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A Stronger LP Bound for Formula Size Lower Bounds
via Clique ConstraintsI

Kenya Ueno

Young Researcher Development Center and
Graduate School of Informatics,

Kyoto University,
Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

We introduce a new technique proving formula size lower bounds based on the
linear programming bound originally introduced by Karchmer, Kushilevitz and
Nisan and the theory of stable set polytopes. We apply it to majority functions
and prove their formula size lower bounds improved from the classical result of
Khrapchenko. Moreover, we introduce a notion of unbalanced recursive ternary
majority functions motivated by a decomposition theory of monotone self-dual
functions and give matching upper and lower bounds of their formula size. We
also show monotone formula size lower bounds of balanced recursive ternary
majority functions improved from the quantum adversary bound of Laplante,
Lee and Szegedy.

Keywords: Formula Size Lower Bound, Linear Programming, Monotone
Self-Dual Boolean Function, Stable Set Polytope

1. Introduction

Proving formula size lower bounds is a fundamental problem in complexity
theory and also an extremely tough problem to resolve. A super-polynomial
lower bound of a function in NP implies NC1 6= NP [29]. There are a lot of
techniques to prove formula size lower bounds, e.g. [13, 25, 14, 11, 18, 7, 15, 16,
8]. Laplante, Lee and Szegedy [15] introduced a technique based on the quan-
tum adversary method [1] and gave a comparison with known techniques. In
particular, they showed that their technique subsumes several known techniques
such as Khrapchenko [13] and its extension [14]. The current best formula size
lower bound is n3−o(1) by H̊astad [7] and a key lemma used in the proof is also
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subsumed by the quantum adversary bound [15]. Karchmer, Kushilevitz and
Nisan [11] introduced a technique proving formula size lower bounds called the
LP (linear programming) bound and showed that it cannot prove a lower bound
larger than 4n2 for non-monotone formula size in general. Lee [16] proved that
the LP bound [11] subsumes the quantum adversary bound [15] and Høyer, Lee
and Špalek [8] introduced a stronger version of the quantum adversary bound.

Motivated by the result of Lee [16], we devise a stronger version of the LP
bound by using an idea from the theory of stable set polytopes, known as clique
constraints [20]. Suggesting a stronger technique compared to the original LP
bound [11] has possibilities to improve the best formula size lower bound because
it subsumes many techniques including the key lemma of H̊astad [7]. Moreover,
our technique has various possibilities of extensions such as rank constraints [21]
discussed in Section 6 and orthonormal constraints [6], each of which subsume
clique constraints. Due to this extendability, it is difficult to show the limitation
of our new technique.

To study the relative strength of our technique, we apply it to some families
of Boolean functions. For each family, we have distinct motivation to investigate
their formula size. Three kinds of Boolean functions treated in this paper are
defined as follows. They are monotone functions invariant under negations of
all the input variables and the output (i.e., self-dual).

Definition 1.1. A majority function MAJ2l+1 : {0, 1}2l+1 7→ {0, 1} out-
puts 1 if the number of 1’s in the input bits is greater than or equal to l + 1
and 0 otherwise. We define unbalanced recursive ternary majority functions
URecMAJh

3 : {0, 1}2h+1 7→ {0, 1} as

URecMAJh
3 (x1, · · · , x2h+1) = MAJ3(URecMAJh−1

3 (x1, · · · , x2h−1), x2h, x2h+1)

with URecMAJ1
3 = MAJ3. We also define balanced recursive ternary majority

functions BRecMAJh
3 : {0, 1}3h 7→ {0, 1} as

BRecMAJh
3 (x1, · · · , x3h) = MAJ3(BRecMAJh−1

3 (x1, · · · , x3h−1),

BRecMAJh−1
3 (x3h−1+1, · · · , x2·3h−1),

BRecMAJh−1
3 (x2·3h−1+1, · · · , x3h))

with BRecMAJ1
3 = MAJ3. Throughout the paper, n means the number of

input bits. Formula size and monotone formula size of a Boolean function f are
denoted by L(f) and Lm(f), respectively.

Although our improvements of lower bounds seem to be slight, it breaks
a stiff barrier (known as the certificate complexity barrier [15]) of previously
known proof techniques. The best monotone upper and lower bounds of major-
ity functions are O(n5.3) [30] and bn/4cn(1 + log n

n−2 ) [24], respectively. In the
non-monotone case, the best formula size upper and lower bounds of majority
functions are O(n4.57) [22] and dn/2e2 (= (l+1)2 when n = 2l+1), respectively,
which can be proven by the classical result of Khrapchenko [13]. In this paper,
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we slightly improve the non-monotone formula size lower bound while no pre-
viously known techniques has been able to improve it since 1971. In Section 4,
we will prove

L(MAJ2l+1) ≥ (l + 1)2 + 1.

It is known that the class of monotone self-dual Boolean functions is closed
under compositions (equivalently, in Post’s lattice [5, 23]). Any monotone self-
dual Boolean function can be decomposed into compositions of 3-bit majority
functions [9]. A key observation for our proofs is that a communication matrix
(defined in the next section) of a monotone self-dual Boolean function contains
those of the 3-bit majority function as its submatrices.

Ibaraki and Kameda [9] developed a decomposition theory of monotone self-
dual Boolean functions in the context of mutual exclusion in distributed systems.
The theory has been further investigated in [3, 4]. They showed that any mono-
tone self-dual function shares the structure of URecMAJh

3 in the following
sense. Let f be a monotone self-dual Boolean function and g be the function
g(x2, · · · , xn) = f(0, x2, · · · , xn). We can decompose g as g = f1 ∧ f2 ∧ · · · ∧ fk.
Then, f can be written as

f = MAJ3(x1, f1, (MAJ3(x1, f2,MAJ3(· · ·MAJ3(x1, fk−1, fk))))).

It holds URecMAJh
3 in its internal structure.

To determine its formula size is of particular interest because URecMAJh
3

can be regarded as one of the most basic cases among all the monotone self-dual
Boolean functions. Its analysis would be helpful for analysis for any monotone
self-dual Boolean function in general as a first step. In Section 5, we will prove

L(URecMAJh
3 ) = Lm(URecMAJh

3 ) = 4h+ 1.

Balanced recursive ternary majority functions have been studied in several
contexts [10, 15, 17, 19, 27, 28], see [15] and [27] for details. Ambainis et al. [2]
showed a quantum algorithm which evaluates a monotone formula (or called
AND-OR formula) of size N in N1/2+o(1) query even if it is not balanced. This

result implies BRecMAJh
3 can be evaluated in O(

√
5
h
) query by the quantum

algorithm because we have a formula size upper bound

Lm(BRecMAJh
3 ) ≤ 5h

as noted in [15]. Improving this result, Reichardt and Spalek [27] gave a quan-
tum algorithm which evaluates BRecMAJh

3 in O(2h) query. Reichardt [26] has
now shown that any formula of size N can be evaluated by a quantum algorithm
in O(

√
N) query. From this context, seeking the true bound of the monotone

formula size of BRecMAJh
3 is a very interesting research question.

The quantum adversary bound [15] has a quite nice property written as

ADV(f · g) ≥ ADV(f) ·ADV(g).

It directly implies a formula size lower bound

L(BRecMAJh
3 ) ≥ 4h.
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The generalized adversary bound of Høyer, Lee and Špalek [8] has the same
property. It has been revealed that it exactly characterizes the quantum query
complexity [26].

In Section 6, we will prove

Lm(BRecMAJ2
3) ≥ 20

and

Lm(BRecMAJh
3 ) ≥ 4h +

13

36
·
(

8

3

)h

.

This gives a slight improvement of the lower bound and means that the 4h lower
bound is at least not optimal in the monotone case.

2. Preliminaries

We define a total order 0 < 1 between the two Boolean values. For Boolean
vectors ~x = (x1, · · · , xn) and ~y = (y1, · · · , yn), we define ~x ≤ ~y if xi ≤ yi for all
i ∈ {1, · · ·n}. A Boolean function f is called monotone if ~x ≤ ~y implies f(~x) ≤
f(~y) for all ~x, ~y ∈ {0, 1}n. For a monotone Boolean function f , a Boolean vector
~x ∈ {0, 1}n is called minterm if f(~x) = 1 and (~y ≤ ~x)∧ (~x 6= ~y) implies f(~y) = 0
for any ~y ∈ {0, 1}n and called maxterm if f(~x) = 0 and (~x ≤ ~y)∧(~x 6= ~y) implies
f(~y) = 1 for any ~y ∈ {0, 1}n. Sets of all minterms and maxterms of a monotone
Boolean function f are denoted by minT(f) and maxT(f), respectively. A
Boolean function f is called self-dual if f(x1, · · · , xn) = f(x1, · · · , xn) where
x is the negation of x. Remark that if a Boolean function f is self-dual, its
communication matrix (see below) has some nice properties, e.g. |X| = |Y |.

A formula is a binary tree with leaves labeled by literals and internal nodes
labeled by ∧ and ∨. A literal is either a variable or the negation of a variable.
A formula is called monotone if it does not have negations. It is known that
all (monotone) Boolean functions can be represented by a (monotone) formula.
The size of a formula is its number of leaves. We define the (monotone) formula
size of a Boolean function f as the size of the smallest (monotone) formula
computing f .

Karchmer and Wigderson [12] characterize formula size of any Boolean func-
tion in terms of a communication game called the Karchmer-Wigderson game.
In the game, given a Boolean function f , Alice gets an input ~x such that f(~x) = 1
and Bob gets an input ~y such that f(~y) = 0. The goal of the game is to find
an index i such that xi 6= yi. They also characterize monotone formula size by
a monotone version of the Karchmer-Wigderson game. In the monotone game,
Alice gets a minterm ~x and Bob gets a maxterm ~y. The goal of the monotone
game is to find an index i such that xi = 1 and yi = 0. The number of leaves in
a best communication protocol for the (monotone) Karchmer-Wigderson game
is equal to the (monotone) formula size of f . From these characterizations, we
consider communication matrices derived from the games.
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Definition 2.1 (Communication Matrix). Given a Boolean function f , we de-
fine its communication matrix as a matrix whose rows and columns are indexed
by X = f−1(1) and Y = f−1(0), respectively. Each cell of the matrix contains
indices i such that xi 6= yi. In a monotone case, given a monotone Boolean
function f , we define its monotone communication matrix as a matrix whose
rows and columns are indexed by X = minT(f) and Y = maxT(f), respectively.
Each cell of the matrix contains indices i such that xi = 1 and yi = 0. A
combinatorial rectangle is a direct product X ′ × Y ′ where X ′ ⊆ X and Y ′ ⊆ Y .
A combinatorial rectangle X ′ × Y ′ is called monochromatic with respect to f if
every cell (~x, ~y) ∈ X ′× Y ′ contains the same index i. We call a cell a singleton
if it contains just one index.

The minimum number of disjoint monochromatic rectangles which exactly
cover all cells in the (monotone) communication matrix gives a lower bound
for the number of leaves of a best communication protocol for the (monotone)
Karchmer-Wigderson game. Thus, we obtain the following bound.

Theorem 2.2 (Rectangle Bound [12]). The minimum size of an exact cover by
disjoint monochromatic rectangles for the communication matrix (or monotone
communication matrix) associated with a Boolean function f gives a lower bound
of L(f) (or Lm(f)).

3. A Stronger Linear Programming Bound via Clique Constraints

In this study, we devise a new technique proving formula size lower bounds
based on the LP bound [11] with clique constraints. We assume that readers
are familiar with the basics of linear and integer programming theory. Karch-
mer, Kushilevitz and Nisan [11] formulate the rectangle bound as an integer
programming problem and give its LP relaxation.

Let R be the set of all monochromatic rectangles and xr be a variable asso-
ciated with a monochromatic rectangle r ∈ R. Given a (monotone) communi-
cation matrix, it can be written as

min
∑
r∈R

xr (number of rectangles)

s.t.
∑
r3c

xr = 1, (for each cell c in the matrix)

xr ≥ 0. (for each monochromatic rectangle r ∈ R)

The dual problem can be written as

max
∑
c

wc (sum of weights)

s.t.
∑
c∈r

wc ≤ 1. (for each monochromatic rectangle r ∈ R)

Here, each variable wc is indexed by a cell c in the matrix. From the duality
theorem, showing a feasible solution of the dual problem gives a formula size
lower bound.
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Now, we introduce our stronger LP bound using clique constraints from the
theory of stable set polytopes. We assume that each monochromatic rectangle
is a node of a graph. We connect two nodes by an edge if the two corresponding
monochromatic rectangles intersect. If a set of monochromatic rectangles q
compose a clique in the graph, we add a constraint∑

r∈q
xr ≤ 1

to the primal problem of the LP relaxation. This constraint is valid for all
integral solutions since we consider the disjoint cover problem. That is, we can
assign the value 1 to at most 1 rectangle in a clique for all integral solutions
under the condition of disjointness.

The dual problem can be written as

max
∑
c

wc +
∑
q

zq

s.t.
∑
c∈r

wc +
∑
q3r

zq ≤ 1, (for each monochromatic rectangle r ∈ R)

zq ≤ 0. (for each clique q)

Intuitively, this formulation can be interpreted as follows. Each cell c is assigned
a weight wc. The summation of weights over all cells in a monochromatic
rectangle is limited to 1. This limit is decreased by 1 if it is contained in
a clique. Thus, the limit of the total weight for a monochromatic rectangle
contained in k distinct cliques is k + 1.

In our proofs, we utilize the following property of combinatorial rectangles
which is trivial from the definition. If a rectangle contains two cells (α1, β1)
and (α2, β2), it also contains both (α1, β2) and (α2, β1). A notion of single-
ton cells also occupies an important role for our proofs because there are no
monochromatic rectangles which contain different kinds of singleton cells.

4. Formula Size of Majority Functions

In this section, we show a non-monotone formula size lower bound of the
majority function improved from the classical result of Khrapchenko [13]. First,
we look at the case for the 3-bit majority function. The original LP bound can
show a lower bound of at most 4.5, as can be easily checked by giving an upper
bound to the primal problem. As formula size must be an integer, this already
implies a lower bound of 5 on the formula size of the 3-bit majority function. By
using clique constraints, however, we can go beyond this limitation and directly
show the exact lower bound of 5.

Proposition 4.1.
L(MAJ3) = Lm(MAJ3) = 5.
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Proof. We have a monotone formula (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) for MAJ3.
From the definition, L(MAJ3) ≤ Lm(MAJ3). To prove L(MAJ3) ≥ 5, we
consider a communication matrix of the 3-bit majority function whose rows and
columns are restricted to minterms and maxterms, respectively. There are three
2× 2 monochromatic rectangles for each three index and these form a clique as
Figure 2.

100 010 001

110 2 1 1,2,3
101 3 1,2,3 1
011 1,2,3 3 2

Figure 1: The Communication Matrix of MAJ3. (Rows are 1-inputs and columns are 0-
inputs. Cells indicate where the inputs differ.)

In the dual problem, we assign weights 1 for all singleton cells and 0 for other
cells. There are 6 singleton cells and hence the total weight is 6. We take the
clique q composed of the three 2× 2 monochromatic rectangles containing two
singleton cells. It is clear that every pair of monochromatic rectangles contained
in q intersect at some cell. We assign zq = −1. Then, the objective function of
the dual problem becomes 5 = 6− 1.

100 010 001

110 1 1,2,3
101 1,2,3 1
011

100 010 001

110 2 1,2,3
101
011 1,2,3 2

100 010 001

110
101 3 1,2,3
011 1,2,3 3

Figure 2: Three Monochromatic Rectangles which Form a Clique q (K3)

Now, we show that all constraints of the dual problem are satisfied. First,
we consider a monochromatic rectangle which contains at most one singleton
cell. In this case, the constraint is clearly satisfied because the summation of
weights in the monochromatic rectangle is less than or equal to 1. Then, we
consider a monochromatic rectangle which contains two singleton cells. In this
case, the summation of weights in the monochromatic rectangle is 2. However,
it is contained in the clique q. It implies that the limit of the total weight is
decreased by 1. Thus, the constraint is satisfied. There are no monochromatic
rectangles which contain more than 3 singleton cells because a rectangle which
contains more than two kinds of singleton cells is not monochromatic.

Then, we generalize this idea for the case of the (2l+1)-bit majority function.
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Theorem 4.2.
L(MAJ2l+1) ≥ (l + 1)2 + 1.

Proof. We consider a communication matrix of the majority function with 2l+1
input bits whose rows and columns are restricted to minterms and maxterms,

respectively. Let m =

(
2l + 1

l

)
, which is equal to both the number of rows and

columns. Then, the number of all cells is m2. The number of singleton cells

is (l + 1)m and hence the number of singleton cells for each index is
(l + 1)m

2l + 1
.

The number of cells with 3 indices is(
l + 1

2

)
· l ·m =

l2(l + 1)m

2

because we can obtain a maxterm by flipping two bits of 1’s to 0’s and one bit
of 0 to 1 for each minterm.

We consider 3× 3 submatrices in the following way. From 2l+ 1 input bits,
we fix 2l − 2 arbitrary bits and assume that they have the same number of
0’s and 1’s. Then, we consider the remaining 3 bits. If the 2l + 1 input bits
compose a minterm, the 3 bits are either 110, 101 or 011. If the 2l + 1 input
bits compose a maxterm, the 3 bits are either 100, 010 or 001. Thus, we have
a 3× 3 submatrix, which has the same structure as the communication matrix
of the 3-bit majority function as Figure 1. The number of submatrices is(

2l + 1

3

)
·
(

2l − 2

l − 1

)
=
l2(l + 1)m

6
.

Each submatrix has 6 singleton cells and 3 cells each of which has 3 indices
corresponding to the remaining 3 bits. Note that each cell with 3 indices in
any submatrix is not contained in other submatrices. In other words, all the
l2(l + 1)m

2
cells with 3 indices are exactly partitioned into the

l2(l + 1)m

6
sub-

matrices.
We assign weights a for all singleton cells, 0 for cells with 3 indices and b for

other cells, which have more than 3 indices. Note that there are no cells with 2

indices. We consider
l2(l + 1)m

6
clique constraints assigned weights c (≤ 0) for

all the
l2(l + 1)m

6
submatrices. That is, we have a clique constraint for each

submatrix similarly to the proof of Proposition 4.1. More precisely, a clique
associated with a submatrix is composed of monochromatic rectangles which
contain 2 singleton cells in the submatrix.

Then, the objective function of the dual problem is written as

max
a,b,c

(l + 1)m · a+

(
m2 − (l + 1)m− l2(l + 1)m

2

)
· b+

l2(l + 1)m

6
· c. (1)

Now, we fix c = 2b ≤ 0. Then, we have

max
a,b

(l + 1)m · a+

(
m2 − (l + 1)m− l2(l + 1)m

6

)
· b. (2)
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We assume that a monochromatic rectangle contains k singleton cells and
consider all possible pairs of 2 singleton cells taken from the k singleton cells.
If a pair is in the same submatrix, the monochromatic rectangle is contained in
a clique associated with the submatrix. If a pair is not in the same submatrix,
the monochromatic rectangle contains two cells which are assigned weights b
because they have more than 3 indices. Thus, if the following inequality is
satisfied

k · a+ (k2 − k) · b ≤ 1 (3)

for any integer k

(
1 ≤ k ≤ (l + 1)m

2l + 1

)
, all constraints of the dual problem are

satisfied when c = 2b.
We can maximize (2) by assuming that the inequality is saturated when

k =
m

l + 1
− l2

6

as it satisfies

k2 − k
k

=
m2 − (l + 1)m− l2(l+1)m

6

(l + 1)m
.

In this case, we have

(2) =
(l + 1)m
m
l+1 −

l2

6

=
(l + 1)2m

m− 1
6 l

2(l + 1)

and obtain a lower bound

L(MAJ2l+1) ≥ (l + 1)2

1− ε(l)

where ε(l) =
l2(l + 1)

6 ·
(
2l+1

l

) . Since formula size must be an integer, we have shown

the theorem.

5. Formula Size of Unbalanced Recursive Ternary Majority Functions

In this section, we show the following matching bound of formula size for
unbalanced recursive ternary majority functions.

Theorem 5.1.

L(URecMAJh
3 ) = Lm(URecMAJh

3 ) = 4h+ 1.

Proof. First, we look at the monotone formula size upper bound. Recall that a
monotone formula of the 3-bit majority function can be written as (x1 ∧ x2) ∨
((x1 ∨ x2) ∧ x3). The important point here is that the literal x3 appears only
once. We construct (x2h ∧ x2h+1) ∨ ((x2h ∨ x2h+1) ∧ x2h−1) and replace x2h−1
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by a monotone formula representing URecMAJh−1
3 . A recursive construction

yields a 4h+ 1 monotone formula for URecMAJh
3 .

We now show the non-monotone formula size lower bound. Before using
clique constraints, we consider the original LP bound. The communication
matrix of URecMAJh

3 has some kind of recursive structure which can be in-
formally stated as follows.

(URecMAJh
3 )−1(1) := {∗ · · · ∗ 11} ∪ {(URecMAJh−1

3 )−1(1) + {01 | 10}},

(URecMAJh
3 )−1(0) := {∗ · · · ∗ 00} ∪ {(URecMAJh−1

3 )−1(0) + {01 | 10}}.

We can interpret it in the following recursive way as Figure 3. In the figure,

(· · · )00 (· · · )10 (· · · )01

(· · · )11 [· · · ] Y2h+1 Y2h
(· · · )01 X2h+1 [· · · ] Sh

(· · · )10 X2h S′h [· · · ]

Figure 3: Recursive Structure of the Communication Matrix of URecMAJh
3 (h ≥ 2)

rows denoted by “(· · · )11”, “(· · · )01” and “(· · · )10” means sets of inputs in
(URecMAJh

3 )−1(1) which have 11, 01 and 10 in the 2h-th and (2h+1)-th bits,
respectively. Similarly, columns denoted by “(· · · )00”, “(· · · )10” and “(· · · )01”
means sets of inputs in (URecMAJh

3 )−1(0) which have 00, 10 and 01 in the
2h-th and (2h+ 1)-th bits, respectively.

Inside the communication matrix of URecMAJh
3 , we consider the following

two submatrices denoted by Sh and S′h in Figure 3

Sh := {(URecMAJh−1
3 )−1(1) + 01} × {(URecMAJh−1

3 )−1(0) + 01},

S′h := {(URecMAJh−1
3 )−1(1) + 10} × {(URecMAJh−1

3 )−1(0) + 10}

in which any cell contains indices of neither 2h nor 2h + 1. So they have the
same structure as the communication matrix of URecMAJh−1

3 .
All the three kinds of singleton cells {1}, {2} and {3} are included in either

Sh or S′h because all the other cells outside Sh and S′h contain at least an index
2h or 2h + 1. There are no singleton cells in diagonal submatrices denoted by
[· · · ] in Figure 3. Since each of Sh and S′h contains two submatrices Sh−1 and
S′h−1, the number of singleton cells {1}, {2} and {3} in Sh and S′h doubles with

each iteration. So, the total number of singleton cells {1}, {2} and {3} is 3 · 2h.
Then, we consider the minimum submatrix Mh which contains all of three

kinds of singleton cells {1}, {2} and {3}. In other words, it is the submatrix
spanned by all singleton cells {1}, {2} and {3}. It does not contain any other
kinds of singleton cells except {1}, {2} and {3}. A submatrix M1 is the com-
munication matrix of the 3-bit majority function restricted to minterms and
maxterms as shown in Figure 1. Both the number of rows and columns of Mh

is equal to 3 · 2h−1 because Mh’s duplicate (h− 1)-times from M1 and does not
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have any common rows and columns. Hence, the number of all cells in Mh is
9 · 4h−1.

We assign weights a for all the singleton cells in Mh and weights b for all
other cells in Mh. Then, the total weight of all cells in Mh is written as follows.

max
a,b

3 · 2h · a+
(
9 · 4h−1 − 3 · 2h

)
· b. (4)

We consider constraints of the dual problem as k · a + (k2 − k) · b ≤ 1 for all
integer k (1 ≤ k ≤ 2h). We assume this inequality is saturated if and only if

k = 3 · 2h−2. Then, we get a =
24 · 2h − 16

9 · 4h
and b = − 16

9 · 4h
. In this case,

(4) = 4.
Next, we consider singleton cells {2l} and {2l+1} (2 ≤ l ≤ h) in X2l, X2l+1,

Y2l and Y2l+1. As shown in Figure 3, they are determined in the following way.

X2l := {(URecMAJl−1
3 )−1(1) + 10} × {∗ · · · ∗ 00},

X2l+1 := {(URecMAJl−1
3 )−1(1) + 01} × {∗ · · · ∗ 00},

Y2l := {∗ · · · ∗ 11} × {(URecMAJl−1
3 )−1(0) + 01},

Y2l+1 := {∗ · · · ∗ 11} × {(URecMAJl−1
3 )−1(0) + 10}.

A submatrix spanned by X2l ∪X2l+1 and Y2l ∪Y2l+1 dominates Ml in the sense
that any rectangle containing all cells in X2l∪X2l+1 and Y2l∪Y2l+1 also contains
all cells in Ml. Therefore, we can restrict these sets to the minimum subsets

X ′2l ⊆ X2l, X
′
2l+1 ⊆ X2l+1, Y

′
2l ⊆ Y2l, Y ′2l+1 ⊆ Y2l+1

so as to satisfy that a submatrix spanned by X ′2l ∪X ′2l+1 and Y ′2l ∪ Y ′2l+1 is the
minimum submatrix dominating Ml

Similarly to Ml, each of X ′2l, X
′
2l+1, Y ′2l and Y ′2l+1 also duplicates (h − l)-

times in the communication matrix of URecMAJh
3 (not URecMAJl

3). We
take unions of these duplicated sets as X ′′2l, X

′′
2l+1, Y ′′2l and Y ′′2l+1, respectively.

The number of rows and columns for each of X ′2l, X
′
2l+1, Y ′2l and Y ′2l+1 is 3·2h−2,

which is the half of the number corresponding to Mh because a submatrix
spanned by X ′′2l∪X ′′2l+1 and Y ′′2l∪Y ′′2l+1 tightly dominates Mh. For each row and
each column of X ′′2l ∪X ′′2l+1 and Y ′′2l ∪ Y ′′2l+1, there is exactly one singleton cell,
which is either {2l} or {2l + 1} according to the subscript, and no other kinds
of singleton cells. Thus, the number of singleton cells for each of X ′′2l, X

′′
2l+1,

Y ′′2l and Y ′′2l+1 is 3 · 2h−2.

For each l (2 ≤ l ≤ h), we assign weights
1

3 · 2h−2
for all the singleton cells

{2l} and {2l+ 1} in X ′′2l ∪ Y ′′2l and X ′′2l+1 ∪ Y ′′2l+1, respectively, and 0 for all the
other cells outside Mh. A monochromatic rectangle which contains x cells in
X ′′2l and y cells in Y ′′2l also contains x · y cells in Mh and submatrices denoted
by [· · · ] in Figure 3. These x · y cells in Mh have been already assigned weights

b = − 16

9 · 4h
. The same thing is true for the case of X ′′2l+1 and Y ′′2l+1. Since we
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have

(x+ y) · 4

3 · 2h
− xy · 16

9 · 4h
≤ 1 (5)

for all 0 ≤ x, y ≤ 3 ·2h−2, all the constraints without clique variables of the dual
problem are satisfied. The total weight of singleton cells {2l} and {2l+ 1} is 4.
So, the total weight of all cells now becomes 4h.

Now, we add the clique constraints to the primal problem and the adjust the
dual variables accordingly by moving some of the weight from the cell variables
to the clique variables. Here each of the cliques given for each M1 is the same
one argued in the proof of Proposition 4.1. The number of M1 in Mh is 2h−1.
We change weights of all non-singleton cells in submatrices S1 from b to 0. On
behalf of them, we consider a clique variable of the dual problem for each S1

in Sh and change weights of the clique variables from 0 to c = 2b. Then, (4)
becomes

max
a,b,c

3 · 2h · a+
(
9 · 4h−1 − 3 · 2h − 3 · 2h−1

)
· b+ 2h−1 · c. (6)

If we take a =
24 · 2h − 16

9 · 4h
, b = − 16

9 · 4h
and c = 2b, all the constraints of the

dual problem are satisfied and

(6) = 4 +
8

9
· 2−h.

Consequently, the objective value is 4h +
8

9
· 2−h. Since formula size must

be an integer, we have shown the theorem.

6. Monotone Formula Size of Balanced Recursive Ternary Majority
Functions

In this section, we show monotone formula size lower bounds of balanced
recursive ternary majority functions. For this purpose, we consider rank con-
straints, which are generalizations of clique constraints. Similarly to the case of
clique constraints, we consider a graph G composed of monochromatic rectan-
gles and its induced subgraph H. Let α(H) be the stability number of H, the
maximum number of vertices, no two of which are adjacent. If α(H) = 1, then
H is a clique. We consider a constraint∑

r∈H
xr ≤ α(H).

where r ∈ H means the vertex corresponding to a rectangle r is contained in
the induced subgraph H.

The rank constraint is valid for any induced subgraph H in the following
reason. Recall that in the induced graph, vertices represent rectangles and
an edge is included if the two rectangles intersect. Since the rectangles in a
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partition of the matrix are disjoint, the subgraph induced by a disjoint cover
form an independent set. Hence in any integral feasible solution, the number of
rectangles cannot exceed the size of the largest independent set. In other words,
we can assign 1 at most α(H) rectangles in H for any integral solution.

The dual problem can be written as follows.

max
∑
c

wc +
∑
q

zq +
∑
H

α(H)zH

s.t.
∑
c∈r

wc +
∑
q3r

zq +
∑
H3r

zH ≤ 1, (for each monochromatic rectangle r)

zq ≤ 0, (for each clique q)
zH ≤ 0. (for each subgraph H)

Before going to the general case, we consider the case of height 2. By using
clique constraints and rank constraints, we prove the following improved mono-
tone formula size lower bound while we know that the original LP bound cannot
prove a lower bound larger than 16.5. It is easy to verify this by showing an
upper bound (fractional partition) for the primal formulation for the LP bound.

Proposition 6.1.
Lm(BRecMAJ2

3) ≥ 20.

Proof. There are 27 minterms and 27 maxterms for the recursive ternary ma-
jority function of height 2. Among them, we choose the following 9 minterms

110,110,000 101,101,000 011,011,000
110,000,110 101,000,101 011,000,011
000,110,110 000,101,101 000,011,011

and 9 maxterms

111,100,100 111,010,010 111,001,001
100,111,100 010,111,010 001,111,001
100,100,111 010,010,111 001,001,111.

From these 9 minterms and 9 maxterms, a submatrix of the communication
matrix can be described as Figure 4. In the figure, we abbreviate a minterm
e.g. 101,101,000 by 110 and 101, which represent the second level and the first
level structure of the 9 bits, respectively. Notice that all minterms which we
choose have the same structure in all 3-bit minterm blocks at the first level.
The same thing is true for all 9 maxterms.

To describe 12 cliques q1, · · · , q12 and a induced subgraph H whose stability
number is 4, we give serial numbers for 81 cells as Figure 5. We take the
following 12 cliques each of which consists of 3 pairs of 2 singleton cells.

{ (5, 15), (4, 24), (13, 23) }, { (35, 45), (34, 54), (43, 53) },
{ (2, 12), (1, 21), (10, 20) }, { (62, 72), (61, 81), (70, 80) },
{ (29, 39), (28, 48), (37, 47) }, { (59, 69), (58, 78), (67, 77) },
{ (5, 35), (2, 62), (29, 59) }, { (15, 45), (12, 72), (39, 69) },
{ (4, 34), (1, 61), (28, 58) }, { (24, 54), (21, 81) (48, 78) },
{ (13, 43), (10, 70), (37, 67) }, { (23, 53), (20, 80), (47, 77) }.
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100 010 001
100 010 001 100 010 001 100 010 001

110 5 4 4,5 2 1 1,2 2,5 1,4 1,2,4,5

110 101 6 4,6 4 3 1,3 1 3,6 1,3,4,6 1,4
011 5,6 6 5 2,3 3 2 2,3,5,6 3,6 2,5

110 8 7 7,8 2,8 1,7 1,2,7,8 2 1 1,2
101 101 9 7,9 7 3,9 1,3,7,9 1,7 3 1,3 1

011 8,9 9 8 2,3,8,9 3,9 2,8 2,3 3 2

110 5,8 4,7 4,5,7,8 8 7 7,8 5 4 4,5
011 101 6,9 4,6,7,9 4,7 9 7,9 7 6 4,6 4

011 5,6,8,9 6,9 5,8 8,9 9 8 5,6 6 5

Figure 4: A Submatrix of the Communication Matrix of BRecMAJ2
3

100 010 001
100 010 001 100 010 001 100 010 001

110 1 2 3 4 5 6 7 8 9
110 101 10 11 12 13 14 15 16 17 18

011 19 20 21 22 23 24 25 26 27

110 28 29 30 31 32 33 34 35 36
101 101 37 38 39 40 41 42 43 44 45

011 46 47 48 49 50 51 52 53 54

110 55 56 57 58 59 60 61 62 63
011 101 64 65 66 67 68 69 70 71 72

011 73 74 75 76 77 78 79 80 81

Figure 5: Serial Numbers for 81 cells of the Submatrix

For each combination of 3 pairs in 12 cliques, it is easy to verify that rectangles
each of which contains both of 2 singleton cells from one of the 3 pairs compose
a clique. For each 2 clique of each line, they are concerned with the following
triplet of indices, respectively.

{1,2,3}, {4,5,6}, {7,8,9}, {1,4,7}, {2,5,8}, {3,6,9}

The first 3 triplets of indices capture the first level structure of the recursion
in some sense. A similar thing is true for the last 3 triplets of indices which
capture the second level structure of the recursion.

To get a better lower bound, we would like to utilize more combinations of
indices. In this regard, a rank constraint is very useful while clique constraints
are powerless anymore. We consider the following 18 pairs of singleton cells
which induce the subgraph H.

(5, 45), (15, 35), (4, 54), (24, 34), (13, 53), (23, 43),
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(2, 72), (12, 62), (1, 81), (21, 61), (10, 80), (20, 70),
(29, 69), (39, 59), (28, 78), (48, 58), (37, 77), (47, 67).

If a rectangle contains both of two singleton cells from one of 18 pairs, it also
contains 2 cells from 9 cells { 9, 17, 25, 33, 41, 49, 57, 65, 73 }. Thus, we
can choose at most 4 pairs without conflicts from 18 pairs. It implies that the
stability number of H is 4.

Notice that all these 12 cliques and the subgraph cover all pairs of two
singleton cells which have the same index. We assign 1 for all 36 singleton cells
in this submatrix and 0 for other cells. We take zq1 = · · · = zq12 = zH = −1.
Then, the objective value of the dual problem becomes 36 − 12 − 4 = 20. If a
rectangle contains at most one singleton cell, the constraint of the dual problem
is trivially satisfied. If a rectangle contains k (2 ≤ k ≤ 4) singleton cells, it is
covered by k−1 cliques or k−2 cliques plus the subgraph H. So, the constraint
is also satisfied. As a consequence, we obtain the formula size lower bound.

Note that we need a much more complicated argument to look at the non-
monotone case, which we do not investigate in this paper, because singleton cells
in the monotone communication matrix are not singleton in the non-monotone
communication matrix.

In the general monotone case, we can prove a slightly better lower bound
than the quantum adversary bound [15], which shows a 4h lower bound.

Theorem 6.2. For h ≥ 2,

Lm(BRecMAJh
3 ) ≥ 4h +

13

36
·
(

8

3

)h

.

Proof. First, we choose 3h minterms and 3h maxterms from 3h input bits of
BRecMAJh

3 so as to have the same structure in the 1st, 2nd, · · · and h-th
levels in the following sense. In the l-th level, we have 3h−l bits which are
recursively constructed from lower levels in the following way. We partition 3l

bits into 3l−1 blocks each of which contains consecutive 3 bits. For each block
of 3 bits, we replace them into 1 bit which is the output of MAJ3 with the
3 bits. Then, we get 3h−(l+1) bits. We have 3h bits as input bits in the first
level and can construct them for each level by induction. If all of 3l−1 blocks
have the same 3 bits except 000 and 111 in the case of minterms and maxterms,
respectively, we call that they have the same structure in the l-the level. There
are 3h minterms and 3h maxterms because we have 3 choices in each level.
We consider the submatrix whose rows and columns are composed of these 3h

minterms and 3h maxterms, respectively.
From another viewpoint, we can interpret it as a recursively construction of

the submatrix Sh of the communication matrix of BRecMAJh
3 as follows. We

define Sh(k) (k = 1, 2, 3) as a matrix such that some cell of Sh(k) contains an
index (k−1) ·3h + i if and only if the corresponding cell of Sh contains an index
i. By induction, we can see that the number of all cells and singleton cells in Sh

is 9h and 6h, respectively. Singleton cells of each index from 3h bits in Sh is 2h.
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Indices of cells in Th(1, 2), Th(2, 3) and Th(2, 3) in Figure 6 can be determined
from the property of combinatorial rectangles, but we do not go to the details
because we will assign the same weight for all these cells in each level.

100 010 001

110 Sh−1(2) Sh−1(1) Th−1(1, 2)
101 Sh−1(3) Th−1(2, 3) Sh−1(1)
011 Th−1(2, 3) Sh−1(3) Sh−1(2)

Figure 6: Recursive Structure of Sh for BRecMAJh
3 (h ≥ 2)

Before using clique and rank constraints, we consider the original LP bound.
We assign weights a for all singleton cells, b for other cells in the submatrix and
0 for all cells in the outside of the submatrix. Then, the objective value of the
dual problem is written as

max
a,b

6h · a+ (9h − 6h) · b. (7)

If a rectangle contains k singleton cells, it also contains at least k2 − k cells
which are not singleton. Thus, if k · a+ (k2− k) · b ≤ 1 is satisfied for all integer
k (1 ≤ k ≤ 2h), then all constraints of the dual problem are also satisfied. We
assume that the inequality is saturated if and only if k = (3/2)h. Then, we get

a =
2 · 6h − 4h

9h
and b = −4h

9h
. In this case, we have (7) = 4h.

Now, we incorporate clique and rank constraints. We change weights of all
cells except singleton cells in all S2’s in the second level from b to 0. Then, we
add 12 clique constraints and a rank constraint for each S2 in the second level
by following the way of Proposition 6.1. Let c and d be values assigned for every
clique and rank constraints, respectively. Then, the objective value of the dual
problem is

max
a,b,c,d

6h · a+ (9h − 81 · 6h−2) · b+ 12 · 6h−2 · c+ 4 · 6h−2 · d. (8)

If we take c = d = 2b, then we have

(8) = 6h · a+ (9h − 49 · 6h−2) · b = 4h +
13

36
·
(

8

3

)h

.

Since all weights which are changed from b to 0 are exactly compensated by
clique and rank constraints, all constraints of the dual problem are satisfied.

We do not exhaust the potential of our new method and have possibilities
to improve the lower bound. For example, we can improve the lower bound as

4h + c ·
(

8

3

)h

for some constant c by further detailed analysis in constantly

higher levels such as BRecMAJ3
3, BRecMAJ4

3 and so on.
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7. Conclusions

In this paper, we devised the new technique proving formula size lower
bounds and showed improved formula size lower bounds of some families of
monotone self-dual Boolean functions such as majority functions, unbalanced
and balanced recursive ternary majority functions. We hope that our method
will be able to improve formula size lower bounds for any monotone self-dual
Boolean function and even much broader classes of Boolean functions. Whether
our technique (or its extensions) can break the 4n2 barrier and improve the
lower bounds remains open.
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