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1. Introduction

Distribution of the time at which an event occurs for the first time is of great relevance

for stochastic processes. Calculation of this distribution, commonly known as the first-

passage time distribution [1], is almost a standard procedure while investigating the

kinetics of reactions between randomly moving particles [2, 3], exciton dynamics in

crystals including traps [4], the exit time of a particle out of a region with a given

potential energy landscape [5], estimating the time to failure [6], determining the optimal

strategy for searching targets [7], and more [1]. Here we would like to emphasize the

role of first-passage time analysis in chemical kinetics in structured environments.

Seminal works by Smoluchowski [2] and Noyes [3] have inspired much of the work

done in the study of bimolecular reactions. Smoluchowski’s formulation, given in

an early theoretical investigation on the kinetics of colloid coagulation [2], involves

integrating the diffusion equation with the initial and boundary conditions chosen such

that there is an infinite amount of available reactants which react immediately at an

interaction distance. These kind of reactions are called diffusion controlled reactions

as the rate of the reaction only depends on the rate at which the particles find each

other. In Noyes’ formulation [3], a counterpart of the system of interest is considered,

in which the reactants are not consumed upon encounter. The central quantity in this

theory is the probability of first reencounter between non-reactive particles, from which

reaction rates in the original system can be calculated. Both of these theories have been

extended to more general cases in a large number of subsequent works [8, 9, 10, 11, 12].

In addition to studies in continuum, there is a significant body of work on

bimolecular reactions between random walkers in a lattice [13, 14, 15, 16, 17, 18, 19, 20].

In the simplest case, the system consists of only two random walkers one of which is

stationary. For this case, and for periodic boundary conditions, the average time it

takes for one of the particles to find the other and its variance was first calculated by

Montroll and Weiss in their seminal first passage time analysis for lattice walks [21].

Recently, effects of structured space, especially molecular confinement, on reaction

kinetics began to emerge as an important concept. For instance, Condamin et al. [22]

presented general results for first-passage times in complex media as a function of

confinement volume and the initial configuration of particles, Bénichou et al. [23]

emphasized the importance of geometrical constraints on kinetics of reactions between

randomly moving (anomalous or simple diffusion) molecules. In a related work, Meyer

et al. [24] discussed the identification of universalities in the characteristics of first-

passage time distributions in confining domains, in detail. Condamin et al. [25, 26]

also presented a novel and elegant approach for calculating the statistics of first-passage

times in bounded geometries by starting from the Kac’s formula [27], which relates the

number of steps required to return to the starting point in an irreducible graph (see

ref. [26] for a rederivation of this result).

General results for the first-passage time distributions when the searcher and

the target are in the same confining domain were obtained earlier [28, 24]. For
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instance, very recently, Tejedor et al. [29] obtained practical analytical results on the

first encounter time distribution for two random walkers in a finite one-dimensional

space with absorbing or reflecting boundaries. However, an analytical result in the

presence of multiple, connected, temporarily confining domains where the searcher can

get temporarily trapped in a confining domain has not been found. Note that this

physical picture is extremely relevant for reactions occurring in complex systems such as

a biological cell, where the medium is partitioned into many compartments by permeable

boundaries such that the molecules are temporarily trapped.

In this study we would like to contribute to this subject by providing exact solutions

to the following two problems: 1) First-passage time to a given site, starting from

an arbitrary site, in a finite 1D (one-dimensional) lattice partitioned into temporarily

confining domains, which is relevant for interacting random walkers when one of the

walkers is fixed; 2) first-passage time to a given site in a 2D (two-dimensional) finite

lattice with reflecting boundaries. These problems are frequently encountered while

studying the time between dissociation and association events in reversible reactions.

By providing these results, our main goal is to contribute to the efforts of developing

a thorough understanding of reaction kinetics in confined spaces, which is crucial for

the study of complex systems such as a cell. Moreover, we would like to emphasize the

importance of considering higher order moments of the encounter time distribution, if

not the full distribution, in characterising the temporal pattern of reactions, rather than

focusing on the average reaction rates.

In the next section, we give a brief explanation of how the encounter rate of particles,

or the first-passage time to encounter following an encounter at t = 0, is related to the

time between reactions. In Section 3, we provide the solutions of the first-passage time

problems stated above, with their derivations. Lastly, we give a discussion of our results,

our conclusions, and a future outlook in Section 4.

2. Reaction rate and encounter statistics

The rate at which particles encounter each other strongly depends on the properties

of the medium where they reside. For freely diffusing particles, the time between

encounters is controlled by the diffusion coefficient and particle concentration alone.

However, for particles that are temporarily trapped in a finite region, the encounter

time also depends on the characteristic time each particle spends in a confining region.

In most cases, chemical reactions do not occur during the first diffusive encounter

between the reactants and require many subsequent encounters. Luckily, it is possible

to formulate the problem for such activation controlled reactions by considering the

distribution of times between two subsequent encounters alone.

Suppose that a pair of particles react with probability ω upon an encounter. If

these molecules have just separated after a non-reactive encounter, they will react with
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probability h(t)dt at time t, where h(t) is given by [3].

h(t) = ωfenc(t) + ω(1− ω)

∫ t

0

dt′fenc(t− t′)fenc(t
′)

+ ω(1− ω)2
∫ t

0

dt′′fenc(t− t′′)

∫ t′′

0

dt′fenc(t
′′ − t′)fenc(t

′)

+ ..., (1)

where fenc(t) is the distribution of the time it takes until the next encounter (involving

either of the dissociated particles) given the particles dissociated at t = 0, i.e. the

distribution of first reencounter times. Note that the terms on the right hand side of

equation (1) correspond to the probability that the pair of particles react at time t after

the first, second, third and larger number of encounters. Moments of the reaction time

distribution can be expressed in terms of the Laplace transform of fenc(t)

〈tnrxn〉 = (−1)n lim
ǫ→0

dnh̃(ǫ)

dǫn
= (−1)n lim

ǫ→0

dn

dǫn

∞∑

m=0

ω(1− ω)m
[
f̃enc(ǫ)

]m+1

,

where ǫ is the Laplace transform variable, tildes distinguish Laplace transformed

quantities, and we used the relation between the derivatives of the Laplace transform of

a function and its moments [30]. Specifically, the average time between reactions, and

its variance are given by

µrxn = 〈trxn〉 =
µenc

ω
,

σ2
rxn = 〈t2rxn〉 − 〈trxn〉

2 =
ωσ2

enc + (1− ω)µ2
enc

ω2
,

where µenc and σ
2
enc are the mean and variance of fenc(t), respectively.

3. Statistics of first-passage times in specific lattices

In this section, we first recall the well-known mathematical relation between the first-

passage time distribution and the probability propagator for a random walk, and

subsequently present our results for specific cases in one and two dimensions.

Let P (t, ~r; 0, ~r0) be the probability of finding a random walker at the site ~r at time

t provided that it was initially at the site ~r0. This probability can be expressed as the

product of the probability of visiting ~r at time s < t for the first time, and staying there

for a time t− s, such that [1]

P (t, ~r; 0, ~r0) =

∫ t

0

dsQ(s, ~r; 0, ~r0)P (t− s, ~r; 0, ~r), (2)

where Q(s, ~r; 0, ~r0) is the probability that a random walker visits the site ~r for the first

time, provided that it started at ~r0. Taking the Laplace transform of both sides in

equation (2) and rearranging terms, we get

Q̃(ǫ, ~r; t = 0, ~r0) =

∫ ∞

0

dte−ǫtQ(t, ~r; 0, ~r0) =
P̃ (ǫ, ~r; t = 0, ~r0)

P̃ (ǫ, ~r; t = 0, ~r)
. (3)
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Note that the nth moment of the first-passage time distribution Q(t) can be conveniently

calculated through the following relation

〈tn~r0,~r〉 =

∫ ∞

0

dttnQ(t) = (−1)n lim
ǫ→0

dn

dǫn
Q̃(ǫ). (4)

Figure 1. a. Schematic illustration of the 1D partitioned lattice. A periodic lattice,

or a ring, of N sites that is partitioned into domains of H + 1 sites. Thicker (red)

bonds between lattice sites have a lower transfer rate than those of the thinner (blue),

and act as barriers that hinder diffusion. The dashed (blue) line is drawn to emphasize

the periodicity of the lattice. b. Illustration of how a 1D finite periodic lattice is

transformed into a chain of sites with reflective boundaries via equation (40). The

arrows (red) point between sites whose occupancy are summed up. Note that the

boundary points are not affected from the transformation. c. Illustration of how

a torus, representing a 2D periodic lattice, is transformed into a rectangular region

with reflective boundaries through equation (41). Note that this procedure consists of

applying the transformation in a twice, and the occupancies of a maximum of 4 sites

may be summed up.

3.1. One-dimensional lattice partitioned into domains

Perhaps the simplest idealized problem by which the effects of temporarily confining

domains, or compartments, can be studied is random walk in a 1D periodic lattice that

is partitioned into domains by bonds with lower transition rates, as illustrated in figure

1(a). The probability of finding a particle in such a lattice obeys a Master equation [31]

dPm(t)

dt
= Pm+1(t) + Pm−1(t)− 2Pm(t)

−∆
∑

r

(Pr+1(t)− Pr(t)) (δm,r − δm,r+1) , (5)
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where the walker only jumps between neighbouring lattice sites, ∆ = 1 − f/F , F

and f are the transition rates between sites in the same and adjacent compartments,

respectively, t is dimensionless time (t = F · time), and r denotes the index of a site

to the left of a compartment boundary, such that the summation is over a subset of all

lattice sites. Laplace transform of the probability, denoted by P̃m(ǫ), and its derivative

can be obtained analytically with the help of the results given in reference [31], and are

found to be

P̃m(ǫ) = η̃m(ǫ)−∆
∑

r

Xr(ǫ)fm−r(ǫ), (6)

dP̃m(ǫ)

dǫ
=
dη̃m(ǫ)

dǫ
−∆

∑

r

[
(Zr(ǫ) + Yr(ǫ)) fm−r(ǫ) +Xr(ǫ)

dfm−r(ǫ)

dǫ

]
, (7)

where

AX = g, AY =
dg

dǫ
, A2Z = −

dA

dǫ
g, (8)

and

ψ̃m(ǫ) =
1

N

N∑

k=1

e−i(2πk/N)m

ǫ+ 2 (1− cos(2πk/N))
(9)

η̃m(ǫ) = ψ̃m−m0
(ǫ) (10)

fm(ǫ) = ψ̃m(ǫ)− ψ̃m−1(ǫ)

gm(ǫ) = η̃m+1(ǫ)− η̃m(ǫ)

Am,n = (1−∆) δm,n + ǫ∆ψrn−rm

dAm,n

dǫ
= ∆

(
ψrn−rm + ǫ

dψrn−rm

dǫ

)
,

where A is a square matrix with N/(H + 1) rows, rk = 1 + (H + 1)(k − 1) is the

position of the site to the left of the kth barrier and k runs from 1 to N/(H + 1),

each compartment contains H + 1 lattice sites where H is an even number greater that

0, and ψm−m0
(t) is the Green’s function, or the probability propagator, for a periodic

translationally invariant lattice of N sites [32]. The function ηm(t) is the probability of

finding the random walker at the mth site in the absence of any barriers, i.e. ∆ = 0.

We consider a localized initial condition, such that the particle starts at the site m0,

which is reflected by equation (10). Overall, the problem of obtaining P̃m(ǫ) is reduced

to solving a set of linear systems of equations defined in equation (8), where each system

contains N/(H + 1) equations.

In the limit ǫ → 0, the linear systems in equation (8) can be solved exactly such

that the probability and its derivative are given by

lim
ǫ→0

P̃m(ǫ) = lim
ǫ→0

(Nǫ)−1 + η̃fm(0)−G1(g, f ;m0, m), (11)

lim
ǫ→0

dP̃m(ǫ)

dǫ
= − lim

ǫ→0
(Nǫ2)−1 + η̃f′m(0)

−G1(g
′, f ;m0, m)−G1(g, f

′;m0, m)−G2(h, f ;m0, m), (12)
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with

G1(x, y;m0, m) =
∆

β

∑

r

xr(0;m0)ym−r(0)

+
∆2

(1−∆)β

∑

r

(
xr(0;m0)

H + 1
−
x∗(0;m0)

N

)
ym−r(0), (13)

G2(x, y;m0, m) =
∆

β2

∑

r

xr(0;m0)ym−r(0) +

{(
2∆2

(1−∆)β2
+

∆3

(1−∆)2β2(H + 1)

)

×
∑

r

(
xr(0;m0)

H + 1
−
x∗(0;m0)

N

)
ym−r(0)

}
(14)

and ηfm = ψ̃f
m−m0

, ψ̃f
m being the finite part of ψm(ǫ) as ǫ goes to 0, i.e. without the

k = N term in the definition given in equation (9), and

β = 1−∆+∆/(H + 1), hs =
∑

r

ψ̃r−sgr, g∗ =
∑

r

gr, h∗ =
∑

r

hr

where s denotes a site to the left of a barrier and it takes on all the values that r can

take. Note that the Laplace transform of the probability and its derivative diverge as

ǫ→ 0. However, the mean and variance of first reencounter times remain finite, and are

given by

µm0,m = N
(
P̃ f
m,m(0)− P̃ f

m0,m
(0)
)
, (15)

σ2
m0,m

= 2N

(
NP̃ f

m,m(0)
(
P̃ f
m,m(0)− P̃ f

m0,m
(0)
)
+
dP̃ f

m0,m

dǫ

∣∣∣∣∣
0

−
dP̃ f

m,m

dǫ

∣∣∣∣∣
0

)
− µ2

m0,m
, (16)

where the superscript f denotes the finite part of the corresponding quantities as ǫ→ 0,

and m0 in P̃ f
m0,m

(0) denotes the initial position. The exact forms of µm0,m and σ2
m0,m

can be calculated by using equations (11) and (12), which yields

µm0,m = N
[
η̃fm(0;m)− η̃fm(0;m0)

]
−N [G1(g, f ;m,m)−G1(g, f ;m0, m)] , (17)

σ2
m0,m

= N2
[
µ0(m0, m)

(
η̃fm(0;m) + η̃fm(0;m0)−G1(g, f ;m,m)−G1(g, f ;m0, m)

)]

+ 2N
[
η̃f′m(0;m)− η̃f′m(0;m0)−

(
G1(g

′, f ;m,m) +G1(g, f
′;m,m)

+G2(h, f ;m,m)−G1(g
′, f ;m0, m)−G1(g, f

′;m0, m)−G2(h, f ;m0, m)
)]
, (18)

where the primes denote differentiation with respect to ǫ. These results are valid for

any initial condition specified by m0 and m. As the main quantity of our interest is the

reencounter time, the initial separation between the particles will always be equal to 1,

such that the mean and variance of the reencounter time are given by

µr =
1

2H

′∑

|m−m0|=1

µm0,m, (19)

σ2
r =

1

2H

′∑

|m−m0|=1

σ2
m0,m

, (20)



Encounter time statistics in lattice walks 8

where the primed summation indicates that m and m0 are in the same compartment.

The expressions look complicated; however, some of the summations in Gi(m,m) −

Gi(m0, m) drop out depending on the values of m and m0. Whenever the particles start

in the same compartment, we have

G1(g, f ;m,m)−G1(g, f ;m0, m) =
∆

β

∑

r

[gr(0;m)− gr(0;m0)] fm−r(0), (21)

G1(g, f
′;m,m)−G1(g, f

′;m0, m) =
∆

β

∑

r

[gr(0;m)− gr(0;m0)] f
′
m−r(0), (22)

G2(h, f ;m,m)−G2(h, f ;m0, m) =
∆

β

∑

r

[hr(0;m)− hr(0;m0)] fm−r(0). (23)

Note that all of these terms stay finite as ∆ → 1. If m0 and m happen to lie in

different compartments, equations (21) and (22) contain a multiple of (1 − ∆)−1 and

equation (23) retains an even more strongly diverging term proportional to (1 −∆)−2.

However the term proportional to (1 −∆)−1 in G1(g
′, f ;m,m)− G1(g

′, f ;m0, m) does

not vanish whether m0 and m are in the same compartment or not. Therefore, the

expressions containing this term diverge as ∆ → 1. As a result, if the particles start in

different compartments, the mean encounter time diverges as (1−∆)−1 with increasing

confinement strength, whereas its variance diverges as (1 − ∆)−2. If the particles

start in the same compartment, the mean encounter time is always finite regardless

of confinement strength; however, the variance still diverges with (1−∆)−1.

In order to display the effects of confinement strength, it is convenient to define the

normalized mean and variance of the return time as

µrn = µr/µr,per, (24)

σ2
rn = σ2

r /σ
2
r,per, (25)

where µr,per and σ
2
r,per are the mean and variance of the return time in a periodic lattice

that does not include any barriers (see equations (49) and (50) of the next section

regarding µr,per and σ2
r,per). In figure 2, we display the behaviour of the normalized

mean and variance as a function of confinement strength, ∆, for a lattice with N = 25

and H = 4.

It is interesting to note that when the random walker and the target start in the

same compartment, and as the transfer rate between two compartments goes to zero,

the variance of the return time increases without bound even if the lattice is finite.

As the confinement strength increases, the random walker rarely escapes from the first

compartment, which includes the target, without encountering the target first. Even

though these escape without encounter events are rare, their impact on the return time

distribution is significant due to the lengthy excursion the random walker may have to

take after the escape, and may lead the second moment of the return time distribution

to diverge.

In order to gain insight into how the variance of the return time can diverge in

a finite lattice in a more quantitative manner, let us consider a simplified problem.
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Figure 2. Normalized mean and variance of the return time as a function of

confinement strength ∆, given by equations (24) and (25). Note that the normalized

mean return time is practically unaffected by the confinement strength; whereas its

variance diverges as ∆ → 1. For this plot, N = 25 and H = 4.

Consider a periodic lattice with N compartments, and suppose that the transfer rate

between each compartment is equal to f , and that the confinement strength is high, such

that f ≃ 0. Since the random walker cannot transfer between compartments easily, it

will be uniformly distributed over an empty compartment before it escapes, and the

distribution of the escape time can be well approximated by an exponential distribution

fe−ft (also see ref. [33]). Therefore, we can think of each compartment as a lattice site

where the random walker hops between adjacent sites at a rate f . We are interested

in calculating the mean and variance of the return time, that is the time it takes for

the random walker to find the target if they are placed in the same compartment at

t = 0. Starting from this configuration, suppose that the random walker moves to

another compartment without ever finding the target with probability Pfug, and it finds

the target without ever leaving the compartment with probability 1 − Pfug. Therefore,

the distribution of return times can be separated into two parts

Pr(t) = (1− Pfug)P0(t) + PfugP1(t; f), (26)

where P0(t) is the return time distribution given the random walker stays in the initial

compartment until it finds the target, and P1(t; f) is the distribution of the return time

if the random walker left the initial compartment without encountering the target first.

We do not assume a specific form for P0(t), but we use the fact that it does not depend

on f . If the confinement strength is high, i.e. f ≃ 0, Pfug can be approximated by f/fr,

where f−1
r is the average time it takes for the random walker to find the target, given it

can never escape the compartment. The calculation of Pfug involves defining a random

variable that is positive (negative) when the escape takes place before an encounter, and
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Figure 3. Distribution of the return time for different confinement strengths ∆,

obtained by numerical inversion of the Laplace transform Q̃(ǫ) (see equation (33))

and averaging over adjacent random walker-target configurations. In all cases, we

considered the parameter values N = 25, and H = 4. Plots in the main figure are

shown on log-log axes, and display the features of the return time distribution for

different confinement strengths. The numbers placed near the curves indicate the

value of ∆ = 0.999. In order to facilitate the discussion of the physical reasons for

the observed features of the return time, we indicated three regimes for the curve with

∆ = 0, as shown by the Roman numerals (I), (II) and (III). See text for a detailed

discussion of the behavior of the return time in these regimes. Inset contains the

same data plotted on semilog (y) axes, and shows that the tail of the distributions are

exponential functions.

calculating the probability with which this variable takes on positive (negative) values.

The details of this calculation can be found in ref. [33]. Note that fr is independent of f ,

and is determined by how many sites there are in a compartment and the hopping rate

between sites. Therefore, in the strong confinement limit, the return time distribution

can be expressed as

Pr(t) = (1−
f

fr
)P0(t) +

f

fr
P1(t; f). (27)

The nth moment of Pr(t) is given by

〈tn〉r =

(
1−

f

fr

)
〈tn〉0 +

f

fr
〈tn〉1, (28)

where 〈tn〉i is the nth moment of the distribution Pi(t). As P1(t) is the return time

distribution for a random walk in a lattice of N sites with waiting time distribution

approximated by fe−ft, we can use the results derived by Montroll and Weiss [21] to

obtain

〈t〉1 =
N

f
, (29)
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〈t2〉1 = 2N
Nφ(N) + 1

f 2
, (30)

where φ(N) is a sum whose value as N → ∞ can be approximated by 2N/3 (see ref. [21]

equation II.29). Therefore, mean and variance of the return time distribution can be

expressed as

µr = 〈t〉r =
fr〈t〉0 +N

fr
−
f〈t〉0
fr

, (31)

σ2
r = 〈t2〉r − 〈t〉2r =

2N(Nφ(N) + 1)

frf
+

(
1−

f

fr

)
〈t2〉0 − µ2

r, (32)

Note that as the confinement strength increases further, i.e. f → 0, the mean return

time does not diverge, consistent with our other findings. In contrast, the variance of the

return time keeps increasing without bound, due to the first term in the right hand side

of equation (32), even in a finite lattice. Note that for the case of complete confinement,

i.e. f = 0, equation (28), and not (31) or (32), should be used to obtain the correct

moment.

3.1.1. Taking the inverse Laplace transform of Q̃(ǫ) In order to display the full first-

passage time distribution in time, we need to take the inverse Laplace transform of

equation (3). After solving the linear system in equation (8) for X , we can calculate

P̃ (ǫ, ~r; t = 0, ~r0) and P̃ (ǫ, ~r; t = 0, ~r) (see equation (6)), and finally the Laplace transform

of the first-passage time distribution Q̃(ǫ), as given by equation (3). There is no

straightforward way to take the inverse Laplace transform of Q̃(ǫ) by analytical methods.

Therefore, we use a numerical method to invert the Laplace transform.

We pick the Gaver-Stehfest method [34, 35] because it only requires the evaluation

of the Laplace transform at real values of the Laplace transform variable, and is reliable

when the inverse transform is a bounded function such as the distribution of first-passage

times. Employing the algorithm described by Abate and Whitt [36], we can approximate

the inverse Laplace transform of Q̃(ǫ) by

Q(t) =
ln 2

t

2M∑

k=1

wkQ̃(k
ln 2

t
), (33)

wk = (−1)M+k

min(k,M)∑

j=⌊(k+1)/2⌋

jM+1 2j!

(j!)2(M − j)!(2j − k)!(k − j)!
,

where M is a positive integer and ⌊(k + 1)/2⌋ means the largest integer less than or

equal to (k+1)/2. The number M is chosen based on the available numerical precision.

According to an estimate given in reference [36], the calculation is reliable with 2.2M

digits of precision.

In figure 3, the distribution of return times, obtained by averaging Q(t) over

all adjacent random walker-target configurations and denoted by Qr(t), is plotted for

N = 25 and H = 4, for different confinement strengths. To ensure the accuracy of

results, the calculation was performed with 58 digits of precision andM = 20. The axes
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in the main figure are both logarithmic to show the features of the curves over 6 decades

in time (dimensionless). The inset shows the same data plotted on semilogarithmic

axes (y), and indicates that the tail of the distributions decay exponentially, with an

exponent that is inversely proportional to confinement strength.

In order to discuss the features of the return time distribution, we will focus on

the case of strong confinement (green curve in figure , with ∆ = 0.999), and explain

its behavior in physical terms, over three regimes indicated by the Roman numerals

(I), (II) and (III) in figure 3. Behavior of the return time distribution for different

confinement strengths is almost identical at short times because the effects of neither

the compartment boundaries nor the finite size of the whole lattice are felt by the

random walker when it finds the target before exploring most of the lattice (see regime I

in figure 3). If there were no compartments and the lattice was infinite, we expect regime

I to continue without giving way to an exponential decay, such that the mean return

time is infinite, as it is well known for infinite, translationally invariant lattices [21]

(also see equation (49) of the next section). At longer times, the features of the

return time distribution significantly depend on the strength of confinement. As seen

in regime II, in the presence of strong confinement, the return time distribution decays

sharply after regime I, because the random walker quickly becomes well-mixed within the

compartment that contains the target (due to the small escape rate that is proportional

to 1−∆). This sharp decay can be explained easily as the process of finding a target in

a well-mixed system can be thought as Poisson process with a constant rate, giving rise

to an exponentially decaying hitting time distribution. As the compartment boundaries

are not perfectly reflecting, the random walker can escape without meeting the target.

Even though the probability of occurrence of such an event is small, when it happens, it

takes a long time before the random walker finds the target, as it searches in at least one

empty compartment for a time that scales as (1 −∆)−1. For the case with ∆ = 0.999,

this part of the return time distribution is denoted by regime III. As the lattice is finite,

regime III eventually ends with an exponential decay, reflecting the fact that if the

random walker cannot find the target for a long time, it can be thought as a particle

that is uniformly distributed over the lattice, and the arguments presented for regime II

follow. Note that the time at which the final exponential decay begins is proportional

to the confinement strength ∆, as the time is takes for the system to become well-mixed

is inversely proportional to the transfer rate between compartments, given by 1−∆.

3.2. A finite 2D lattice with reflecting boundaries

In this section, we consider a 2D lattice of M2 sites with reflecting boundaries and

calculate the mean and variance of the first-passage time, again for a random walk

with jumps between neighbouring sites. We present our results for the first arrival

time of a mobile walker on an immobile target. Contrary to the previous section, here

we treat time as a discrete variable. However, the results obtained for discrete time

can be translated into their continuous time analogues as we will note at the end of
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this section. We would like to note that the probability propagator for a lattice with

reflecting boundaries can in be principle obtained by using methods other than the one

explained here, such as the method of images and discrete Fourier transform [32].

Let ~r, and ~r0 be vectors containing the parameters that fully describe the state of a

system at times t and 0, respectively. We denote the probability of finding the system in

state ~r at time t, given it was in state ~r0 at t = 0 by P (~r, t|~r0, 0). Here, we are interested

in calculating the probability F (~r, t|~r0, 0) of finding the system in state ~r for the first

time at t, given it was in state ~r0 at t = 0. These two probabilities are related by

P (~r, t|~r0, 0) = δt,0δ~r,~r0 +
t∑

u=1

F (~r, u|~r0, 0)P (~r, t|~r, u), (34)

which simply states that P (~r, t|~r0, 0) is the probability that the system first arrives at

state ~r at time u, and is still found in that state at time t. It is more convenient to work

with the generating functions for F and P , given by

P (~r|~r0, z) =

∞∑

t=0

ztP (~r, t|~r0, 0), (35)

F (~r|~r0, z) =

∞∑

t=1

ztF (~r, t|~r0, 0). (36)

If we multiply both sides of equation (34) by zt, sum over t from 0 to ∞, and rearrange

terms, we get [21]

F (~r|~r0, z) =
P (~r|~r0, z)− δ~r,~r0

P (~r|~r, z)
. (37)

Note that equation (37) provides us with a way for calculating F (~r|~r0, z) in any system

for which we know the probability distribution P (~r, t|~r0, 0). Here, the first system we

consider consists of a random walker and a fixed target (a single lattice site) in a finite 2D

lattice with reflecting boundary conditions. Therefore, F (~r, t|~r0, 0) is the first passage

time distribution, for a random walker that starts at site ~r0 = (m0, n0) and arrives at

~r = (m,n) for the first time at time t. In the following, we show the P (~r, t|~r0, 0) in a

confined domain can be constructed from its counterpart in a finite lattice with periodic

boundary conditions.

Random walk in a lattice with reflective boundary conditions can be reduced to

random walk in a periodic lattice of larger size. We start our discussion by considering

the 1D case, which is simpler to illustrate. In a 1D lattice with periodic boundary

conditions, i.e. a ring of N lattice sites, the probability P (m, t|m0, 0) evolves according

to

P (m, t+ 1|m0, 0) =
1

2
P (m+ 1, t|m0, 0) +

1

2
P (m− 1, t|m0, 0), (38)

which simply states that a particle moves to an adjacent lattice site with probability 1/2

at each time step. Solving equation (38) for the generating function of P (m, t|m0, 0),

see equation (35), by discrete Fourier transformation gives

P (m|m0, z) =
1

N

∑

k

e−ik(m−m0)

1− z cos k
, (39)
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where k = 2πℓ/N , ℓ = 1, 2, ..., N . Using equations (39) and (37) we can calculate

the first passage time distribution and its moments. See Montroll and Weiss [21] for a

detailed discussion and results.

Here, we describe how these previously known results for periodic lattices can be

used to construct the probability function for a lattice with reflecting boundaries. Note

that the reflective boundary condition we consider here implies that when the random

walker attempts to cross a boundary, it is reflected back, so that it moves at all time

steps without the possibility of waiting at a boundary site. Suppose that we squeeze

a ring, so that sites 2 to N/2 are adjacent to sites N/2 + 2 to N , as illustrated in

figure 1(b). Next, we merge the adjacent pairs of sites, which amounts to summing up

the probability of occupancy of these sites, so that we are left with a new lattice with

only M = (N + 2)/2 sites. From now on, we denote probability of finding the random

walker at the mth site of the new lattice by Pc(m, t|m0, 0), where 1 < m,m0 < M

and the subscript c indicates that the random walker is confined between two reflective

boundaries. Putting all these together, the transformation of probabilities from the

original periodic lattice to the final lattice with reflective boundary conditions becomes

Pc(m, t|m0, 0) = P (m, t|m0, 0) + α(m)P (N + 2−m, t|m0, 0), (40)

where α(m) = 0 for m = 1,M and 1 otherwise. Note that the boundary points are not

affected by the transformation. This result can be readily extended to 2D. In 2D, the

periodic lattice is a torus instead of a ring. It is convenient to think that each site on

a torus belongs to two rings that extend along the two independent coordinates. As

illustrated in figure 1(c), we need to apply the transformation we used in the 1D case

two times for each point on the torus, such that a maximum of 4 sites may be merged.

The transformation in 2D becomes

Pc(~r, t|~r0, 0) = P (~r, t|~r0, 0) + α1(~r)P (N + 2−m−m0, N + 2− n− n0, t|m0, n0, 0)

+ α2(~r)P (m,N + 2− n− n0, t|m0, n0, 0)

+ α3(~r)P (N + 2−m−m0, n, t|m0, n0, 0), (41)

where α1 = 1 for m 6= 1,M and n 6= 1,M , α2 = 1 for m = 1,M and n 6= 1,M , and

finally α3 = 1 for m 6= 1,M and n = 1,M ; all of them are equal to 0 otherwise. In other

words, in the final lattice with reflective boundary conditions, if the site (m,n) is at a

corner, α1 = α2 = α3 = 0, if it is on one of the boundaries but not at a corner, α1 = 0,

α2 or α3 is equal to 1 depending on the boundary, and if it is away from the boundaries

α1 = α2 = α3 = 1. Note that αi does not depend on the initial conditions.

The generating function for Pc(~r, t|~r0, 0) is simply the generalization of equation

(39) to 2D, and is given by

Pc(~r|~r0, z) =
∑

~k

ξ(~r, ~r0, ~k)

1− z(cos k1 + cos k2)/2
, (42)

where ~k = (k1, k2), ki = 2πℓ/N , ℓ = 1, 2, ..., N , and

ξ(~r, ~r0, ~k) =
1

N2

[
e−ik1(m−m0)−ik2(n−n0) + α1e

−ik1(2−(m+m0))−ik2(2−(n+n0))
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+ α2e
−ik1(m−m0)−ik2(2−(n+n0)) + α3e

−ik1(2−(m+m0))−ik2(n−n0)
]
. (43)

Substituting the above expression for Pc(~r|~r0, z) in equation (37), we obtain the

generating function for the first-passage time distribution Fc(~r|~r0, z). The generating

function Fc(~r|~r0, z) is related to Fc(~r, t|~r0, 0) as follows

Fc(~r, t|~r0, 0) =

(
1

t!

dt

dzt
Fc(~r|~r0, z)

)∣∣∣∣
z→0

. (44)

The mean and variance of this distribution can be conveniently calculated, using the

definition in equation (36), and are found to be

µ~r0,~r =

(
d

dz
Fc(~r|~r0, z)

)∣∣∣∣
z→1

,

σ2
~r0,~r

=

(
d2

dz2
Fc(~r|~r0, z)

)∣∣∣∣
z→1

+ µ~r0,~r − µ2
~r0,~r
,

which are explicitly given by

µ~r0,~r =
δ~r0,~r
ξ0(~r)

+
1

ξ0(~r)

(
β
(0)
~r,~r − β

(0)
~r,~r0

)
, (45)

σ2
~r0,~r

=

(
2β

(0)
~r,~r0

ξ0(~r)2
+ µ~r0,~r − µ2

~r0,~r

)
δ~r0,~r +

1

ξ0(~r)2

([
β
(0)
~r,~r

]2
−
[
β
(0)
~r,~r0

]2)

+
1

ξ0(~r)

(
β
(0)
~r,~r − β

(0)
~r,~r0

+ 2
[
β
(1)
~r,~r − β

(1)
~r,~r0

])
, (46)

where

β~r,~r0(z) =
∑

~k 6=(2π,2π)

ξ(~r, ~r0, ~k)

1− z(cos k1 + cos k2)/2
,

β
(n)
~r,~r0

= lim
z→1

dn

dzn
β~r,~r0(z),

ξ0(~r) = N−2 (1 + α1(~r) + α2(~r) + α3(~r)) .

In order to test the validity of equations (45) and (46), we compared them against

Monte Carlo simulations for five randomly chosen initial and final position pairs (~r0, ~r)

in a 5 × 5 lattice. In the simulations, the random walker starts at site ~r0, and hops

between adjacent lattice sites, at each time step. If the walker is at a boundary, the

probability of moving perpendicular to the boundary is twice that of moving along the

boundary, such that if it attempts to cross the boundary, it is reflected. The comparison

between simulation results and predictions given in equations (45) and (46) are presented

in table 1, which shows perfect agreement. Note that a similar result for the first-passage

time was given earlier by Condamin et al. [26] for a rectangular lattice; however, the

boundary conditions employed in that study allows the random walker to wait at the

boundary during a time step, giving rise to first-passage time statistics that is different

from what we find here, for finite lattices.

In particular, the mean and variance of the return time, that is the time it takes for

the particle to return to its starting point averaged over all initial positions, are given
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µ~r0,~r σ2

~r0,~r

~r0, ~r eqn. (45) sim. eqn. (46) sim.

(5,2), (4,5) 58.1 58.2±0.4 3110.4 3134.5±79.7

(2,1), (2,3) 19.8 19.7±0.2 511.2 503.8±14.3

(5,2), (3,1) 42.1 42.3±0.6 2149.4 2168.8±68.3

(4,1), (2,4) 64.2 64.3±0.7 3149.2 3165.2±91.5

(5,3), (5,2) 37.3 37.1±0.4 2681.1 2651.3±77.7

Table 1. To confirm the validity of the mean and variance of the first-passage time

given in equations (45) and (46), we compared them against Monte Carlo simulations

of lattice walks, for five randomly chosen initial and final points in a 5× 5 lattice. See

text for the details of the simulation algorithm, especially concerning how particles

at the boundary move. These results show that theory and simulations agree within

statistical limits (the values given after ± signs correspond to the standard deviation

of simulation results).

by

µr =
1

M2

∑

~r0

1

ξ0(~r0)
=

(M − 1)2(M + 2)2

M2
=M2 + 2M − 3−

4

M
+

4

M2
, (47)

σ2
r =

1

M2

∑

~r0

(
2β

(0)
~r0,~r0

ξ0(~r0)2
+ µ~r0,~r0 − µ2

~r0,~r0

)

=
2

M2

∑

~r0

β
(0)
~r0,~r0

ξ0(~r0)2
−

(M − 1)4(M + 6)2

M2
+ µr. (48)

To check the validity of the mean and variance of the reencounter (return) time, we

again compared them against results obtained by Monte Carlo simulations. In figure 4,

we display the comparison between simulation results and equations (47) and (48) for

small lattices of up to 100 sites, which confirms the validity of theoretical predictions.

In a d-dimensional lattice with Md sites and periodic boundary conditions, the

mean and variance of the return time are given by [21]

µr,per =Md, (49)

σ2
r,per = 2Md

′∑

~k

(
1−

1

d

d∑

i=1

cos(2πki/M)

)−1

+Md(1−Md), (50)

where ~k = (k1, k2, k3, ..., kd), ki = 1, 2, 3, ...,M , and the prime indicates that the value

of ~k for which the denominator of the summand becomes 0 is excluded.

Finally, we would like to note that if we treat the motion of the particles as a

continuous time random walk with exponential waiting time τ , the mean and variance

for the continuous return time will be related to the results above by [21]

µ′
r = τµr

σ′2
r = τ 2

(
σ2
r + µr

)
.
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Figure 4. Mean and variance of the return time, as a function of lattice size, obtained

by Monte Carlo simulations and via equations (47) and (48). Results show remarkable

agreement between the theory and simulations. For the simulation results, error bars

indicate the standard deviation around the mean. Given the number of simulation

runs per initial condition was sufficiently large (104), the variation around the mean

is almost entirely due to different initial conditions. Note that the error bars are

asymmetric as the y axis is logarithmic.

See Montroll and Weiss [21] for more general relations valid for arbitrary waiting time

distributions.

4. Discussion and conclusions

In summary, we presented solutions for two first-passage time problems for lattice walks

in the presence of temporarily or completely confining domains. For a single random

walker jumping between adjacent lattice sites in a finite 1D lattice partitioned into

temporarily confining domains by periodically placed permeable barriers, we gave exact

formulas for the mean and variance of the first-passage time from an arbitrary site to

a target site, and the return (reencounter) time distribution. One of our interesting

findings is that the mean return time weakly depends on the confinement strength,

which is inversely proportional to the rate of crossing a barrier; whereas its variance

increases without bound (see figure 2). This may have interesting implications for

reversible reactions that take place in a partitioned medium. For reactions such as

reversible dimerization, the time it takes before the reactants reencounter following

a dissociation controls the time between reaction events, hence the reaction rate. In

our case, the mean return time is almost independent from the confinement strength,

implying that the average forward rate of reversible reactions between a random walker

and a target site does not depend on confinement strength. However, the variance of
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the reaction rate would strongly depend on confinement strength. Therefore, ensemble

averaged measurements of reaction rates may not reveal any features of the structure

of the medium; however, single particle level observations that are able to measure the

variance can. Furthermore, by using a numerical method to invert Laplace transforms,

we presented the full first-passage time distribution for this case, and compared it with

the analogous distribution in a translationally invariant lattice that does not contain

any permeable barriers (see figure 3).

In a finite 2D lattice with reflective boundaries, i.e. complete confinement, we gave

exact results for the mean and variance of the first-passage time from an arbitrary site

to a target, as well as the return time. We obtained these results by finding a relation

between the lattice Green’s functions for a translationally invariant periodic lattice and

that for a finite lattice with reflective boundaries (see equations (40) and (41)). It is

worth noting that when reactants are mobile, obtaining exact solutions under general

conditions is a formidable task. Nevertheless, Moreau et al. [37] gave generally valid

results for the upper bound of the time to reaction when the reactants are mobile, in

a system consisting of many interacting random walkers. In a translationally invariant

periodic lattice, a system of two mobile walkers can be thought as a single walker that

jumps twice as frequently in the presence of fixed targets, as discussed in Abad et al. [38],

and Abad [39]. For a detailed discussion on this, and its generalization to random walks

in disordered networks, see Garćıa Cantú and Abad [40]. In higher dimensions, a precise

relationship between the return time and the properties of spatial heterogeneities such

as confining domains, or the presence of other interacting walkers [37] has still not been

found, and is worth investigating.

Effects of confinement on other aspects of molecular interactions in a lattice

has been the subject of several other recent studies as well. In a series of works,

Kozak and collaborators studied bimolecular reactions on a lattice, with periodic or

confining boundary conditions, by considering the motion of two independent random

walkers [13, 15, 17]. The main quantity of interest in their studies was the average

number of steps that the random walkers take before an encounter. One of their findings

is that for small, confined, systems, i.e. when the particles can rapidly explore most of

the space available to them, counter intuitive regimes may be observed in which reaction

efficiency may decrease with increasing particle mobility [18]. Furthermore, the presence

of a large number of inert particles is a significant and physically meaningful factor that

can influence reaction rates. For instance, Schmit et al. [41] considered a lattice walk

model and predicted that the rate of bimolecular diffusion limited reactions in confined,

crowded environments can behave non-monotonically. A series of remarkable results

about the effect of confining geometries on the first-passage times were obtained by

Condamin et al. [25, 22, 26], who also discussed the effects of having multiple targets,

and considering random walks in continuum.

In our future studies, we would like to develop a basic theory of reversible molecular

associations in a heterogeneous medium, partitioned into transiently confining domains,

based on a stochastic study of the spatio-temporal distribution of molecular encounters
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at the single molecule level. Such a theory is much needed in studying mesoscopic

phenomena in soft matter, especially when the number density of interacting molecules

is low. We believe that the conceptual study of chemical reactions and the formation of

dynamic, functional molecular complexes could greatly benefit from the development of

a theoretical framework along these lines.
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