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Abstract 

     The pathogenesis of Alzheimer’s disease (AD) is tightly associated with metabolic dysfunctions. In 

particular, a potential link between type 2 diabetes (T2DM) and AD has been suggested epidemiologically, 

clinically and experimentally, and some studies have suggested that exercise or dietary intervention reduces risk of 

cognitive decline. However, there is little solid molecular evidence for the effective intervention of metabolic 

dysfunctions for prevention of AD. In the present study, we established the AD model mice with diabetic 

conditions through high fat diet (HFD) in order to examine the effect of environmental enrichment (EE) on 

HFD-induced AD pathophysiology. Here, we demonstrated that HFD markedly deteriorated memory impairment 

and increased -amyloid (A) oligomers as well as Aβ deposition in amyloid precursor protein (APP) 

transgenic mice, which was reversed by exposure to an enriched environment for 10 weeks, in spite of the 

continuation of HFD. These studies provide solid evidence that EE is a useful intervention to ameliorate 

behavioral changes and AD pathology in HFD-induced aggravation of AD symptoms in APP transgenic 

mice. 
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The abbreviations 

AD, Alzheimer’s disease; T2DM, type 2 diabetes; HFD, high fat diet; A-amyloid; APP, amyloid precursor 

protein; Tg, transgenic; WT, wild type; EE, environmental enrichment; IGTT, intra-peritoneal glucose 

tolerance test; CTF, C-terminal fragment 

 

 

1. Introduction 

Alzheimer’s disease (AD), the most common cause of dementia, is poised to become a significant public 

health crisis. The occurrence of AD is largely sporadic, typically affecting individuals over 65 years, but a 

minority of the cases (5%) display familial inheritance with early onset. One of the pathological hallmarks of AD 

is amyloid plaques. Amyloid plaques are composed of 40–42 residue-peptides, called -amyloid (A) (designated 

as AA), which are derived from the amyloid precursor protein (APP) via proteolytic cleavages by - and 
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γ-secretases. Presenilin 1 and Presenilin 2 (PS1 and PS2) are known to be the catalytic core of γ-secretase (De 

Strooper et al. 1998). A widely accepted hypothesis about AD pathogenesis is that A production plays a crucial 

role in neurodegeneration (Finder 2010). This hypothesis is supported by the discovery of causative mutations in 

the genes encoding APP, PS1, and PS2, in early onset familial AD (Tandon et al. 2000, Bertram et al. 2008). 

Moreover, recent studies have implied small soluble Aoligomers,such as dimers, trimers, and 

dodecamers, formed during Aaggregation, as being the main culprits of A toxicity and AD pathogenesis 

(Hartley et al. 1999, Walsh et al. 2002, Lesne et al. 2006, Shankar et al. 2008). 

A potential link between type 2 diabetes (T2DM) and AD has been suggested by epidemiological and 

clinical studies (Ott et al. 1999, Biessels et al. 2006). Recent experimental studies support this linkage. For 

example, APP-ob/ob mice, produced by crossing APP transgenic (Tg) mice with diabetic model mice, 

manifested earlier onset of cognitive dysfunction than APP Tg mice (Takeda et al. 2010). Moreover, using 

dietary interventions such as high fat diet (HFD) or sucrose water for APP Tg mice exacerbated their memory 

deficits and pathological alterations in the brain (Ho et al. 2004, Cao et al. 2007). On the other hand, insulin 

and the insulin-sensitizing drug have been shown to improve cognitive performance in mouse models of AD, as 

well as in patients with early AD (Watson et al. 2005, Pedersen et al. 2006, Reger et al. 2008). These reports 

clearly indicate that there is an association of diabetes with a higher risk of sporadic AD. However, the impact of 

non-pharmacological or preventive intervention targeting AD with diabetes has not been clearly demonstrated so 

far. 

     Exercise is beneficial in the prevention and treatment of T2DM, both in human and rodent models (Keller 

et al. 1993, Cotman and Berchtold 2007, Sanz et al. 2010). In the environmental enrichment (EE) condition, 

mice are allowed the freedom to move and exercise voluntarily in the larger cage, with accessibility to complex 

stimuli (e.g., toys, running wheels), thus being provided with more physical and intellectual stimulation than mice 

housed in standard laboratory conditions. In the AD research fields, some reports demonstrated that EE applied to 

AD model mice reduced Adeposition, enhanced synaptic plasticity, and ameliorated cognitive deficits 

(Lazarov et al. 2005, Jankowsky et al. 2005, Hu et al. 2010). On the other hand, other studies suggested that 

EE enhanced Aaccumulation and failed to improve memory deficits in APP Tg mice with a regular diet 

(Jankowsky et al. 2003, Cotel et al. 2010). Thus, the effect of EE on AD pathophysiology has been 

controversial. 
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     In the present study, in order to determine whether regular exercise affects cognitive decline, we established 

the AD model mice with diabetic conditions through HFD (APP-HFD mice), which were subsequently subjected 

to EE. To test the effect of EE, we conducted ethological, histochemical and biochemical analyses. Here, with the 

use of established animal models with both conditions, we observed that the APP-HFD mice exhibited even more 

impaired cognitive function than control APP Tg mice fed with normal diet (control APP mice). Additionally, we 

demonstrated that EE not only ameliorated obesity and glucose intolerance of the APP-HFD mice but also 

significantly improved their cognitive function. Notably, histochemical and biochemical analyses suggested that 

EE ameliorated the Aaccumulation in the brains accelerated by HFD. Also, the amount of Aoligomers was 

elevated in the cerebrum of the APP-HFD mice, which was significantly reduced by EE settings. These results 

clearly indicated that EE could be an effective way to ameliorate the AD progression caused by metabolic 

dysfunctions. 

 

 

2. Material and methods 

2.1. Animals and dietary conditions 

     We used human APP Tg mice overexpressing the familial AD-linked mutations bearing both 

Swedish (K670N/M671L) and Indiana (V717F) mutation (APPSwe/Ind) (Mucke et al. 2000), which have 

been imported from the Jackson Laboratory (USA). APPSwe/Ind mice were maintained as heterozygotes 

and male and female mice were housed separately. Age- and sex-matched (1:1, male: female) mice were 

exposed to either an established high fat diet (HFD) (caloric composition, 60% fat, 20% carbohydrate, and 

20% protein, Research Diet, Inc., Canada) or a standard diet (10% fat, 70% carbohydrate, and 20% protein, 

Oriental Yeast Co., Ltd., Japan) for 20 weeks, from 2-3 to 7-8 months age. To examine the effect of 

environmental enrichment (EE) on APP Tg mice fed with HFD (APP-HFD mice), the cage of the mice was 

changed to a 2.4 times larger one equipped with a running wheel as well as objects like stands and toys 

after 10 weeks of HFD (APP-HFD + EE mice). The mice spent 10 weeks in the EE condition in the presence 

of HFD. After the dietary manipulation, metabolic changes in these mice were analyzed, followed by the 

assessment of memory function through the Morris water maze test, as described below. After the analysis 

of memory function, the brains were extracted and were cut sagitally into left and right hemispheres. The 

left hemisphere was fixed in 4% paraformaldehyde for histological analysis. After removing the olfactory 
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lobe and cerebellum, the right hemisphere was rapidly frozen in liquid nitrogen for biochemical analysis. 

All animal experiments were performed in compliance with the Guidelines for the Care and Use of Laboratory 

Animals of the Kyoto University. 

 

2.2 Assessment of metabolic changes 

To assess glucose intolerance in these mice, we assessed changes in circulating glucose levels, as a 

function of time in response to the intra-peritoneal glucose tolerance test (IGTT). Mice were given a single 

dose of intra-peritoneal injection of glucose (2 g/kg body weight) after 14 hours fasting, and blood was 

collected from the tail-vein periodically over 2 hours. Blood glucose content was measured by using 

LabAssay Glucose (Wako, Japan). Plasma insulin concentration was measured by ELISA kit specific to 

insulin (Morinaga Seikagaku, Japan). Plasma concentrations of total cholesterol, High density lipoprotein 

(HDL)-cholesterol and triglyceride were measured by using cholesterol E-Wako, HDL-cholesterol E-Wako 

and triglyceride E-Wako (Wako, Japan). 

 

2.3 Morris water maze test 

Behavioral test was performed with a modified version of the Morris water maze test in order to 

assess spatial navigation learning and memory retention, as previously reported (Fitz et al. 2010), with 

minor modifications. Initially, animals received a habituation trial during which the animals were allowed 

to explore the pool of water (diameter 120 cm, height 25 cm, temperature 21±°C) without the platform 

present.  

Visual cue phase. Following habituation, visible platform training was performed to measure 

motivation of the mice to find a platform, visual acuity of the mice, and the ability of mice to use local cues. 

Briefly, distal cues were removed from around the pool, and the platform was labeled with a flag and 

placed 1 cm above the surface of the water in the center of a quadrant. Mice were placed in the maze and 

allowed to explore the maze for 60 sec, and if they reached the visible platform, they were allowed to 

remain there for 20 sec before being returned to their cages. If they did not find the platform within 60 sec, 

the experimenter led them to the platform and let them remain there for 20 sec. Animals were trained in 

groups of five, and training was completed once each animal received six trials. This training was 

performed for 1 day.  
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Acquisition phase. We measured the ability of mice to form a representation of the spatial 

relationship between a safe, but invisible (submerged 1 cm below the water level), platform (10 cm in 

diameter) and visual cues surrounding the maze. The platform was located in the center of one of the four 

quadrants, and several extramaze cues were distributed across the walls surrounding the pool. During the 

acquisition phase of training, each mouse received four daily hidden platform training trials with 10-12 min 

intervals for 5 consecutive days. Animals were allowed 60 sec to locate the platform and 20 sec to rest on it. 

Mice that failed to find the platform were led there by the experimenter and allowed to rest there for 20 sec.  

Probe trial phase. 24 hours following the last acquisition trial, a single 60 sec probe trial was 

administered to assess spatial memory retention. For the probe trial, animals were returned to the pool 

without the platform present, and parameters were recorded to assess the ability of the mouse to remember 

the previous location of the platform.  

Performance was recorded with an automated tracking system (TARGET series/2, Japan) during all 

phases of training. During the visual cue phase of training, speed and latency to the platform were used to 

compare the activity of the performance between each group. During the acquisition phase, acquisition time 

(latency to reach the platform) and path length (swum distance) were subsequently used to analyze and 

compare the performance between different treatment groups. The time to the platform quadrant, and the 

number of entries into the target quadrant were recorded and analyzed during the probe trials. 

 

2.4 Immunoblotting and filter trap assay 

For immunoblotting analysis, the brain was extracted and rapidly frozen using liquid nitrogen. The 

brain samples from the cerebrum of the male mice were extracted in Radio-Immunoprecipitation Assay (RIPA) 

buffer (50 mM Tris-HCl, 150 mM NaCl, 1% Triton X100, 1% NP-40, 0.5% Deoxycholate, 0.1% SDS, pH 8.0) 

with protease inhibitor cocktail (Roche, Switzerland) and sufficiently homogenized on ice. Then the samples were 

incubated for one night at 4ºC and centrifuged at 14,000 g for 20 min. The supernatants were directly used for 

Western blot analysis. The detailed protocol has been described previously (Maesako et al. 2011). Mouse 

monoclonal anti-A6E10), -actin, and rabbit polyclonal anti-APP C-terminal antibodies were from SIGMA 

(USA). 

     Filter trap assay was conducted as described previously (Kitaguchi et al. 2009). Briefly, the protein 

concentration of the samples in Tris-buffered saline (TBS)-extracted fraction was measured and an equal 
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amount of protein was subjected to vacuum filtration through a 96-well dot blot apparatus (Bio-Rad 

Laboratories) containing 200 nm pore-sized nitrocellulose membrane. The resultant membrane was then 

incubated with primary Aβ oligomer antibody (A11, Invitrogen; diluted 1:1000) at 4°C overnight. The 

membrane was then blocked by TBS containing 4% skim milk, and incubated with HRP-linked anti-mouse 

IgG secondary antibody (GE Healthcare; diluted 1:2000) for 1 hour. The membrane was developed using 

the ECL Western Blotting Analysis System (GE Healthcare). Aβ 42 peptides (BACHEM) incubated for 60 

min at 37ºC was used as a positive control (Maesako et al. 2010) and monomeric Aβ was used as a 

negative control.  

 

2.5. Immunohistochemistry 

The paraformaldehyde-fixed and paraffin-embedded tissue sections of male mice were incubated with 

anti-A6E10) antibody (1:1,000). The sections were then incubated with biotinylated anti-mouse IgG antibody 

(1:2,000; Vector Laboratories, USA), followed by the incubation with avidin peroxidase (ABC Elite kit; 1:4,000; 

Vector Laboratories). Subsequently, the labeling was visualized by incubation with 50 mM Tris-HCl buffer (pH 

7.6) containing 0.02% 3,3-diaminobenzidine and 0.0045% hydrogen peroxide. All images were visually analyzed 

using a microscope, ECLIPSE 80i (Nikon Corporation, Japan). On the other hand, for the fluorescent analysis, 

the tissue sections were incubated with anti-A6E10) antibody, followed by incubation with Alexa Fluor 488 

anti mouse IgG (Invitrogen, USA). All images were visually analyzed, using a laser confocal scanning 

microscope, FV10i-LIV (Olympus Corporation, Japan). The Aimmunoreactivity was quantified with Image J. 

For each animal, the sections were captured in the cortex and the hippocampus. Captured images then were 

imported into Image J, and an intensity threshold level was set that allowed for discrimination between plaque and 

background labeling. The total number of Aplaque associated pixels (6E10 antibody positive pixels) was 

calculated in each section, and then the Aload was calculated. 

 

2.6. Measurement of Aby ELISA  

The levels of Aβ 40, Aβ 42, or Aβ oligomers were measured by Enzyme-Linked ImmunoSorbent 

Assay (ELISA) kits specific to Aβ 40, Aβ 42, or Aβ oligomers (82E1-specific) (IBL, Japan), according to 

the manufacturer’s instructions. We used a standard format for measuring monomeric Aβ species with the 

use of C-terminal capturing antibodies and N-terminal or mid-region detecting antibodies. On the other 
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hand, in order to detect Aβ oligomer species, the same N-terminal antibody, 82E1 (to Aβ residues 1–16, 

Immuno-Biological Laboratories, Inc, Minnesota, USA), was used for both capture and detection. In order 

to prepare the samples, the brain samples from the cerebrum of the male mice were homogenized with TBS. 

The homogenate was centrifuged at 100,000 g for 1 hour, and the supernatant was collected as the 

TBS-extracted fraction. Seventy percent formic acid (FA) was added to the pellet, which was homogenized 

again. The homogenate was incubated for 1 hour at 4°C and then centrifuged at 100,000 g for 1 hour at 4°C. 

The resultant supernatant was collected as the FA-extracted fraction, which was neutralized with a 20-fold 

volume of 1 M Tris buffer (pH 11.0).  

 

2.7. Statistical analysis 

All values are given in means ± SE. Comparisons were performed using an unpaired Student’s t-test. For 

comparison of multiparametric analysis, one-way factorial ANOVA, followed by the post hoc analysis by Fisher’s 

PLSD was used. Statistical significance of differences between mean scores during acquisition phase of 

training in the Morris water maze test was assessed with two-way repeated-measures ANOVA (general 

linear model/RM-ANOVA) and Fisher’s post hoc analysis for multiple comparisons. p < 0.05 was considered 

to indicate a significant difference.  

 

 

3. Results 

3.1. Environmental enrichment ameliorated HFD-induced metabolic dysfunctions 

     Recent literature has demonstrated that HFD disrupts the metabolic conditions of APP Tg mice (Ho 

et al. 2004). To determine the effect of EE on HFD-induced metabolic dysfunctions, the cage of APP-HFD 

mice was changed into a larger one with a running wheel and objects like stands and toys. The mice were 

then fed with HFD for subsequent 10 weeks (Fig. 1). T2DM is characterized by obesity, glucose intolerance, 

and hyperinsulinemia (Defronzo 2009). According to our metabolic analysis using weekly monitoring of 

body weight, an intraperitoneal glucose tolerance test (IGTT) and the ELISA of serum insulin, obesity, 

glucose intolerance, and hyperinsulinemia were observed in the APP-HFD mice. Thus, we conclude that 

the APP-HFD mice, which we generated, exhibited severe T2DM conditions.  
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     Although the APP-HFD mice gained significantly more body weight than the control APP mice 

(standard diet), the APP-HFD with EE (APP-HFD+EE) mice gained less body weight than the APP-HFD 

mice after the transfer to the EE setting (Fig. 2A). In spite of being fed with HFD, the APP-HFD+EE mice 

maintained an even body weight for 10 weeks. Weekly monitoring of food intake showed that the amount 

of food intake by the APP-HFD+EE mice was larger than that of the APP-HFD mice (supplemental Fig. 1), 

which indicated that the EE-mediated attenuation of body weight was not caused by the reduction of food 

intake. Moreover, we monitored the number of running wheel rotation and estimated that the 

APP-HFD+EE mice ran 1040±49 m per day in the EE setting. The fasting glucose level of the APP-HFD 

mice was increased, compared with that of the control APP mice, whereas that of the APP-HFD+EE mice 

was significantly decreased, compared with that of the APP-HFD mice (Fig. 2B). Further, the IGTT results 

indicated that the impaired glucose tolerance response of the APP-HFD mice was improved in the 

APP-HFD+EE group (Fig. 2C). To examine whether EE could reverse or prevent glucose tolerance 

abnormality, we conducted IGTT at the time of the switch from the standard environment to enriched one 

(10 weeks after HFD introduction). The fasting glucose level and glucose tolerance of APP-HFD+EE mice 

were better than those of the APP mice at the time of the switch (supplemental Fig. 2). Therefore, EE could 

reverse glucose tolerance abnormality. The ELISA results indicated that the level of plasma insulin was 

significantly increased in the APP-HFD mice. However, in contrast to the glucose level, plasma insulin level 

tended to decrease to some extent, but was not significantly different between the APP-HFD and APP-HFD+EE 

mice (Fig. 2D). 

Next, we conducted plasma lipid analyses. The level of plasma total cholesterol in the APP-HFD 

mice was significantly increased, compared with that of the control APP mice. On the other hand, the total 

cholesterol level of the APP-HFD+EE mice was not different from that of the APP-HFD mice (Fig. 3A). 

Similarly, the level of plasma HDL cholesterol in APP-HFD mice was significantly increased, compared 

with that in the control APP mice. The plasma HDL level of the APP-HFD+EE mice was comparable with 

that of the APP-HFD mice (Fig. 3B). On the contrary, the level of plasma triglycerides was not different 

among the three conditions (Fig. 3C). Taken together, these results indicated that HFD disrupted the metabolic 

conditions including body weight, glucose tolerance, plasma insulin, and cholesterols of APP Tg mice, 

among which EE ameliorated body weight and glucose tolerance. 
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3.2 Environmental enrichment improved HFD-induced memory deficit 

Recent literature also demonstrated that HFD leads to the worsening of memory deficit in APP Tg 

mice (Ho et al. 2004). To determine the effect of EE on HFD-induced memory deficit, we conducted the 

Morris water maze test. In our study, we analyzed 7- to 8-month-old APP Tg mice since they present with 

visible Aβ plaques and cognitive impairment sufficient for quantitative evaluations (Mucke et al. 2000). 

Neither HFD nor HFD+EE increased mortality of the mice, nor did they affect the motivation during the 

visual cue phase of the test (data not shown). In addition, neither HFD nor HFD+EE affected the locomotor 

activity of the mice, as exemplified by swimming speed (supplemental Fig. 3). During the acquisition phase, 

the control APP mice showed a daily improvement in their performance, such as acquisition time (Fig. 4A) 

and path length to the platform (Fig. 4B), whereas the APP-HFD mice did not show any improvement. On 

the other hand, the APP-HFD+EE mice showed better performance than the APP-HFD mice did (Fig. 4A, 

B). Moreover, the probe trial demonstrated that the APP-HFD mice took a longer time to get to the 

platform quadrant (Fig. 4C) and failed to cross the previous location of the platform (Fig. 4D), compared to 

control mice. Once again, the APP-HFD+EE mice showed better performance than the APP-HFD mice, in 

this probe trial phase as well (Fig. 4C, D). From these results, we concluded that EE ameliorated 

HFD-induced memory dysfunction, despite continuing HFD in the AD model mice. 

In order to determine whether these events were attributable to metabolic consequences of the diet or 

to an interaction between the diet and neuropathology in AD model mice, wild type (WT) mice were tested 

for learning ability, using the Morris water maze test. Metabolic analyses indicated that WT mice also 

exhibited T2DM conditions (supplemental Fig. 4A, B). After the 4
th

 day, in the acquisition phase of Morris 

water maze test, acquisition time of the HFD-induced WT (WT-HFD) mice was not different from that of 

the control WT or the WT-HFD+EE mice, although that of the WT-HFD mice was longer than that of the 

control WT and the WT-HFD+EE mice from 1
st
 to 3

rd
 day (supplemental Fig. 4C). This tendency was 

different from the case of the APP mice, since APP-HFD mice consistently took longer time to get to the 

platform quadrant in the acquisition phase (Fig. 4A). These results suggested that memory dysfunction 

could be attributable to an interaction between the diet and neuropathology in the AD model mice.  

 

3.3 HFD-induced Aβ deposition was ameliorated in environmental enrichment condition 



11 

HFD is reported to lead to Aβ accumulation in the brain of APP Tg mice (Ho et al. 2004). We 

considered the possibility that the memory impairment in APP-HFD mice was due to ample Aβ deposition, 

and wanted to see the effect of environmental change on HFD-induced Aβ accumulation. Therefore, we 

conducted immunohistochemical analysis using anti-Aβ (6E10) antibody to quantitatively examine Aβ 

deposition. As seen in Figure 5A–C, Aβ deposition in the hippocampus was aggravated in the APP-HFD 

mice, whereas EE introduction resulted in a marked reduction of HFD-induced Aβ deposition in the 

APP-HFD+EE mice.  

     We next quantified Aβ contents in the TBS-soluble and -insoluble (FA soluble) fractions using 

ELISA. In the TBS-soluble fraction, the levels of Aβ 40, Aβ 42, and total Aβ in the APP-HFD mice were 

comparable to that in the control APP mice. However, the levels of Aβ 40 and total Aβ in the 

APP-HFD+EE mice were significantly decreased, compared with that in the APP-HFD mice (Fig. 5D–F). 

On the other hand, in FA fraction, the level of Aβ 40 in the APP-HFD mice was significantly increased, 

compared with that in the control APP mice. However, the levels of Aβ 40 in the APP-HFD+EE mice were 

significantly decreased, compared with that in the APP-HFD mice (supplemental Fig. 5A). A similar 

tendency was shown in the case of Aβ 42 and total Aβ amount in FA fraction, although there was no 

statistical significance (supplemental Fig. 5B, C). Based on these histochemical and biochemical analyses, 

we concluded that EE ameliorated HFD-induced Aβ accumulation in the brain.   

Recent reports suggest that the level of soluble Aβ oligomers correlate with memory deficits in APP Tg 

mice (Hartley et al.1999, Walsh et al. 2002, Lesne et al. 2006, Shankar et al. 2009). To determine a 

correlation between Aβ oligomers and memory impairment in standard housing APP-HFD mice and 

APP-HFD+EE mice, we performed the ELISA analysis using Aβ oligomer-specific ELISA kit (Xia et al. 2009). 

The level of TBS-soluble Aβ oligomers in the APP-HFD mice was significantly increased, compared with that 

in the control APP mice. This result was consistent with that of the test for memory assessment described above. 

Remarkably, the levels of Aβ oligomers in the APP-HFD+EE mice were significantly decreased, compared 

with that in the APP-HFD mice (Fig. 5G). In addition, we confirmed this result through Filter trap assay, 

using anti-Aβ oligomer antibody (supplemental Fig. 6). Thus, at least in HFD-induced conditions, EE 

appears to play a significant role in modulating the level of Aβ oligomers.  

 

3.4 Alteration of HFD-induced APP processing by environmental enrichment 
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To elucidate the mechanism of how EE ameliorated HFD-induced Aβ accumulation, we analyzed the 

APP processing through detecting APP C-terminal fragments (CTFs: CTF) through immunoblotting 

assay. -and-Secretases are known to cleave APP at the extramembrane domain, which produce 

APP-CTFand CTF respectively. γ-Secretase cleaves APP-CTFand CTFat the intramembrane 

domain, producing p3 and Aβ respectively. As shown in the top row of Figure 6A, the level of full length 

APP was not different among the control, APP-HFD, and APP-HFD+EE mice (Fig. 6B). In this experiment, 

we used anti-APP C-terminal antibody to detect both APP-CTFand CTF.Notably, APP CTFs were 

more accumulated in the brains of the APP-HFD mice than those of the control APP mice. However, the 

level of APP CTFs in the APP-HFD+EE mice was significantly decreased, compared with that in the 

APP-HFD mice in standard housing (Fig. 6C). Next, we examined the amount of APP-CTF by anti-Aβ 

(6E10) antibody which detects 1–17 amino acid residues of Aβ. The analysis using 6E10 antibody showed 

that the level of APP-CTF in the APP-HFD mice was higher than that in the control APP mice, 

suggesting that the level of APP-CTF in the APP-HFD+EE mice was significantly decreased, compared 

with that in the APP-HFD mice (Fig. 6D). 

 

 

4. Discussion 

HFD is prevalent in modern society and HFD-induced metabolic condition is becoming a worldwide 

issue, since it leads to obesity, T2DM, and hypercholesterolemia. More importantly, recent studies have 

shown that diet and nutrition have been recognized as important epigenetic factors for the development of 

sporadic AD (Solfrizzi et al. 2003, Panza et al. 2006, Scarmeas et al. 2007). We and others have previously 

proposed the causal molecular link between T2DM and AD (Qiu et al. 2006, Maesako et al. 2010, Maesako et 

al. 2011). However, the effective prevention for AD has not been fully investigated yet. A recent report by 

McClean et al. showed compelling evidence that the diabetes drug liraglutide prevents neuronal degeneration in a 

mouse model of AD (McClean et al. 2011), which suggests that there should be a clinical association of diabetic 

change with a higher risk of neuronal loss. This further led us to consider a development of an effective prevention 

in the early phase of AD. To address this issue, we established the AD model mice with diabetic conditions in the 

present study, by HFD feeding in APP Tg mice. 

In order to search for an effective intervention, we chose a paradigm of environmental enrichment (EE) and 
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examined the effect of EE on both the metabolic conditions and the AD pathology of the mice (Fig. 1). A recent 

retrospective case control study demonstrated that AD patients were less active (both intellectually and 

physically) in midlife and that inactivity was associated with a 2.5 fold higher risk of developing AD 

(Friedland et al. 2001). Similarly, a prospective study revealed that physical activity was protective against 

the development of cognitive impairment in AD and that the highest activity group showed the incidence of 

AD lowered by 60% (Laurin et al. 2001). Since EE is regarded as a useful tool for exercise in mice, we 

chose this paradigm in the present study to see the impact of exercise on AD pathophysiology. Importantly, 

Adlard et al. have demonstrated that voluntary exercise shows beneficial effects on a Tg mice model of AD 

(Adlard et al. 2005). Since EE condition contains physical and intellectual stimulation, the extent to which 

intellectual stimulation contributes to the positive outcome still remains controversial. Faherty et al. 

suggested that EE is more effective for facilitating neural changes than exercise alone (Faherty et al. 2003), 

while Lambert et al. suggested that exercise, but not cognitive stimulation, improves spatial memory 

(Lambert et al. 2005). In the setting of the present study, metabolic conditions of the APP-HFD+EE mice 

were clearly ameliorated, compared to those of the APP-HFD mice. Moreover, cognitive stimulation of our 

setting was smaller than that in previous reports, since we wanted to focus on the effect of exercise on 

APP-HFD mice. Therefore, we speculated that physical stimulation might play a more important role in our 

study. The purpose of this experiment was to obtain a deep insight into developing strategies for the 

prevention of AD; therefore, EE was started at the age before the appearance of visible Aβ plaques in the 

brain of APP Swe/Ind mice. 

Although previous reports examined the effect of EE on AD model mice (Jankowsky et al. 2003, Lazarov 

et al. 2005, Jankowsky et al. 2005, Hu et al. 2010, Cotel et al. 2010), the effect of EE on AD mice with 

diabetic conditions had not yet been examined. Notably, our results indicated that EE ameliorated HFD-induced 

memory deficit, in spite of continuing high-fat feeding (Fig. 4). EE is known to enhance hippocampal 

neurogenesis and result in increased numbers of synapses per neuron (Hu et al. 2010). We assumed that EE 

might have improved cognitive dysfunctions of the mice through strengthening of the synaptic activity of the 

mice. Further, our results demonstrated that EE decreased oligomers and fibrillar Aβ, indicating that EE also 

ameliorated HFD-induced Aβ accumulation (Fig. 5). An increasing number of reports have suggested that the 

level of soluble Aβ oligomers correlates with memory deficits due to their synaptotoxicity (Hartley et al. 1999, 

Walsh et al. 2002, Lesne et al. 2006, Shankar et al. 2009, Jin et al. 2011). Therefore, we hypothesized that 



14 

EE also might have improved memory deficit of the mice through the decrease of soluble Aβ oligomers, 

followed by the improvement of Aβ plaque depositions. Notably, Cotel et al. have reported that EE failed to 

rescue working memory deficits and neuronal loss in APP/PS1 knock-in (KI) mice (Cotel et al. 2010). 

Their result is different from ours in that enriched housing did not show any beneficial effects in terms of 

working memory and amyloid burden. Our result was obtained from high-fat feeding of APP Tg mice, 

whereas Cotel et al. used conventional diet for APP/PS1 KI mice; however, housing conditions seem 

similar. We suppose that the combination of physical activity and cognitive stimulus in EE condition may 

be more beneficial in the reversal of cognitive decline and Aβ load, which was caused by metabolic 

dysfunctions due to high-fat feeding.  

To clarify the effect of EE on HFD-induced AD pathology, we first investigated the mechanisms of 

how HFD aggravated Aβ depositions. Recent literature has suggested that HFD down-regulates the activity of 

Insulin degrading enzyme (IDE), one of the Aβ degrading enzymes (Ho et al. 2004). In addition, we 

demonstrated that HFD increased the level of APP CTFβ without a change in full-length APP levels (Fig. 6). 

Unexpectedly, we could not detect the difference of BACE1/β-secretase level among control APP, APP-HFD, and 

APP-HFD+EE mice’s brains (supplemental Fig. 7A, B). Although emerging evidence has consistently detected 

significant increases in β-secretase enzyme activity in the sporadic AD brains, the BACE1 enzyme activity 

in AD is not necessarily reflected by its protein levels (Stockley and Neill 2008), presumably because 

BACE1 enzyme activity might be regulated by other factors such as trafficking, and subcellular and 

membrane microdomain localization. Moreover, recent literature has demonstrated that BACE1 enzyme 

activity is modulated by sphingosine-1-phosphate (S1P), a pluripotent lipophilic mediator (Takasugi et al. 2011), 

suggesting that BACE1 interacting proteins can also control its activity. We compared the BACE1 

interacting proteins of the APP-HFD mice brain samples with that of the control-APP samples by 

immunoprecipitation assay using BACE1 antibody and determined the different profiles in interacting 

proteins between them (unpublished observation). We speculate that HFD might have changed the interacting 

state of these proteins with BACE1, without changing the BACE1 protein level. Consequently, we conclude that 

HFD could have aggravated Aβ accumulation via several pathways, including the activation of 

BACE1/β-secretase enzyme and the inhibition of Aβ degradation.  

     Next, to reveal the mechanism of beneficial effect of EE, we employed ELISA experiments. The 

ELISA results in TBS-soluble fraction indicated that HFD might not simply increase the production of Aβ, 
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but that HFD affects the aggregation and deposition of Aβ (Fig. 5D-F). On the other hand, considering that 

EE decreased the level of APP CTFβ (Fig. 6), we assume that EE could have inhibited HFD-induced 

BACE1/β-secretase up-regulation. We speculate that EE could also have changed the state of interacting proteins 

with BACE1. However, EE also might have improved Aβ accumulation via the up-regulation of Aβ clearance, 

since EE activates Neprilysin, one of the Aβ degrading enzymes (Lazarov et al. 2005). Interestingly, our 

metabolic analyses suggested that EE did not affect either HFD-induced hyperinsulinemia or 

hypercholesterolemia, but improved body weight as well as glucose tolerance (Fig. 2, 3), indicating that EE 

might have ameliorated HFD-induced Aβ accumulation through the improvements in obesity and glucose 

tolerance. According to a recent review by Misra, the EE-mediated improvement of glucose tolerance via 

insulin independent pathway may be caused by the role of adenosine monophosphate (AMP)-activated 

protein kinase (AMPK) since it is considered a master switch to regulate glucose level without an effect on 

insulin in exercise-related effects (Misra 2008). To develop an effective intervention, it is important to 

elucidate the relationship between obesity and glucose intolerance and HFD-induced Aβ accumulation as well 

as memory deficit. 

In conclusion, we provide convincing evidence that EE ameliorated HFD-induced metabolic dysfunctions, 

Aβ deposition, and memory deficit. We showed that EE improved metabolic conditions like obesity and 

glucose intolerance in APP-HFD mice without rectifying the level of serum insulin. Our result is clinically 

intriguing in that a rather mild intervention like EE for only 10 weeks prevented further HFD-induced cognitive 

decline in the AD mouse model. However, the detailed mechanism of how EE ameliorated HFD-induced Aβ 

deposition and memory deficit was not clarified in the present study. Although the exact pathogenesis of 

sporadic AD remains still largely unknown, our results clearly indicate that the intervention for the 

metabolic condition could be the most effective and practicable way to prevent AD in T2DM patients. 

Considering that the beneficial effect was obtained even with the continuation of HFD, the detailed 

mechanism of continuous exercise and its practical application to AD patients should be further verified in 

future studies. 
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7. Figure legends 

Fig. 1.Schematic presentation of our experimental design 

APPSwe/Ind mice were maintained with standard diet in the standard laboratory cages until 2-3 months age. 

Then, age- and sex-matched mice were separated into 3 groups. In the control group, the mice were 

induced with standard diet in the standard laboratory cages for 20 weeks (control APP mice) (top row, n = 

9). In the high fat diet (HFD) induced group, the mice were fed with HFD in the standard laboratory cages 

for 20 weeks (APP-HFD mice) (middle row, n = 10). In the HFD with environmental enrichment (EE) 

induced group, the mice spent 10 weeks in the standard laboratory cages, then spent 10 weeks in the 

enrichment cages with HFD (APP-HFD+EE mice) (bottom row, n = 8). After 20 weeks, metabolic 
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conditions of these mice were analyzed, followed by ethological, histochemical and biochemical analyses 

targeting AD pathophysiology. 

 

Fig. 2.Environmental enrichment ameliorated HFD-induced diabetic conditions 

(A) Relative body weight changes over 20 weeks. The body weight of 2 weeks before each diet was 

regarded as the baseline (100 %). The bodyweight of APP-HFD mice was significantly increased compared 

with that of control APP mice (F (2, 528) = 136.81, p < 0.05). On the other hand, that of APP-HFD +EE mice 

was significantly decreased compared with that of APP-HFD mice (p < 0.05). 

(B) Fasting glucose levels. The fasting glucose level of APP-HFD mice was significantly increased 

compared with that of control APP mice (F (2, 24) = 19.38, p = 0.02). On the other hand, the fasting glucose 

level of APP-HFD+EE mice was significantly decreased compared with that of APP-HFD mice (p = 0.03). 

(C) Blood glucose levels during glucose tolerance test after an intra-peritoneal injection of glucose (2 g/kg 

body weight). APP-HFD mice showed impaired glucose tolerance compared with control mice (F (2, 72) = 

35.00, p < 0.05). On the other hand, APP-HFD+EE had ameliorated HFD-induced glucose intolerance (p < 

0.05). 

(D) Serum insulin levels during fasting or 60 min after glucose injection. At both time points, the serum 

insulin level of APP-HFD mice was significantly increased compared with that of control APP mice (F (2, 

24) = 8.08, p = 0.003). The serum insulin level of APP-HFD+EE mice was not significantly decreased 

compared with that of APP-HFD mice (n.s., p = 0.27). n.s. indicated not significantly. 

 

Fig. 3.Environmental enrichment could not ameliorate HFD-induced lipid dysfunction 

(A) Plasma total cholesterol levels. The total cholesterol level of APP-HFD mice was significantly 

increased compared with that of control APP mice (F (2, 24) = 24.28, p = 0.0003). That of APP-HFD+EE 

mice was not significantly decreased compared with that of APP-HFD mice (n.s., p = 0.14). n.s. indicated 

not significantly.  

(B) Plasma HDL cholesterol levels. The HDL cholesterol level of APP-HFD mice was significantly 

increased compared with that of control APP mice (F (2, 24) = 17.37, p = 0.0003). The HDL cholesterol level 

of APP-HFD+EE mice was not significantly decreased compared with that of APP-HFD mice (n.s., p = 

0.17). n.s. indicated not significantly. 



22 

(C) Plasma triglyceride levels. There was no difference among control, APP-HFD and APP-HFD+EE mice. 

(F (2, 24) = 1.33, n.s.) 

 

Fig. 4.Environmental enrichment ameliorated HFD-induced memory deficit 

(A) Escape latency in the acquisition phase. APP-HFD mice significantly took longer time to the platform 

compared with control APP mice (F (2, 96) = 17.33, p = 0.012). On the other hand, APP-HFD+EE mice took 

less time than APP-HFD mice (p = 0.34). 

(B) Swimming length in the acquisition phase. APP-HFD mice swam significantly longer than control APP 

mice (F (2, 96) = 11.92, p = 0.025). On the other hand, APP-HFD+EE mice swam shorter than APP-HFD 

mice (p = 0.37). 

(C) The time to the target quadrant in the probe trial phase. APP-HFD mice significantly took longer time 

to the platform quadrant compared with control APP mice (F (2, 24) = 33.02, p= 0.002). On the other hand, 

APP-HFD+EE mice took less time than APP-HFD mice (p = 0.002). 

(D) The number of entries into the target quadrant in the probe trial phase. APP-HFD mice were 

significantly impaired in the number of times they crossed the platform compared with control APP mice 

(F (2, 24) = 15.75, p = 0.0014). On the other hand, APP-HFD+EE mice increased the number of times they 

crossed the platform compared with APP-HFD mice (p = 0.003). 

 

Fig. 5.Environmental enrichment ameliorated HFD-induced Aβ accumulation 

(A) Immunohistochemical analysis using anti-Aβ (6E10) antibody. Representative images of 

Aβ-immunostained hippocampus sections from control APP, APP-HFD and APP-HFD+EE induced mice, 

respectively. Scale bar, 2 mm  

(B) High-magnification images of the hippocampus including CA1 and Dentate Gyrus (DG) regions by 

immunostained analysis using anti-Aβ (6E10) antibody and Alexa Fluor 488 2
nd

 antibody. The 

immunostained signal was much enhanced in APP-HFD mice compared with that in control APP and 

APP-HFD+EE mice. Scale bar, 0.5 mm 

(C) Cerebral Aβ loads determined by immunohistochemical and morphometric analyses. The cerebral Aβ 

deposition was significantly increased in APP-HFD mice compared with that in control APP mice (F (2, 10) 
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= 5.62, p = 0.012). On the other hand, that in APP-HFD+EE mice was significantly decreased compared 

with that in APP-HFD mice (p = 0.023).  

(D) ELISA of Aβ 40 in TBS-soluble fraction. The level of TBS-soluble Aβ 40 in APP-HFD mice was the 

same as that in control APP mice. On the other hand, that in APP-HFD+EE was significantly decreased 

compared with that in APP-HFD mice (F (2, 10) = 5.16, p = 0.015). 

(E) ELISA of Aβ 42 in TBS-soluble fraction. There was no statistical significance among control APP, 

APP-HFD and APP-HFD+EE induced mice (F (2, 10) = 1.05, n.s.).  

(F) ELISA of total Aβ (Aβ 40 + Aβ 42) in TBS-soluble fraction. The level of TBS-soluble total Aβ in 

APP-HFD mice was the same as that in control APP mice. On the other hand, that in APP-HFD+EE was 

significantly decreased compared with that in APP-HFD mice (F (2, 10) = 6.35, p = 0.037).  

(G) ELISA of Aβ oligomer in TBS-soluble fraction. The cerebral Aβ oligomer was significantly increased 

in APP-HFD mice compared with that in control APP mice (F (2, 10) = 5.19, p = 0.01). On the other hand, 

that in APP-HFD+EE was significantly decreased compared with that in APP-HFD mice (p= 0.049). 

 

Fig. 6.Environmental enrichment reduced APP CTFβ accumulation 

(A) Immunoblotting analysis of APP full length, APP CTFs (CTFβ) and APP CTFβ. APP full length and 

APP CTFs were detected by anti-APP c-terminus antibody. APP CTFβ was detected by anti-Aβ (6E10) 

antibody. Two different samples from each group were shown. β-actin was detected as loading control.  

(B) Statistical analysis of APP full length. The band of APP full length was normalized by that of β-actin. 

The band density of the control was regarded as 100 % and that of other groups was relatively indicated. 

There was no statistical significance among control APP, APP-HFD and APP-HFD+EE mice (F (2, 10) = 

2.36, n.s.).  

(C) Statistical analysis of APP CTFs. The band of APP CTFs was normalized by that of APP full length. 

The band density of APP CTFs in APP-HFD mice was increased compared with that in control APP mice 

(F (2, 10) = 4.73, p = 0.013). On the other hand, that in APP-HFD+EE mice was significantly decreased 

compared with that in APP-HFD mice (p = 0.015).  

(D) Statistical analysis of APP CTFβ. The band of APP CTFβ was normalized by that of APP full length. 

The band density of APP CTFβ in APP-HFD mice was increased compared with that in control APP mice 
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(F (2, 10) = 5.67, p = 0.011). On the other hand, that in APP-HFD+EE mice was significantly decreased 

compared with that in APP-HFD mice (p = 0.032).  
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Maesako et al. Fig. 1 
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Maesako et al. Fig. 3 

 

 

 

 

 

 

 

 

 



28 

 

Maesako et al. Fig. 4 
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