Cu₂(BPEP)₂(μ-PF₆)]⁺PF₆⁻ (**6**). The dinuclear structure of **6** is stable in solution even in the presence of excess MeCN or CO. This is ⁴⁵ due to the occurrence of effective bonding interactions
- between the Cu and F atoms.

Notes and references

 ^a International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan. E-50 mail: nakajima@scl.kyoto-u.ac.jp, ozawa@scl.kyoto-u.ac.jp

^bDepartment of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Uji, Kyoto 611-0011, Japan.

† Electronic Supplementary Information (ESI) available: experimental procedures and analytical data, additional crystallographic data and ss computational details. See DOI: 10.1039/b000000x/

[‡] This work was supported by a Grant-in-Aid for Scientific Research from MEXT Japan and the JST PRESTO program.

60 **Table 1** Charge distribution in 6' and $[Cu(bpep)]^+(2')$

Component -	Complex	
	$[Cu_2(bpep)_2(\mu-PF_6)]^+$ (6')	$[Cu(bpep)]^{+}(2')$
Cu	+0.78	+0.67
bpep	+0.14	+0.33
μ -PF ₆	-0.84	—

The values were determined by DFT calculations and NBO analysis.

Fig. 4 The optimized structure and Mayer's bond orders for a model compound of **6**, $[(bpep)Cu-(\mu-PF_6)-Cu(bpep)]^+$ (**6**').

- P. Le Floch, *Coord. Chem. Rev.*, 2006, **250**, 627; F. Mathey, *Angew. Chem. Int. Ed.*, 2003, **42**, 1578; L. Weber, *Coord. Chem. Rev.*, 2005, **249**, 741; C. Müller and D. Vogt, *Dalton. Trans.*, 2007, 5505.
- 249, 741; C. Müller and D. Vogt, *Dalton. Trans.*, 2007, 5505.
 J. Dugal-Tessier, G. R. Dake and D. P. Gates, *Org. Lett.*, 2010, 12, 4667; J. Dugal-Tessier, G. R. Dake and D. P. Gates, *Organometallics*, 2007, 26, 6481.
- 3 F. Ozawa and M. Yoshifuji, Dalton. Trans., 2006, 4987.
- 75 4 Y. Nakajima, Y. Nakao, S. Sakaki, Y. Tamada, T. Ono and F. Ozawa, J. Am. Chem. Soc., 2010, 29, 9934.
- 5 J. I. van der Vlugt and J. N. H. Reek, Angew. Chem. Int. Ed., 2009, 48, 8832.
- J. I. van der Vlugt, E. A. Pidko, D. Vogt, M. Lutz, A. L. Spek and A.
 Meetsma, *Inorg. Chem.*, 2008, **47**, 4442; J. I. van der Vlugt, E. A.
 Pidko, D. Vogt, M. Lutz and A. L. Spek. *Inorg. Chem.*, 2009, **48**, 7513; J. I. van der Vlugt, E. A. Pidko, R. C. Bauer, Y. Gloaguen, M.
 K. Rong and M. Lutz, *Chem. Eur. J.*, 2011, **17**, 3850.
- C. Müller, E. A. Pidko, M. Lutz, A. L. Spek and D. Vogt, *Chem. Eur.* J., 2008, 14, 8803.
- 8 A. Hayashi, M. Okazaki, F. Ozawa and Tanaka, *Organometallics*, 2007, 26, 5246; A. Orthaber, F. Belaj and R. Pietshnig, *Inorg. Chim. Acta*, 2011, DOI: 10.1016/j.ica.2011.02.078.
- 9 Y. Nakajima, M. Nakatani, K. Hayashi, Y. Shiraishi, R. Takita, M.
 0 Okazaki and F. Ozawa, *New. J. Chem.*, 2010, 34, 1713.
- 10 P. C. Healy, J. V. Hanna, J. D. Kildea, B. W. Skelton and A. H. White, *Aust. J. Chem.*, 1991, **44**, 427; B. F. Straub, F. Rominger and P. Hofmann, *Inorg. Chem.* 2000, **39**, 2113.
- 11 Weak coordination of PF₆⁻ with Cu¹ at a distance of 2.609(2) Å has been reported for [Cu(*p*-CH₂C=CHCOOCH₃)(bpy)]⁺PF₆⁻: T. Pintauer, *J. Organomet. Chem.*, 2006, **691**, 3948.
- 12 H. S. Gutowsky, D. W. McCall and C. P. Slichter, J. Chem. Phys., 1953, 21, 279.
- J. Devynck, A. B. Hadid, P. L. Fabre and B. Trémillon, *Anal. Chim. Acta*, 1978, **100**, 343.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 3

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/chemcomm

5

COMMUNICATION

Graphical and textual abstract for the Table of Contents

 Cu^{I} complexes bearing BPEP as a PNP-pincer type phosphaalkene ligand undergo effective bonding interactions with "non-coordinating anions" such as SbF_{6}^{-} and PF_{6}^{-} .

