

,	
Title	Gallium(III)-catalysed bromocyanation of alkynes: regio- and stereoselective synthesis of -bromo- , -unsaturated nitriles.
Author(s)	Murai, Masahito; Hatano, Ryo; Kitabata, Sachie; Ohe, Kouichi
Citation	Chemical communications (2011), 47(8): 2375-2377
Issue Date	2011-02
URL	http://hdl.handle.net/2433/156438
Right	© Royal Society of Chemistry 2011.
Туре	Journal Article
Textversion	author

Gallium (III)-catalysed Bromocyanation of Alkynes: Regio- and Stereoselective Synthesis of β -Bromo- α , β -unsaturated Nitriles

Masahito Murai, Ryo Hatano, Sachie Kitabata, and Kouichi Ohe*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 First published on the web Xth XXXXXXXXX 20XX

Treatment of arylacetylenes and cyanogen bromide in $ClCH_2CH_2Cl$ with a catalytic amount of $GaCl_3$ afforded (Z)- β -bromoacrylonitriles with high regio- and stereoselectivity.

The catalytic addition reactions of X-Y-type substrates to carboncarbon multiple bonds are of continued interest due to the facile access to 1,2-difunctional units from simple alkenes or alkynes 15 with ideal atom efficiency. 1 Among these transformations, addition reactions of X-CN to alkynes simultaneously form vinyl-X and vinyl-carbon bonds, both of which can be used to construct complex structures. Several notable examples of palladium- or nickel-catalysed regio- and stereoselective addition reactions to 20 alkynes with several X-CN groups have been reported, such as (hydrocyanation),² (carbocyanation),³ X=CX=Si(cyanosilylation),⁴ X=Ge(cyanogermylation),⁵ X=Sn(cyanostannylation),6 X=SX=B(cyanoboration),⁷ (cyanothiolation).⁸ However, much less attention has been paid 25 to catalytic regio- and stereoselective halocyanation of alkynes⁹ or alkenes¹⁰ using cyanogen halides. Herein, we report on gallium-catalysed bromocyanation of alkynes with cyanogen bromide, providing an efficient route to (Z)- β -bromoacrylonitriles in a high regio- and stereoselective fashion (Scheme 1). Taking 30 advantage of (Z)- β -bromoacrylo- nitriles, we can establish efficient routes to a wide range of α,β -unsaturated nitriles, ¹¹ which are of synthetic value.

$$R^1 \longrightarrow R^2 + XCN \xrightarrow{\text{catalyst}} X = \text{halogen} X CN$$

35 Scheme 1 Catalytic Addition Reactions of X-CN to Alkynes.

When we examined the reaction of cyanogen bromide¹² and phenylacetylene using palladium or nickel/phosphine complexes, which are effective catalysts in addition reactions of X-CN to acetylenes (vide supra), no adducts were generated. Next, Lewis acids were screened for bromocyanation of alkynes, because there is a precedent for the haloacylation of alkynes in analogous reactions.¹³ Representative results of the reaction of cyanogen

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

E-mail: ohe@scl.kyoto-u.ac.jp

Tel: (+81) 75-383-2495; Fax: (+81) 75-383-2499

45 bromide with phenylacetylene are shown in Table 1. We found that phenylacetylene underwent bromocyanation in the presence of AlCl₃ (10 mol%) in 1,2-dichloroethane at 80 °C to give β bromocinnamonitrile 1a in 42% yield as a mixture of Z- and Eisomers (Z:E = 89:11) (Table 1, entry 1). Interestingly, the use of 50 GaCl₃ (10 mol%) instead of AlCl₃ led to 1a in a high yield and stereoselectivity (81% chemical yield, Z:E = 92:8) (entry 2). 14 This is in sharp contrast with the non-catalysed bromocyanation of ynamines, which gave a low stereoselectivity of the adducts $(Z:E = 50:50, \sim 60:40)$. The reaction using GaCl₃ at 70 °C led 55 to a lower yield of 1a, but with similar stereoselectivity (entry 3). 1,2-Dichloroethane was the most suitable solvent for bromocyanation, while other solvents, e.g., CHCl₃, toluene, heptane, and 2-methyltetrahydrofuran gave a lower yield of the adducts (entries 4-6), or no adducts (entry 7). 15 Using GaBr₃ as a catalyst 60 afforded almost the same result as GaCl₃ (entry 8). Other Lewis acid catalysts, such as InCl₃ and InBr₃, showed marginal catalytic activity and gave lower yields of 1a (entries 9 and 10), while FeBr₃, CuBr₂, and ZnBr₂ exhibited no catalytic activity for bromocyanation (entries 11-13). It should be noted that

Table 1. Lewis Acid-catalysed Bromocyanation of Phenylacetylene Using BrCN^a

entry	catalyst	solvent	yield ^b	$Z: E^c$
1	AlCl ₃	ClCH ₂ CH ₂ Cl	42%	89 : 11
2	$GaCl_3$	ClCH ₂ CH ₂ Cl	81% (72%)	92:8
3^d	$GaCl_3$	ClCH ₂ CH ₂ Cl	41%	91:9
4	$GaCl_3$	CHCl ₃	62%	90:10
5	$GaCl_3$	toluene	61%	90:10
6	$GaCl_3$	heptane	25%	91:9
7	$GaCl_3$	2-MeTHF	0%	
8	$GaBr_3$	ClCH ₂ CH ₂ Cl	75%	96:4
9	$InCl_3$	ClCH ₂ CH ₂ Cl	15%	93:7
10	$InBr_3$	ClCH ₂ CH ₂ Cl	32%	95 : 5
11	$FeBr_3$	ClCH ₂ CH ₂ Cl	0%	
12	$CuBr_2$	ClCH ₂ CH ₂ Cl	0%	
13	$ZnBr_2$	ClCH ₂ CH ₂ Cl	0%	

^a Reaction conditions: Phenylacetylene (0.48 mmol) and BrCN (0.40 mmol) in solvent (1.6 mL) were heated in the presence of ⁷⁰ catalyst (10 mol%). ^b NMR yield (anisole as an internal standard). Isolated yield in parentheses. ^c Determined by NMR. ^d At 70 °C.

[†] Electronic Supplementary Information (ESI) is available: Experimental details and analytical data are provided. See DOI: XXXXXXXX

no chlorocyanation adducts were obtained even when Lewis acid catalysts bearing chloride ligands were used (entries 1-7 and 9).

With the optimized reaction conditions established (10 mol%) GaCl₃ in 1,2-dichloroethane at 80 °C), we then examined the 5 substrate scope of alkynes (Table 2). Arylacetylenes having a range of aromatic rings underwent bromocyanation of the alkyne moieties to give the corresponding (Z)-adducts, 1b-h¹⁶ in good yields with high regio- and stereoselectivity (entries 1-7), while 1-octyne and 1-(trimethylsilyl)acetylene gave no adducts. 10 Reactions with internal aliphatic or alicyclic alkynes, such as 4octyne and cyclooctyne, gave complex mixtures, while internal alkynes substituted by a phenyl ring produced bromocyanation adducts $1i^{17}$ and 1j, having a cyano group at the β position to the phenyl group in good yields with high regio- and 15 stereoselectivities (entries 8 and 9). Although the reaction of diphenylacetylene was sluggish, and required an elevated temperature (100 °C), the corresponding bromocyanation adduct 1k was obtained in a 56% yield with excellent stereoselectivity (entry 10).

Table 2. GaCl $_3$ -catalysed Bromocyanation of Alkynes Using BrCN a

$$R^{1}$$
 = R^{2} + BrCN $\xrightarrow{\text{GaCl}_{3} (10 \text{ mol}\%)}$ $\xrightarrow{\text{R}^{1}}$ $\xrightarrow{\text{R}^{2}}$ Br $\xrightarrow{\text{CN}}$

25

entry	\mathbb{R}^1	\mathbb{R}^2	product	isolated yield	$Z:E^b$
1	$4-CH_3C_6H_4$	Н	1b	70%	95 : 5
2	$2-CH_3C_6H_4$	H	1c	61%	98:2
3	2-naph	H	1d	55%	95:5
4	$4-FC_6H_4$	H	1e	71%	91:9
5	$4-ClC_6H_4$	H	1f	68%	90:10
6	4-BrC ₆ H ₄	H	1g	68%	91:9
7	$4-CF_3C_6H_4$	H	1h	20%	92:8
8	Ph	CH_3	1i	70%	95:5
9	Ph	n-Bu	1j	72%	91:9
10 ^c	Ph	Ph	1k	56%	99:1

 a Reaction conditions: Alkynes (0.48 mmol) and BrCN (0.40 mmol) in ClCH₂CH₂Cl (1.6 mL) were heated in the presence of GaCl₃ (10 mol%). b Determined by NMR. c Reaction carried out in toluene at 100 o C.

The alkynophilicity ¹⁸ of trivalent GaX_3 leading to the formation of cationic vinylgallium species is well known, and some notable synthetic applications have been demonstrated. ¹⁹ To gain insight into the present bromocyanation of alkynes, we ³⁵ carried out an NMR study on a stoichiometric reaction. When $GaCl_3$ was added to a solution of BrCN in $CDCl_3$ at room temperature, the signal of CN (δ 76.1 ppm) in BrCN shifted to a new peak at δ 88.2 ppm. The downfield shift of the CN peak suggested the possibility of the formation of a complex between 40 BrCN and $GaCl_3$. 20 When an equimolar amount of 1-phenyl-1-hexyne was added to a $CDCl_3$ solution of this complex at room temperature, the quantitative formation of the bromocyanation product $\mathbf{1j}$ (Z:E=98:2) coordinated with $GaCl_3$ was observed, with the signal of the CN moiety being observed at δ 149.5 ppm. 45 This result clearly shows that electrophilic addition of the BrCN

and GaCl₃ complexes to alkynes²¹ occurs, even at room temperature, and a high temperature is required in the catalytic reaction conditions to release GaCl₃ from cyano moiety of the adduct.

The synthetic utility of (*Z*)-β-bromo-α,β-unsaturated nitriles obtained from the bromocyanation of alkynes was demonstrated by the cross-coupling reactions of the representative product **1a** (Scheme 2). The Stille coupling reactions of **1a** with organostannanes afforded the stereo-defined structures **2** or **3** in good yields. The Sonogashira coupling reaction of **1a** with phenylacetylene gave enyne **4** quantitatively, with complete stereoselectivity. The nickel-catalysed reductive homo-coupling of **1a** produced 3,4-diphenyl-2,4-hexadiene-1,6-dinitrile **5**. Moreover, we demonstrated the synthetic utility of **1a** and its derivative **3** in the preparation of the biologically active heterocycles **6**²³ and **7**. In the preparation of the biologically active

(a) $(4-CH_3C_6H_4)SnBu_3$, $Pd(PPh_3)_4$, CuI, dioxane, $100\,^{\circ}C$, 8h. (b) $BzSnBu_3$, $Pd(OAc)_2$, PPh_3 , dioxane, $100\,^{\circ}C$, $12\,^{\circ}h$. (c) $75\,^{\circ}Phenylacetylene$, $Pd(PPh_3)_4$, CuI, Et_3N , THF, rt, $5\,^{\circ}h$. (d) $NiBr_2(PPh_3)_2$, PPh_3 , Zn, dioxane, $80\,^{\circ}C$, $6\,^{\circ}h$. (e) Ethyl thioglycolate, NaOEt, EtOH, $70\,^{\circ}C$, $12\,^{\circ}h$. (f) 1,3- Dimethoxybenzene, $Cu(OTf)_2$, $ClCH_2CH_2Cl$, H_2O , $80\,^{\circ}C$, $15\,^{\circ}h$. $Ar = 2,4-(MeO)_2C_6H_3$

Scheme 2 Transformation of 1a.

In summary, we developed gallium(III)-catalysed bromocyanation of alkynes using cyanogen bromide. This method enables the regio- and stereoselective introduction of the synthetically useful Br and cyano functionalities to carbon-carbon triple bonds in single operation. Further investigations into the reaction mechanism, substrate scope, and the synthetic application are currently underway in our laboratory.

Acknowledgment. This work is financially supported by a Grant-in-Aid for Scientific Research from MEXT. M. M. thanks the JSPS Research Fellowships for Young Scientists.

Notes and references

- 95 1 B. M. Trost, Angew. Chem. Int. Ed. Engl. 1995, 34, 259.
 - 2 (a) H.-J. Arpe, in *Industrial Organic Chemistry*, 5th ed.; Wiley-VCH: Weinheim, 2010, p 312; (b) A. R. Katritzky; O. Meth-Cohn; C. W. Rees, in *Comprehensive Organic Functional Group Transformations*; Pergamon, Oxford, 1995, Vol. 3, p 614; (c) B. Cornils; W. A. Herrmann, in *Applied Homogeneous Catalysis with Organometallic*

BICI

- Compounds; VCH, Weinheim, 1996, Vol. I, p 476; (d) M. Beller; C. Bolm, in *Transition Metals for Organic Synthesis 2nd ed.*; Wiley-VCH, Weinheim, 2004, p 151.
- 3 For selected examples, see: (a) K. Nozaki; N. Sato; H. Takaya, J. Org. Chem. 1994, 59, 2679; (b) Y. Nakao; S. Oda; T. Hiyama, J. Am. Chem. Soc. 2004, 126, 13904; (c) Y. Nakao; K. S. Kanyiva; S. Oda; T. Hiyama, J. Am. Chem. Soc. 2006, 128, 8146; (d) Y. Kobayashi; H. Kamisaki; R. Yanada; Y. Takemoto, Org. Lett. 2006, 8, 2711; (e) Y. Nakao; A. Yada; S. Ebata; T. Hiyama, J. Am. Chem. Soc. 2007, 129, 2428; (f) Y. Hirata; T. Yukawa; N. Kashihara; Y. Nakao; T. Hiyama, J. Am. Chem. Soc. 2009, 131, 10964; For carbocyanation to alkenes or 1,2-dienes, see: (g) Y. Nishihara; Y. Inoue; M. Itazaki; K. Takagi, Org. Lett. 2005, 7, 2639; (h) Y. Nakao; Y. Hirata; T. Hiyama, J. Am. Chem. Soc. 2006, 128, 7420; (i) Y. Nakao; S. Ebata; A. Yada; T. Hiyama; M. Ikawa; S. Ogoshi, J. Am. Chem. Soc. 2008, 130, 12874; (j) Y. Yasui; H. Kamisaki; Y. Takemoto, Org. Lett. 2008, 10, 3303; (k) M. P. Watson; E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 12594; (l) Y. Hirata; T. Inui; Y. Nakao; T. Hiyama, J. Am. Chem. Soc. 2009, 131, 6624.
- 4 (a) N. Chatani, T. Hanafusa, J. Chem. Soc., Chem. Commun. 1985, 838;
 (b) N. Chatani, T. Takeyasu; N. Horiuchi, T. Hanafusa, J. Org. Chem. 1988, 53, 3539; For 1,2-dicyanation, see: (c) S. Arai, T. Sato; Y. Koike; M. Hayashi, A. Nishida, Angew. Chem. Int. Ed. 2009, 48, 4528.
- 5 N. Chatani; N. Horiuchi; T. Hanafusa, J. Org. Chem. 1990, 55, 3393.
- Y. Obora; A. S. Baleta; M. Tokunaga; Y. Tsuji, J. Organomet. Chem.
 2002, 660, 173.
- (a) M. Suginome; A. Yamamoto; M. Murakami, J. Am. Chem. Soc.
 2003, 125, 6358; (b) M. Suginome; A. Yamamoto; M. Murakami,
 Angew. Chem. Int. Ed. 2005, 44, 2380.
- (a) I. Kamiya; J. Kawakami; S. Yano; A. Nomoto; A. Ogawa,
 Organometallics 2006, 25, 3562; (b) Z. Zhang; L. S. Liebeskind, Org.
 Lett. 2006, 8, 4331; (c) Y. T. Lee; S. Y. Choi; Y. K. Chung,
 Tetrahedron Lett. 2007, 48, 5673.
- 9 For uncatalysed bromocyanation of ynamines, see: (a) N. V. Lukashev;
 A. V. Kazantsev; A. A. Borisenko; I. P. Beletskaya, *Tetrahedron* 2001,
 57, 10309. For copper-promoted iodocyanation of (perfluoroalkyl)-alkynes, see: (b) P. Moreau; A. Commeyras, *J. Chem. Soc., Chem.*
- 10 For bromocyanation of enamines, see: (a) F. Raffaello; R. Silvano; B. Giuseppe, Gazz. Chim. Ital. 1961, 91, 841; (b) W. Verboom; G. W.

Commum. 1985, 817.

- Visser; D. N. Reinhoudt, *Tetrahedron* 1982, 38, 1831; (c) N. D. Kimpe; R. Verhé; L. D. Buyck; N. Schamp, *Chem. Ber.* 1983, 116, 3846
- 11 For synthetic applications of β-acyl-α,β-unsaturated nitriles, see: (a) M. Murai; S. Kawai; K. Miki; K. Ohe, J. Organomet. Chem. 2007, 692, 579; (b) M. Murai; K. Miki; K. Ohe, J. Org. Chem. 2008, 73, 9174.
- 12 Cyanogen bromide (mp 52 °C) is a commercially available reagent and easy to handle. However, the handling of cyanogen bromide requires special care to avoid inhalation of hydrogen cyanide, and all operations should be carried out in a well-fumed hood.
- (a) C. C. Price; J. A. Pappalardo, J. Am. Chem. Soc. 1950, 72, 2613;
 (b) H. Martens; F. Janssens; G. Hoornaert, Tetrahedron 1975, 31, 177;
 (c) H. Zhou; C. Zeng; L. Ren; W. Liao; X. Huang, Synlett 2006, 3504;
 For electrophilic cyanation of arenes with BrCN, see: (d) P. H. Gore; F. S. Kamounah; A. Y. Miri, Tetrahedron 1979, 35, 2927.
- 55 14 The cyano group was selectively introduced at the terminal position, no regioisomers of 1a being detected.
 - 15 The use of polar solvents, such as MeCN, dioxane, THF, and DMF resulted in complete recovery of phenylacetylene.
- 16 The structure of the major stereoisomer of 1e was unambiguously
 determined by X-ray crystallography. See electonic supplementary
 information for the detail of X-ray crystal analysis data. CCDC-796829
 contains the supplementary crystallographic data for this paper. These
 data can be obtained free of charge from The Cambridge
 Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/
 cif.
 - 17 Determination of regio- and stereoselectivity of the major adduct was based on derivatization to a stereo-defined compound by reduction of

- 1h with DIBAL-H and NaBH₄ (See electronic supplementary information).
- 70 18 For selected reviews, see: (a) A. Fürstner; P. W. Davies, *Angew. Chem. Int. Ed.* **2007**, *46*, 3410. (b) K. Ohe; K. Miki, *J. Synth. Org. Chem., Jpn.* **2009**, *67*, 1161 and references therein.
 - 19 For a review in this area, see: R. Amemiya; M. Yamaguchi, Eur. J. Org. Chem. 2005, 5145.
- 75 20 Although precise species are not clear at present, the formation of δ-Br--δ+CN-GaCl₃ or [CN]⁺[GaCl₃Br]⁻ is most likely.
 - 21 We suppose that electrophilic addition of a positively charged CN followed by intramolecular nucleophilic attack of bromide in the intimate complex to the resulting vinyl cation center in syn fashion provides a Z-adduct. Precise mechanism awaits further investigation.
- 22 For application of **5** to electrophotographic photoreceptor, see: K.
- Watanabe, *Jpn. Kokai Tokkyo Koho* **1997**, JP 09006027 [*Chem. Abstr.* **1997**, *126*, 205452].

 23 For selected examples, see: (a) A. V. Bogolubsky; S. V. Ryabukhin; A. S. Plaskon; S. Stetsenko; D. M. Volochnyuk; A. A. Tolmachey, *I.*
- For selected examples, see: (a) A. V. Bogolubsky; S. V. Ryabukhin; A.
 S. Plaskon; S. Stetsenko; D. M. Volochnyuk; A. A. Tolmachev, J.
 Comb. Chem. 2008, 10, 858. (b) Z. Brzozowski; J. Sławiński; F.
 Saçzewski; T. Sanchez; N. Neamati, Eur. J. Med. Chem. 2008, 43, 1188.