provided by Kyoto University Kyoto University Research Information Repository		
Title	Discrimination among host tree species by the ambrosia beetle Platypus quercivorus	
Author(s)	Yamasaki, Michimasa; Futai, Kazuyoshi	
Citation	Journal of Forest Research (2012), 17(2): 149-155	
Issue Date	2012-04	
URL	http://hdl.handle.net/2433/154895	
Right	The final publication is available at www.springerlink.com	
Туре	Journal Article	
Textversion	author	

1 Title

Discrimination among host tree species by the ambrosia beetle *Platypus quercivorus*

4

5 Names and addresses of the authors

- 6 Michimasa Yamasaki^{*1} and Kazuyoshi Futai^{*2}
- 7 *1: Laboratory of Forest Biology, Division of Forest and Biomaterials
- 8 Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- 9 *2: Laboratory of Environmental Mycoscience, Division of Environmental
- 10 Science and Technology, Graduate School of Agriculture, Kyoto University,
- 11 Kyoto, Japan
- 12

13 Address of the corresponding author (Michimasa Yamasaki)

- 14 Laboratory of Forest Biology, Division of Forest and Biomaterials Science,
- 15 Graduate School of Agriculture, Kyoto University, Kitashirakawa
- 16 Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- 17 Tel: +81-75-753-6479
- 18 Fax: +81-75-753-6129
- 19 E-mail: risei@kais.kyoto-u.ac.jp
- 20
- 21 Article type, subject area and field
- 22 Original article, Biology and Ecology, Entomology
- 23
- 24 Page count
- 25 29 pages
- 26
- 27 Number of tables and figures
- 28 1 table, 3 figures

29 Abstract

The ambrosia beetle *Platypus quercivorus* is a vector for the fungus that 30 31causes Japanese oak wilt, and susceptibility to infestation by *P. quercivorus* 32 varies by tree species. We postulated that *P. quercivorus* discriminates 33 among host tree species differing in susceptibility to attack. To test this postulate, we counted the number of flying male beetles (NFM), the number 34of holes bored by male beetles (NH), and the number of flying female 35 beetles (NFF) per unit area of bark surface in three fagaceous tree species: 36 37 Quercus crispula (with high susceptibility to infestation) and Q. serrata and Castanea crenata (both with low susceptibility). NFM and NH were used to 38 calculate the proportion of male beetles that bored holes out of those that 39 40 flew to the tree (PBM). We used generalized additive models to predict NFM, NFF, and PBM. The locations of trees, expressed as x and y coordinates, 4142numbers of weeks after the first male beetle's flying (WEEK), diameters of trees 130 cm above ground (DBH), and tree species (SP) were incorporated 4344into the models as candidate explanatory variables. The best-fit models for NFM and NFF included WEEK and DBH and the effect of location; SP was 45not included in the models. For PBM, the best-fit model included WEEK, 46 DBH, and SP. The results indicate that male *P. quercivorus* prefer *Q*. 47crispula to Q. serrata and C. crenata and that selection is made before 48

 $\mathbf{2}$

- 49 boring holes on trees, but that *P. quercivorus* do not discriminate among host
- 50 species when they fly to trees.
- 51

52 Keywords

- 53 *Castanea crenata*, Host selection, Japanese oak wilt, *Quercus crispula*,
- 54 Quercus serrata

55 Introduction

57	In general, ambrosia and bark beetles use weakened trees as hosts
58	(Wood 1982). Random flight and random landings on trees are thought to
59	reduce beetle fitness in environments with low densities of weakened trees;
60	accordingly, beetles select appropriate hosts through visual or olfactory cues
61	(Byers et al. 2004; Zhang and Schlyter 2004; Pureswaran and Borden 2005;
62	Campbell and Borden 2006). The beetles start to attack healthy trees en
63	masse when they reach epidemic population sizes (Paine et al. 1997).
64	Subsequently, resource availability for the beetles increases dramatically,
65	especially in forests that are dominated by suitable host tree species. Even
66	during these epidemic phases, beetles need to select hosts carefully in forests
67	with high diversities of tree species, many of which are unsuitable.
68	In Japan, populations of ambrosia beetle Platypus quercivorus
69	(Murayama) (Coleoptera: Platypodidae) are considered to have reached
70	epidemic proportions in recent years. As vectors, their attacks on apparently
71	healthy-looking trees lead to Japanese oak wilt (Ito and Yamada 1998;
72	Kobayashi and Ueda 2005). Although they attack several species of
73	Fagaceae, beetle reproductive success varies by tree species (Kato et al.
74	2001; Kobayashi et al. 2004). In brief, forest tree species fall into three types

for *P. quercivorus*: suitable Fagaceae, unsuitable Fagaceae, and non-host
tree species. In such an environment, we suggest that *P. quercivorus*preferentially selects suitable Fagaceae trees using visual or olfactory cues.
Conversely, we postulate that tree species are avoided by *P. quercivorus*when these trees are associated with a reduced level of beetle fitness.

80 Lower *P. quercivorus* preference for particular tree species can be identified by reduced beetle activity in several phases of the infestation 81 82 process. The infestation process of P. quercivorus can be divided into four 83 phases. In phase 1, male beetles fly to a tree; in phase 2, they bore shallow holes in the bark; in phase 3, female beetles fly to the tree; and in phase 4, 84 after mating, male and female beetles construct galleries in the sapwood for 85 reproduction (Soné et al. 1998; Esaki et al. 2004). Previous studies on beetle 86 host selection strongly suggest that P. quercivorus avoids unfavorable tree 87 88 species in the earlier phases of infestation (phases 1–3) (Urano 2000; Yamasaki and Futai 2008). Exclusion of unfavorable trees before landing 89 90 has been suggested for bark beetles that use conifers as their hosts; they use 91 olfactory cues to distinguish non-host broad-leaved tree species from the 92correct host tree species (Zhang 2003; Byers et al. 2004; Zhang and Schlyter 2004). Moreover, pre-landing exclusion of thinner trees and post-landing 93 exclusion of trees with infection histories (for which there are reduced 94

 $\mathbf{5}$

95	probabilities of successful beetle reproduction) have been demonstrated in
96	field studies of <i>P. quercivorus</i> (Urano 2000; Yamasaki and Futai 2008).

When discerning differences in beetle activity among tree species, it is necessary to take into account other variables that affect behavior. Reported effects of host tree size on beetle activity (Akaishi et al. 2006; Yamasaki and Futai 2008) show that it is necessary to compare beetle activity on different tree species within the same size class. However, this is difficult to achieve in a field study. Assuming that there are

103 1 linear relationships between tree size and beetle activity parameters

104 (BAPs); and

105 2 normal distributions in BAPs,

analysis of covariance is appropriate for the detection of differences among 106 107 tree species. Even when the first assumption is satisfied, BAPs may not be 108 normally distributed. In addition, beetle activity fluctuates with time, and the 109 relationship between time and beetle activity is apparently nonlinear (Urano 2000; Ueda and Kobayashi 2001b). Moreover, beetle activity may show 110 111 dramatically high values at particular locations because of the effect of the 112 beetle's aggregation pheromone (Ueda and Kobayashi 2001a; Tokoro et al. 113 2007), and this effect must be taken into consideration. Accordingly, we 114 used a generalized additive model with nonlinear effects of time and location

as alternative methods for investigating differences in beetle activitiesamong tree species.

Capture of wild *P. quercivorus* with chemical traps is considered an 117 118 effective method for protecting fagaceous trees. A kairomone is emitted from trees and may affect host selection by *P. quercivorus*, but its chemical 119 120 nature is as yet unknown. However, the beetle's aggregation pheromone has 121 been identified (Kashiwagi et al. 2006). Unfortunately, a synthetic pheromone failed to capture the beetle effectively (Kamata et al. 2008). 122123 Determining differences in beetle activity among tree species will help to clarify ecological relationships, a necessary first step in establishing an 124125effective trapping method for wild beetles. Thus, we investigated how P. 126quercivorus activity varies through phases of the infestation processes on 127three species of Fagaceae differing in susceptibility: Q. crispula (high 128susceptibility), Q. serrata (low susceptibility), and Castanea crenata (low 129susceptibility).

130

131 Materials and methods

133 Study site and tree species

135	The study was conducted at Ashiu Forest Research Station in Kyoto,
136	Japan (35°18'N, 135°43'E), where substantial dieback of <i>Q. crispula</i> has
137	been underway since 2002. From July to October 2004, we studied
138	infestation patterns of <i>P. quercivorus</i> on tree specimens >10 cm in diameter
139	130 cm above ground (DBH). Twenty-two Q. crispula, eight Q. serrata, and
140	seven C. crenata trees were selected for study within a 25×25 -m plot
141	established on a south-facing slope of a secondary forest, at an altitude of
142	approximately 500 m. The forest was dominated by Q. crispula, Carpinus
143	laxiflora, and Acer sieboldianum. DBH, perimeter at 50 cm above the
144	ground, and perimeter at ground height were measured for each tree at the
145	beginning of the study. Setting the southwestern point of the plot as the
146	origin, we also measured the coordinate position of each tree in
147	two-dimensional space.

Numbers of <i>P. quercivorus</i> that flew to the trees were determined using
sticky paper traps (Kobayashi and Hagita 2000; Ueda and Kobayashi 2001b).
Two strips of sticky paper (Kamikiri-hoihoi; Earth Biochemical Co., Ltd.,
Tokushima, Japan), each 4×50 cm, were attached longitudinally to the
upper and lower sides of each tree trunk up to 50 cm above the ground. We
enumerated male (NFM) and female (NFF) beetles that flew to the bark of
each tree (per 400 cm^2 , i.e., total area of sticky paper attached to each tree)
by weekly counts of beetles caught in traps.
At the same time, we counted the number of holes (NH) bored by P .
quercivorus on the surface of a trunk (excluding areas covered by traps) up
to a height of 50 cm above the ground. Double counting of holes was
prevented by marking previously counted holes with colored push-pins. The
surface area over which beetle holes were counted was calculated by
assuming the shape of the subject surface was trapezoidal.
Within natural forests, intense P. quercivorus flight activity occurs
close to the ground (up to 2.5 m above soil level) (Igeta et al. 2004), and
beetle attacks are concentrated on basal parts of trees (Hijii et al. 1991).
Because it was difficult to count all beetles that flew to a tree and all holes

that they bored, we restricted monitoring of NFM, NFF, and NH to the areaup to 50 cm above ground.

171 On 29 May 2005, we examined subject trees and classified those with172 no leaf flush as dead.

173

174 Model selections

175

To discern differences in beetle activity parameters (BAPs) among tree 176 177species, we used generalized additive models (GAM) and generalized 178 additive mixed models (GAMM). The best models for predicting BAPs were 179selected using R 2.11.1 (R Development Core Team 2010). Generally, BAPs 180 fluctuate with time following a unimodal trajectory (Urano 2000; Ueda and 181 Kobayashi 2001b). Thus, we built the nonlinear effect of time into the 182models predicting BAPs. Linear effects of tree size were also incorporated 183 because BAPs increase with increasing tree size (Akaishi et al. 2006; Yamasaki and Futai 2008). Moreover, we must consider the effect of beetle 184 aggregation caused by the pheromone. This beetle uses an aggregation 185 pheromone to attract conspecifics (Ueda and Kobayashi 2001a; Tokoro et al. 186 187 2007), and the consequent mass attack by the beetle may conceal primary differences in BAPs among tree species. For instance, BAPs of trees that 188

189	received mass attacks may be significantly higher than those of lightly
190	attacked trees irrespective of tree species, and low DBH trees with low
191	beetle infection probabilities may have high BAP values when adjacent high
192	DBH trees receive mass attacks. Thus, we regarded the effects of spatial
193	heterogeneity in mass attack, and built them into the model. Taking the
194	effects of these covariates into consideration, we determined whether the
195	"tree species" factor was included in the best models as an explanatory
196	variable for predicting BAPs.
197	To detect differences among tree species in BAPs in phases 1 and 3,
198	NFM and NFF were fitted by GAMMs with log link function under the
199	assumption that these data follow a negative binomial distribution. The
200	candidate explanatory variables were the number of weeks after the first
201	male beetles flew (WEEK), DBH, 2D smoothing effects of location
202	(coordinates of each tree, 2D), and tree species (SP). We assumed a
203	nonlinear effect for WEEK and 2D and a linear effect for DBH and SP. The
204	models were offset by the natural log of the subject surface area of sticky
205	paper (400 cm ²). Individual trees were incorporated into the models as a
206	random intercept. The least significant term was removed from the models,

and we refitted the models until all terms were significant.

To detect differences in BAPs in phase 2, we analyzed the proportion of male beetles that bored holes out of those that flew to the tree (PBM) using

210	the data with $NFM > zero$. PBM was calculated from the number of holes
211	newly bored by male beetles per subject bark surface area of each tree
212	(AREA, cm^2) and the assumed number of flying male beetles per AREA.
213	The latter was calculated by dividing NFM by the subject surface area of
214	sticky paper (400 cm^2) and then multiplying it by AREA. PBM was fitted by
215	a GAM with logit link function under the assumption that these data follow a
216	binomial distribution. To deal with the overdispersion of the model, we
217	corrected the standard errors of coefficients by multiplying them by the
218	dispersion parameter. The candidate explanatory variables were WEEK,
219	DBH, and SP. We assumed a nonlinear effect for WEEK and linear effects
220	for DBH and SP. As in the case of the models for NFM and NFF, the least
221	significant term was removed from the model, and we refitted the model
222	until all terms were significant.

224 **Results**

225

The DBHs of the 37 observed fagaceous trees ranged from 10.4 to 22.2 cm for *Q. crispula*, 11.9 to 32.2 cm for *Q. serrata*, and 16.2 to 25.0 cm for *C. crenata*. Male beetles were trapped on 31 of these observed trees (Table 1). We found holes bored by beetles and we trapped female beetles on 22 of

230	these 31 trees (Table 1). By the end of the study period, five Q. crispula trees
231	and one C. crenata tree had died (Table 1). Calculating tree mortality as the
232	proportion of dead to infected trees, mortalities of Q. crispula, Q. serrata,
233	and <i>C. crenata</i> were 38.5% (5/13), 0% (0/3), and 16.7% (1/6), respectively.
234	The host visitation period of <i>P. quercivorus</i> for each tree species is
235	shown in Fig. 1. The first visitation of <i>P. quercivorus</i> was observed from
236	July to October on <i>Q. crispula</i> and from July to August on <i>Q. serrata</i> (Fig. 1).
237	In the case of <i>C. crenata</i> , the first beetle visitation was observed in July on
238	all trees (Fig. 1). Beetle visitation lasted 1–10 weeks on Q. crispula, 1–11
239	weeks on Q. serrata, and 1–12 weeks on C. crenata (Fig. 1). Among the six
240	dead trees, two Q. crispula and one C. crenata were visited by P.
241	quercivorus from July, and the remaining three Q. crispula were visited by P.
242	quercivorus from August (Fig. 1).
243	The total numbers of NFM and NFF per unit area (100 cm ²) over the
244	research period are shown in Fig. 2a, b. Generally, the numbers of flying
245	beetles were high on the six dead trees and the trees surrounding them (Fig.
246	2a, b).
247	The best models for predicting NFM and NFF ($n = 427$ for each model)

NFM and NFF are shown in Fig. 2c, d, respectively. Zonations of high

248

13

included the effects of 2D, WEEK, and DBH. The 2D smoothing effects on

250	values were observed in predicted values of NFM and NFF (Fig. 2c, d), and
251	these areas correspond to the locations of six dead trees (Fig. 2a, b). The
252	estimated degrees of freedom of smoothing term 2D was 21.76 ($p < 0.001$)
253	for NFM and 19.93 ($p < 0.001$) for NFF. Figure 2e, f shows the effects of
254	WEEK and DBH on NFM and NFF, respectively. Predicted NFM and NFF
255	increased with increasing WEEK, peaked at WEEK values of 2 or 3, and
256	then decreased with further increases in WEEK (Fig. 2e, f). The estimated
257	degrees of freedom of smoothing term WEEK was 4.02 ($p < 0.001$) for NFM
258	and 5.78 ($p < 0.001$) for NFF. As shown in previous studies (Kobayashi and
259	Hagita 2000), the peak of NFF was observed a little later than the peak of
260	NFM. We assumed linear effects of DBH on NFM and NFF, and the fitted
261	models demonstrated significant positive effects of DBH on these variables
262	(Fig. 2e, f; the estimated coefficients were 0.31 for NFM and 0.31 for NFF, p
263	< 0.001 for each estimate).

With regard to PBM, the best model (n = 137) included the effects of WEEK, DBH, and SP. Predicted PBM increased with increasing WEEK, peaked at WEEK = 4, and then remained stable until WEEK = 10 (Fig. 3).

267 The estimated degrees of freedom of smoothing term WEEK was 3.89 (p =

268 0.004). The effects of DBH on PBM were positive (the estimated coefficient

was 0.11, p = 0.005); PBM increased with increasing DBH (Fig. 3). When

270 the coefficient for *Q. crispula* was set to zero, the coefficients estimated for

Q. serrata (-1.38, *p* = 0.002) and *C. crenata* (-1.60, *p* < 0.001) were both
significantly lower than zero, showing significantly lower PBM on *Q. serrata* and *C. crerana* than that on *Q. crispula* (Fig. 3).

Discussion

277	We monitored the infestation patterns of <i>P. quercivorus</i> on 22 <i>Q</i> .
278	crispula, eight Q. serrata, and seven C. crenata trees in a secondary forest.
279	The mortality rate of selected Q. crispula individuals (38.5%, Table 1) was
280	higher than that of <i>C. crenata</i> (16.7%, Table 1) and <i>Q. serrata</i> (0%; Table 1).
281	This rank order of susceptibility has been reported previously (Shiomi and
282	Osaki 1997; Inoue et al. 2000; Kobayashi and Hagita 2000; Kobayashi and
283	Shibata 2001; Kobayashi and Ueda 2001; Kamata et al. 2002). Where tree
284	species of different degrees of susceptibility coexist, inappropriate host
285	selection by P. quercivorus may result in poor reproduction and, hence,
286	reduced fitness. Thus, we postulated that <i>P. quercivorus</i> has a reduced
287	preference for fagaceous trees with low susceptibility. We tested P.
288	quercivorus preferences by measuring BAPs on different host tree species.
289	The results of model selections predicting these measures of activity partly
290	supported our postulate.

First, we examined spatial heterogeneity in NFM and NFF. A previous 291study conducted in a natural mixed forest dominated by Cryptomeria 292 293*japonica* suggested that *P. quercivorus* first flies to clusters of *Q. crispula*, 294not to individual trees (Yamasaki and Sakimoto 2009). This implies that investigations of beetle activity should take into account the effects of 295neighboring trees. For example, in a phase of mass attack by *P. quercivorus*, 296297 trees adjacent to target trees may be severely affected irrespective of their suitability as hosts for the beetle. Moreover, mass attack itself may conceal 298primary differences in the beetle's preference among tree species. Thus, we 299300 used GAMMs in which geographical locations of trees were fitted using splines as trend surfaces, and the patterns of spatial heterogeneity in NFM 301 302 and NFF (Fig. 2a, b) were well reproduced by the predicted surfaces of the 303 models (Fig. 2c, d).

Second, the measured values of NFM and NFF were assumed to
fluctuate with time. The values predicted by GAMMs indicated changes in
NFM and NFF with time (Fig. 2e, f), and the unimodal patterns of changes
were in accord with previous studies (Urano 2000; Ueda and Kobayashi
2001b).

Third, effects of tree size were detected for NFM and NFF (Fig. 2e, f).
Increases in NFM and NFF with increasing DBH corroborate previous
studies (Akaishi et al. 2006; Yamasaki and Futai 2008).

When applying the model to NFM and NFF, we ignored the effect of 312313 the initiation time of visitation by *P. quercivorus*. Because the numbers of 314flying beetles in a forest fluctuate with time, differences in the initiation time 315 of beetle visitation among tree species may cause differences in the numbers of flying beetles. In this study, however, there were no clear differences in 316 the initiation time of beetle visitation among the three tree species (Fig. 1). 317 318 Consequently, the best models for predicting NFM and NFF included 319 the effects of location, time, and tree size. Further inclusion of the effect of 320 tree species did not improve the fitness of the model, which suggested that beetles' flying activity did not differ among host tree species. Thus, the 321 322 hypothesis that *P. quercivorus* discriminates among host tree species in 323 phases 1 and 3 when flying to trees was rejected. 324 PBM was analyzed to detect differences among host tree species in beetle activity during phase 2, and the results supported our hypothesis. In 325 326 addition to temporal fluctuations in beetle activity and the effect of tree size, 327 the effect of tree species was detected; the proportions of male beetles that 328 bored holes out of those that had flown to trees were lower for Q. serrata and 329 C. crenata than for Q. crispula (Fig. 3). The same tendency has been

reported for *Q. salicina*, which has lower susceptibility to *P. quercivorus*

infestation (Yamasaki et al. 2007).

We have shown that in the early stages of infestation, *P. quercivorus* 332 333 has a lower preference for unsuitable host tree species. Male P. quercivorus 334 prefer Q. crispula to Q. serrata and C. crenata, and selection is made before boring holes in trees. Discrimination of unsuitable trees within the same 335 species has been demonstrated previously; P. quercivorus distinguishes 336 suitable Q. crispula trees from unsuitable Q. crispula at early stages of 337 infestation (Yamasaki and Futai 2008). Differences in beetle activity both 338 among and within tree species suggest that selective forces have acted on P. 339 quercivorus during its long co-evolution with the host species, and these 340 forces have led to beetle avoidance of unfavorable host trees. Some 341 proximate factor, for example, a volatile emission from trees, must have 342 343 been used by *P. quercivorus* to discriminate suitable from unsuitable host tree species. Identification of this factor awaits further studies, which will 344 contribute to the protection of forests dominated by fagaceous trees, the 345 hosts of P. quercivorus. 346

347

348 Acknowledgments

349

We are indebted to all staff members of Ashiu Forest Research Station,
Field Science Education and Research Center, Kyoto University, for

352	enabling us to conduct the research. We thank Dr. D. Fujiki, Mr. A. Iwatake,
353	Mr. Y. Takeuchi, Mr. Y. Ito, and Mr. and Mrs. Harada for their assistance in
354	the fieldwork. We also thank all members of the Laboratory of Forest
355	Biology, Kyoto University, for their help and advice during the work. This
356	study was supported by Grants-in-Aid for Scientific Research from the
357	Ministry of Education, Culture, Sports, Science and Technology (no.
358	15380106) and the 21st Century COE Program of Kyoto University
359	"Innovative Food and Environmental Studies Pioneered by Entomomimetic
360	Sciences" from the Japan Society for the Promotion of Science.

361

References 363

364

365	Akaishi D, Kamata N, Nakamura K (2006) Initial stage of an infestation of
366	Platypus quercivorus (Coleoptera: Platypodidae) in a secondary forest
367	dominated by Quercus serrata and Quercus variabilis (in Japanese
368	with English summary). J Jpn For Soc 88:274-278
369	Byers JA, Zhang Q-H, Birgersson G (2004) Avoidance of nonhost plants by
370	a bark beetle, Pityogenes bidentatus, in a forest of odors.
371	Naturwissenschaften 91:215-219
372	Campbell SA, Borden JH (2006) Integration of visual and olfactory cues of
373	hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae).
374	Ecol Entomol 31:437-449
375	Esaki K, Kato K, Kamata N (2004) Stand-level distribution and movement
376	of Platypus quercivorus adults and patterns of incidence of new
377	infestation. Agric For Entomol 6:71-82
378	Hijii N, Kajimura H, Urano T, Kinuura H, Itami H (1991) The mass
379	mortality of oak trees induced by Platypus quercivorus (Murayama)
380	and Platypus calamus Blandford (Coleoptera: Platypodidae): the
381	density and spatial distribution of attack by the beetles. J Jpn For Soc
382	73:471-476
383	Igeta Y, Esaki K, Kato K, Kamata N (2004) Spatial distribution of a flying

384	ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) at
385	the stand level. Appl Entmol Zool 39:583-589
386	Inoue M, Nishigaki S, Nishi N (2000) Attack by the oak borer, Platypus
387	quercivorus, to living oak trees (in Japanese with English summary).
388	Appl For Sci 9(1):127-131
389	Ito S, Yamada T (1998) Distribution and spread of the mass mortality of oak
390	trees (in Japanese). J Jpn For Soc 80:229-232
391	Kamata N, Esaki K, Kato K, Igeta Y, Wada N (2002) Potential impact of
392	global warming on deciduous oak dieback caused by ambrosia fungus
393	Raffaelea sp. carried by ambrosia beetle Platypus quercivorus
394	(Coleoptera: Platypodidae) in Japan. Bull Entomol Res 92:119-126
395	Kamata N, Esaki K, Mori K, Takemoto H, Mitsunaga T, Honda H (2008)
396	Field trap test for bioassay of synthetic
397	(1S,4R)-4-isopropyl-1-methyl-2-cyclohexen-1-ol as an aggregation
398	pheromone of Platypus quercivorus (Coleoptera : Platipodidae). J For
399	Res 13:122-126
400	Kashiwagi T, Nakashima T, Tebayashi S, Kim CS (2006) Determination of
401	the absolute configuration of quercivorol, $(1S,4R)$ -p-menth-2-en-1-ol,
402	an aggregation pheromone of the ambrosia beetle Platypus
403	quercivorus (Coleoptera: Platypodidae). Biosci Biotech Bioch
404	70:2544-2546

405	Kato K, Esaki K, Igeta Y, Kamata N (2001) Comparison of reproductive
406	success of Platypus quercivorus among four species of the family
407	Fagaceae (preliminary report) (in Japanese). Chubu For Res 49:81-84
408	Kobayashi M, Hagita M (2000) Process of mass mortality of oak trees and
409	capture of Platypus quercivorus Murayama (Coleoptera:
410	Platypodidae) (in Japanese with English summary). Appl For Sci
411	9(1):133-140
412	Kobayashi M, Nozaki A, Kinuura H (2004) Influence of sap on reproduction
413	of Platypus quercivorus (Murayama) (Coleoptera: Platypodidae) (in
414	Japanese). Appl For Sci 13:155-159
415	Kobayashi M, Shibata S (2001) Infestation of Platypus quercivorus
416	(Murayama) (Coleoptera: Platypodidae) at a newly damaged forest by
417	the beetle (I): Investigation in Maizuru, Kyoto Prefecture (in Japanese
418	with English summary). Appl For Sci 10(2):73-78
419	Kobayashi M, Ueda A (2001) Infestation of Platypus quercivorus
420	(Murayama) (Coleoptera: Platypodidae) at newly damaged forests by
421	the beetle (II): Investigation in Wachi and Keihoku, Kyoto Prefecture
422	(in Japanese with English summary). Appl For Sci 10(2):79-84
423	Kobayashi M, Ueda A (2005) Wilt disease of Fagaceae trees caused by
424	Platypus quercivorus (Murayama) (Coleoptera: Platypodidae) and the
425	associated fungus: Aim is to clarify the damage factor (in Japanese

426	with English summary). J Jpn For Soc 87:435-450
427	Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark
428	beetles, their associated fungi, and live host conifers. Annu Rev
429	Entomol 42:179-206
430	Pureswaran DS, Borden JH (2005) Primary attraction and kairomonal host
431	discrimination in three species of Dendroctonus (Coleoptera:
432	Scolytidae). Agric For Entomol 7:219-230
433	R Development Core Team (2010) R: A language and environment for
434	statistical computing. In. R Foundation for Statistical Computing,
435	Vienna, Austria
436	Shiomi S, Osaki S (1997) Mass mortality of Quercus serrata and Q.
437	mongolica in Hyogo Prefecture (in Japanese). Appl For Sci 6:197-198
438	Soné K, Mori T, Ide M (1998) Life history of the oak borer, Platypus
439	quercivorus (Murayama) (Coleoptera: Platypodidae). Appl Entmol
440	Zool 33:67-75
441	Tokoro M, Kobayashi M, Saito S, Kinuura H, Nakashima T, Shoda-Kagaya
442	E, Kashiwagi T, Tebayashi S, Kim CS, Mori K (2007) Novel
443	aggregation pheromone, $(1S,4R)$ -p-menth-2-en-1-ol, of the ambrosia
444	beetle, Platypus quercivorus (Coleoptera: Platypodidae). Bull For For
445	Prod Res Inst 6:49-57
446	Ueda A, Kobayashi M (2001a) Aggregation of Platypus quercivorus

447	(Murayama) (Coleoptera: Platypodidae) on oak logs bored by males
448	of the species. J For Res 6:173-179
449	Ueda A, Kobayashi M (2001b) Seasonal change of number of Platypus
450	quercivorus (Murayama) and P. calamus Blandford (Coleoptera:
451	Platypodidae) landing on living trees (in Japanese with English
452	summary). J Jpn For Soc 83:77-83
453	Urano T (2000) Relationships between mass mortality of two oak species
454	(Quercus mongolica Turcz. var. grosseserrata Rehd. et Wils. and Q.
455	serrata Thunb.) and infestation by and reproduction of Platypus
456	quercivorus (Murayama) (Coleopetra: Platypodidae). J For Res
457	5:187-193
458	Wood DL (1982) The role of pheromones, kairomones, and allomones in the
459	host selection and colonization behavior of bark beetles. Annu Rev
460	Entomol 27:411-446
461	Yamasaki M, Futai K (2008) Host selection by Platypus quercivorus
462	(Murayama) (Coleoptera: Platypodidae) before and after flying to
463	trees. Appl Entmol Zool 43:249-257
464	Yamasaki M, Iwatake A, Futai K (2007) A low Platypus quercivorus hole
465	density does not necessarily indicate a small flying population. J For
466	Res 12:384-387
467	Yamasaki M, Sakimoto M (2009) Predicting oak tree mortality caused by the

- 468 ambrosia beetle *Platypus quercivorus* in a cool-temperate forest. J
- 469 Appl Entmol 133:673-681
- 470 Zhang Q-H (2003) Interruption of aggregation pheromone in *Ips*
- 471 *typographus* (L.) (Col. Scolytidae) by non-host bark volatiles. Agric
- 472 For Entomol 5:145-153
- 473 Zhang Q-H, Schlyter F (2004) Olfactory recognition and behavioural
- 474 avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark
- 475 beetles. Agric For Entomol 6:1-19
- 476
- 477
- 478

479 **Table 1.** Numbers of trees observed, trees on which male *Platypus*

480 quercivorus were trapped, trees on which beetle holes were observed, trees

481 on which female beetles were trapped, and dead trees.

482

	Observed trees	With male beetles	With beetle holes	With female beetles	Dead
Q. crispula	22	18	13	13	5
Q. serrata	8	6	3	3	0
C. crenata	7	7	6	6	1

483

484 Data are for *Quercus crispula*, *Q. serrata*, and *Castanea crenata*.

485 Figure legends

486

487 **Fig. 1**. Host visitation period of *Platypus quercivorus* for 18 *Quercus*

- 488 crispula, 6 Q. serrata, and 7 Castanea crenata individuals. Circles
- 489 connected by a solid line show the first and last days of beetle visitation.
- 490 Gray circles and lines show data for surviving trees. Black circles and lines
- 491 show data for dead trees.

492

493 **Fig. 2**. Numbers of flying male (**a**) and female (**b**) beetles per 100 cm^2 of

494 bark surface (NFM and NFF) for 37 subject trees over the research period.

495 The location of each tree is plotted in two-dimensional space. Black and grey

496 bars show data for dead and surviving trees, respectively.

497 NFM (c) and NFF (d) at each location predicted by generalized additive

498 mixed models. Predictions were made by assuming that the number of weeks

after the first male beetle's flying (WEEK) was 2 and the diameter of trees at

500 breast height (DBH) was 20 cm. NFM (e) and NFF (f) predicted for the

- 501 combination of various values of WEEK and DBH by generalized additive
- 502 mixed models. Predictions were made by assuming that the tree was located

at the center of the 25 \times 25-m study plot (coordinates of the location x = 12.5

504 m and y = 12.5 m).

Fig. 3. The proportion of male beetles that bored holes out of those that flew
to the tree (PBM), predicted by a generalized additive model. Values are
predicted for combinations of various values of the number of weeks after
the first male beetle's flying (WEEK) and diameter of trees at breast height
(DBH). Predicted values are shown separately for the three studied tree
species: *Quercus crispula* (left), *Q. serrata* (center), and *Castanea crenata*(right).

Fig. 1

Fig. 2

Fig. 3

