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Abstract In our recent paper, the electron spin torque is found to be counter-balanced 
by the chiral electron density. In this paper, we shall show that the origin of the chiral 
nature is manifest in the principle of equivalence in general relativity. 
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1 Introduction 

The dynamics of electron spin with the realization of spin-orbit coupling has recently 
been of keen interest particularly in the field of spin torque transfer in spintronics; see 
recent reviews [1-3] and references cited therein. We have shown that the spin torque of 
the spin-1/2 Fermion is counter-balanced by the chiral electron density through the zeta 
force [4]. We have also reported some preliminary numerical data of the spin torque and 
zeta force for dimer of alkali atoms [5]. The special interest in this previous paper was 
to the spin dynamics issues in Bose-Einstein condensation; see our previous paper [5] 
and references cited therein. We shall show in this paper that the origin of the chiral 
nature is manifest in the principle of equivalence in general relativity. We invoke here 
the covariant formalism of general relativity equipped with vierbein (tetrad) field on 
curved spacetime: see documents [6-8] and references cited therein. 
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We may first quickly review basic mathematics. The coordinate x  with the 

contravariant components xµ   and the covariant components xµ   and the metric 

tensor µν
µνη η=  of the Minkowski space, together with the inner product of two 

4-vectors A  and B  written as A B⋅  as well as the inner product of the Dirac gamma 
matrices µγ  and a 4-vectors A  written as the Dirac slash A/  are defined as follows: 

( ) ( ) ( ) ( ) ( )0 0 1 2 3, , , , , , , , ,kx x x x x x x ct x y z ct r ct xµ = = = = =
    (1) 

( ) ( ) ( ) ( ) ( )0 0 1 2 3, , , , , , , , ,kx x x x x x x x ct x y z ct r ct xν
µ µνη= = = = − − − = − = −

   (2)  

1 0 0 0
0 1 0 0 1,  =

,   
0 0 1 0 0,  
0 0 0 1

µν µρ µ
µν ρν ν

µ ν
η η η η δ

µ ν

 
 −  = = = =  − ≠
 

− 

  (3)  

0 0 ,    x x y y z zA B A B A B A B A B A B A B A Bµ ν
µνη⋅ = = − • • = + +

  

  (4)  

0 0 1 2 3,    x y zA A A A A A A Aµ ν
µνη γ γ γ γ γ γ γ/ = = − • • = + +

 

    (5) 

where c  denotes the speed of light in vacuum and the Greek letter runs from 0 to 3 and 
the Latin from 1 to 3 and the Einstein summation convention is used. The Poincaré 

transformation ( ),T a P↑
+Λ ∈  consists of proper orthochronous Lorentz transformation 

( ),0T L↑+Λ = Λ∈  and translation ( )0,T a , which acts on x  as 

( )

0
0

1

' ,    ' ,    det 1,    1x x a x x aµ µ ν µ
ν

µ µ κ λµ
ν νκ λν

η η−

= Λ + = Λ + Λ = Λ >

Λ = Λ = Λ  
  (6)  

On the Minkowski space, the relativistic quantum mechanical motion of electron is 

described by 4-spinor. According to the spinor representation of the Poincare group P↑
+  

[9-11] we have the linear momentum generator Pµ  and the angular momentum 
generator J µν , which is composed of mutually commutable orbital Lµν  and spin S µν  

parts with commutator [ ],a b ab ba= − , as 
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,    ,    , 0P p J L S L Sµ µ µν µν µν κλ µν = = + =    
  (7)  

0 0,    k k k
k kL i p p L i p

p p p
 ∂ ∂ ∂

= − = ∂ ∂ ∂ 
 



      (8)  

,
4
iS µν µ νγ γ =  

  
     (9)  

where pµ  denotes the momentum and µγ  the Dirac gamma matrices: 

( ) ( ) ( )0 0 1 2 3 0, , , , ,kµγ γ γ γ γ γ γ γ γ= = =
      (10)  

( ) ( ) ( ) ( )0 1 2 3 0
0 0 1 2 3, , , , , , , ,k

ν
µ µνγ η γ γ γ γ γ γ γ γ γ γ γ γ γ= = = = − − − = −

   (11)  

The spinor ( )xψ  in the chiral representation ( )chiral xψ  is constructed by the 

undotted spinor ( ) ( )A
R x xψ ξ=  with right-handed chirality and the dotted spinor 

( ) ( )L Ux xψ η=


 with left-handed chirality as [12,13] 

chiral

A
R

L U

ψ ξ
ψ ψ

ψ η
  

= = =        
      (12)  

1
1

2
2

,    A
U

ηξ
ξ η

ηξ
   

= =   
  







       (13)  

The undotted and dotted capital Latin letters run from 1 to 2 and change position by 
using the antisymmetric matrix ε  as 

,   B U UV
A BA Vξ ξ ε η ε η= =  



      (14)  

,   A AB V
B U VUξ ε ξ η η ε= = 

  

      (15)  

0 1 0 1
,   

1 0 1 0
AB UV

AB UVε ε ε ε
   

= = = =   − −   

 

 

    (16)  

where the Einstein summation convention is used. Using the two-dimensional 

irreducible representation ( )λ λ= Λ  and the outer automorphism † 1λ λ λ −→ =  of 

SL(2,C), the chiral spinor representation ( )D λ  of the Poincaré group P↑
+  is the direct 
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sum of λ  and its inequivalent complex conjugate irreducible representation † 1λ λ −=  
as [13] 

( )' ,    det 1Dψ λ ψ λ= =
 

      (17)  

( ) † 10
,    

0

A
B

V
U

D
λ

λ λ λ
λ

−
 

= =  
 





  

    (18)  

' ,    'A A B V
B U U Vξ λ ξ η λ η= = 

  

      (19)  

The Pauli matrix σ  with the contravariant components µσ  and the covariant 

components µσ   

( ) ( ) ( ) ( )0 0 1 2 3, , , , 1, , , 1,k
x y z

µσ σ σ σ σ σ σ σ σ σ σ= = = =


  
 (20)   

( ) ( ) ( ) ( )0 0 1 2 3, , , , 1, , , 1,k x y z
ν

µ µνσ η σ σ σ σ σ σ σ σ σ σ σ= = = = − − − = −
  (21)  

(note the use of 1 as the unit matrix throuout in this paper) are cast into the 
Misner-Thorne-Wheeler (MTW) representation as [14] 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 0
0

1
1

2
2

3
3

1 0
0 1

0 1
1 0

0
0

1 0
0 1

AU

V B

AU
xV B

AU
yV B

AU
zV B

i
i

σ σ σ

σ σ σ

σ σ σ

σ σ σ

 
= = = 

 
 

= = = 
 

− 
= = = 

 
 

= = = − 

















     

(22)

 
Then, the Lorentz transformation 

( )†' ,    ' ,    x x σ λσλ λ λ= Λ = = Λ      (23)  

leaves the determinant of the inner product x σ⋅  

( )AU ct z x iy
x

x iy ct z
σ

+ − 
⋅ =  + − 



     (24)  

invariant:  

( ) ( ) ( )2 2' det ' det ' detAU AU AUx x x x xσ σ σ= ⋅ = ⋅ = ⋅ =
  

  (25)  
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using 

( ) ( )' 'AU AUx xσ σ⋅ = ⋅
 

 

     (26)  

with 

( ) ( ) ( )*'
AU BV AUA U

B V
ν

µ µ µ νσ λ λ σ σ= = Λ
 







     (27)  

( ) ( ) ( )*'
AU BV AUA U

B V
µ µ µ ν

νσ λ λ σ σ= = Λ
  





     (28)  

Also, the Dirac gamma matrices µγ  and the chiral matrix 5γ   

0 1 2 3
5 iγ γ γ γ γ=         (29) 

are given in the chiral representation using the MTW representation of the Pauli 
matrices as 

( )
( )

( )
( )
( )

( )

0
00

00

0
0

5 00

0 0 10
1 000

0 0
00

0 1 00
0 100

AU

V B

AU k
kk

kk

V B

A

B

V

U

σ σ
γ

σσ

σ σ
γ

σσ

σ σ
γ

σσ

      = = =        
 −  − = =      
 

    = = =     −−    − 











   

  (30)  

where the following MTW representation is found for the diagonal block: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 0 0

1 1

2 2

3 3

A V

B U

A V

xB U

A V

yB U

A V

zB U

σ σ σ

σ σ σ

σ σ σ

σ σ σ

= =

= =

= =

= =

















      

(31)

 Using the MTW representation, the Clifford algebra of the Dirac gamma matrices 

with anticommutator { },a b ab ba= +
 
should be 

{ }
( )

( )

0

0

0 1 0
, 2 2 2

0 10

A

B

V

U

µ ν µν µν µν
σ

γ γ η η η
σ

 
  = = =     

 




   (32)  
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Likewise, the conjugate †ψ , the Dirac conjugate † 0ψ ψ γ= , and the Lorentz scalar 
ψψ  are 

( ) ( )( )
†

† †† ,
A

A
U

U

ξ
ψ ξ η

η
 

= =  
 





      (33)  

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )† †† †0 0

00

0
, ,

0

BU
BUB B

V V V A
V A

σ
ψ ξ η η σ ξ σ

σ

 
 = =
 
 





 



  

(34)  

( ) ( ) ( ) ( )†† 0
0

BUA B
V UV A

ψψ η σ ξ ξ σ η= +


 



   
  (35)  

 

2 Electron spin density 

Electron spin density and torque for it have recently been studied by 
Vernes-Györffy-Weinberger in terms of polarization density [2]. In our recent paper [4], 
we have studied the electron spin density and torque for it in terms of the bilinear 
covariants of the Lorentz transformation [15] using the approach of Ref. [9-11] 
described in the previous section, which we shall briefly review in the following 
subsections 2.1 and 2.2. 

2.1 Bilinear covariants 

Using Eqs. (9) and (30), the chiral representation of the spin angular momentum reduces 
to 

( )
( )

0
5

1,
4 2

01 1
2 2 0

k k m
k m

A

B
V

U

iS S

S

γ γ ε

σ
γ γγ

σ

 = = 

 
 = =
 
 

 







 







 



  
  

(36)  

( )
( )

0 0
5

01 1
2 2 0

Ak

Bk k k
Vk

U

S i i i S
σ

γ γ γ
σ

 
 = = − = − 
 − 





 

  

(37)  

where k mε


 denotes the Levi-Civita symbol. 
The spin density is then written in the bilinear covariant form as the axial vector 

(pseudovector):  

( ) ( ) ( ) ( )†
5

1 1( ) ( ) ( )
2 2

s x x x s x x S x xψ γγ ψ ψ ψ σ= = =


  

     (38) 
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( ) ( ) ( )R Lx x xσ σ σ= +
  

   
 

   (39)  

( ) ( )

( ) ( )

††

††

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

AA B
R R R B

V
L L L U VU

x x x x x

x x x x x

σ ψ σψ ξ σ ξ

σ ψ σψ η σ η

= =

= =


 



  

  

 

   (40)  

which is the spatial part of the 3rd rank antisymmetric tensor [12]. For discrete 
symmetry for the spin density ( )s x , we have charge conjugation C, parity P, 
time-reversal T symmetry as follows: 

( ) ( )1s x s x− =C C 

       (41)  

( ) ( )1s x s Px− =P P 

       (42)  

( ) ( )1 ts x s Tx− = −T T 

       (43) 

with 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Pµ
ν

 
 − =
 −
  − 

       (44) 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T µ
ν

− 
 
 =
 
  
 

       (45) 

where t s  in the right hand side of Eq. (43) means tσ  be used in place of σ  in Eq. 
(40). 

We may first examine the chiral charge, spin density and spin torque summarized in 
Appendices A and B (see Appendices A and B) for free electron satisfying the Dirac 
equation in this case as 

( ) ( ) 0,    /i mc x xµ µ
µ µγ ψ∂ − = ∂ = ∂ ∂      (46) 

where m  is the mass of electron. The stationary state solution with the 3rd eigenvalue 
1
2

ζ = ±   of spin 3
zS S e= •



  using the unit vector ze  along the 3rd axis is: 

( ) ( ) ( ) ( ) 1, , ,    , 0,    
2

i x p
x u p e p mc u pψ ζ ζ ζ ζ

− ⋅
= − = = ±/

 

    (47)  

where [15] 
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0

00 0

1 1( , ) ,    
2 2 ( )

z

x y
z

p mc p
p

u p p p ip
p mc pp p mc

p

+
+

+

 + +
 
 = = + + −+   − 




   (48)  

0

0 0

0

1 1( , ) ,    
2 2 ( )

z
x y

z

p
p mc p

u p p p ip
pp p mc

p mc p

−

−
−

 
 + − − = = −
 −+
 

+ + 




   (49)  

In the rest frame attached to electron, the charge density, Eq. (A5), and the chiral spin 
density, Eq. (40), are then 

1 10,
2 2
1 10,
2 2

R

L

N

N

 ± = 
 
 ± = 
 









       (50)  

1 1(0, )
2 2
1 1(0, )
2 2

R z

L z

e

e

σ

σ

± = ±

± = ±



 





 



       (51)  

In the inertial frame attached to observer, we have instead 

( )

( )

0
0

0
0

1 1,
2 2
1 1,
2 2

R z

L z

N p p p
p

N p p p
p

 ± = ± 
 
 ± = 
 







 

      (52)  

0

0 0

0

0 0

1
1( , )
2 2 2

1
1( , )
2 2 2

z

R z

z

L z

p
mc p mcp e p
p p

p
mc p mcp e p
p p

σ

σ

±
+± = ± +

+± = ± −

   





   



     (53)  

where the spin-orbit coupling (polarization) appears in the chiral spin density. The 
polarization may be combined to give 

( )0 0 0

1 1 1 1, ,
2 2 2 2

z
z

pmcs p p e p
p p p mc

σ
      ± = ± = ± +     +     

     

   
  (54)
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which is the well-known formula, Eq. (3.147) of [16]. The spin torque does not of 
course work in this case, but if electron is accelerated by the external electromagnetic 
field, further spin-orbit coupling, the Thomas precession and therefore the spin torque 
emerge to bring about the resultant further polarization as shown in Appendix C (see 
Appendix C). 

It should be noted that chirality of a particle has nothing to do with helicity as an 
observable but is right (or left)-handed if its spin transforms according to a 
two-dimensional irreducible representation λ  (or its inequivalent complex conjugate 
irreducible representation † 1λ λ −= ) of SL(2,C). Helicity of a particle is right (or 
left)-handed if its spin is parallel (or antiparallel) to its linear momentum. For massive 
particles, helicity is not conserved since the direction of linear momentum depends on 
the inertial frame of observer. For massless particles, helicity is conserved keeping 
direct relationship with chirality. 
 

2.2 Spin torque 

The equation of motion of electron spin is [4] 

( ) ( ) ( )s x t x x
t

ζ∂
= +

∂





        (55)  

for electron under the external electromagnetic field satisfying the Dirac equation with 
the covariant derivative as 

( ) ( ) 0i D mc xµ
µγ ψ− =        (56)  

( )qD i A x
cµ µ µ= ∂ +


       (57)  

where q e= −  is the charge of electron and ( )A xµ  the Abelian gauge potential. 

The right hand side of Eq. (55) is composed of two terms. First, the spin torque 
( )t x


, which is given by the antisymmetric part of the nonsymmetric 
(symmetry-polarized) Hermitean stress tensor ( )xτ Π : 

( ) ( )k n
nkt x xε τ Π= − 

       
 (58)  

( )( )( ) ( ) ( ) . .
2

k kcx x i D x h cτ ψ γ ψΠ = − + 

      (59)  

† ( ) ( )x xτ τΠ Π=
          (60)  

( ) ( );  nonsymmetric (symmetry-polarized)k kx xτ τΠ Π≠     (61)  
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and the zeta force ( )xζ


, which is given by the gradient of the zeta potential 5 ( )xφ  

proportional to the chiral charge density 0
5 ( )j x  (see Appendix A) as follows: 

5( ) ( )k
kx xζ φ= −∂        (62)  

( )
2

0
5 5( ) ( ) ( ) ( )

2 2 R L
c cx j x N x N x
q

φ = = −
       (63)  

For chiral spin-1/2 Fermion with the non-Abelian gauge potential, analogous 
equation of motion of spin has been found [4]. 

Electron spin density ( )s x  has rotational character as manifestly shown by the 

vorticity ( )rots x :  

( ) ( ) ( ) ( )( ) ( )0
1rot . .
2

s x x i D x h c xψ γ ψ= + −Π




     (64)  

In Eq. (64) is shown the kinetic momentum density ( )xΠ


 defined as  

( )( )†1( ) ( ) ( ) ( ) . .
2

x x i D x x h cψ ψΠ = +


      (65) 

This satisfies the equation of motion [4] 

( ) ( )x F x
t
∂
Π =

∂



        (66)  

( ) ( ) ( )F x L x xτ Π= +
 

        (67)  

The force density ( )F x


 is composed not only of the Lorentz force density ( )L x


 but 

also of the tension density ( )xτ Π  which is the divergence of the symmetry-polarized 
stress tensor ( )xτ Π given in Eq. (59): 

( ) div ( ),   ( ) ( )k kx x x xτ τ τ τΠ Π Π Π= = ∂ 



        (68)  

The stress tensor itself is not defined uniquely [17,18] since mathematically any tensor 
whose divergence is zero can be added to. Our stress tensor ( )xτ Π  in Eq. (59) is 
defined in such a way that it appears in the equation of motion of ( )xΠ



 as in Eqs. 
(66)-(68). 

The chiral partitionings of the working equations are summarized in Appendix B 
(see Appendix B). Examples of the spin torque are found in Appendix C: the Volkow 
wave function of the Dirac electron under the external time-dependent plane wave 
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electromagnetic field (see Appendix C) and Appendix D: the Landau wave function of 
the Dirac electron under the influence of the external static uniform magnetic field (see 
Appendix D). 
 

2.3 Energy-momentum tensor 

In this section, we derive the spin torque, zeta force and vorticity as a consequence of 
the symmetry of energy-momentum tensor of gravitation. The gravitational action GI  
is added to the system action SI  and made stationary: 

0,    G SI I I Iδ = = +        (69)  
under the variation g µνδ  of the metric tensor g µν : 

4 41,  
2 2 2G G
c cI R gd x I R g R g gd xµν

µν µνδ δ
κ κ

 = − = − − 
 ∫ ∫   (70) 

4 41 1,  
2S SI L gd x I T g gd x

c c
µν

µνδ δ= − = −∫ ∫     (71) 

The Einstein equation is then derived 

( ) ( )G x Y xµν µν=        (72)  

with the definition 

( ) ( ) ( ) ( )1
2

G x R x g x R xµν µν µν= −      (73)  

( ) ( )2Y x T x
cµν µν
κ

= −        (74)  

Since the Einstein tensor ( )G xµν  is symmetric, so is the energy momentum tensor 

( )T xµν : 

( ) ( );  symmetricG x G xµν νµ=       (75)  

( ) ( );  symmetricT x T xµν νµ=       (76)  

Using the tetrad formalism equipped with the principle of equivalence, the metric 
tensor in any general noninertial coordinate system is given as 

( ) ( ) ( )a b
abg x e x e xµν µ ν η=       (77)  
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where ( )ae xµ  denotes the tetrad field and the Latin letters , ,a b c  and so on runs from 

0 to 3 in this and the subsequent subsections 2.3 and 2.4. The tetrad field ( )ae xµ  is a 

coordinate vector and a Lorentz vector for the Lorentz transformation 'x x→  

associated with the vector representation ( )a
b xΛ [8]: 

( ) ( ) ( )' '
'

a a axe x e x e x
x

ν

µ µ νµ

∂
→ =

∂
       (78)  

( ) ( ) ( ) ( )'a a a b
be x e x x e xµ µ µ→ = Λ       (79)  

and is parallely transported : 

{ } 0b
a a a be e eλ λ κ λ

ν κ ν νγ∂ + − =       (80)  

In Eq. (80), we used the Levi-Civita affine connection 

{ } ( ) { }1
2

g g g gλ λρ λ
µ ν µ νρ ν µρ ρ µν ν µ= ∂ + ∂ − ∂ =     (81)  

and spin connection 

;
b bc

a a ce e ν
µ ν µγ η=        (82)  

where the covariant derivative is defined as 

{ }; ,a a ae e eλ λ λ κ
ν ν κ ν= +        (83)  

{ }; ,a a ae e eκ
λ ν λ ν λ ν κ= −        (84)  

with the usual partial derivative denoted as 

,f fµ µ= ∂         (85)   

In the tetrad formalism [7,8], the absolute parallelism of the tetrad field ( )ae xµ  is 

found to be 

* * 0a a aD e e eλ λ λ µ
ν ν µ ν= ∂ + Γ =       (86)  

and the connection 

{ }* a b
a be eλ λ λ

µ ν µ ν µ νγΓ = −       (87)  
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is used to define the torsion tensor 

* * *T λ λ λ
µν µ ν ν µ= Γ −Γ


       (88)  

and contorsion tensor 

( )* * * *1
2

K T T Tλµν λµν µλν νλµ= − −       (89)  

In the tetrad formalism, the Dirac spinor field is a coordinate scalar and a Lorentz 
spinor [8]: 

( ) ( ) ( )' 'x x xα α αψ ψ ψ→ =       (90)  

( ) ( ) ( )( ) ( )'x x D x xα α αβ βψ ψ ψ→ = Λ      (91)  

Also, what is important, the covariant derivative ( )D gµ  is not only a coordinate scalar, 

but also a Lorentz vector, as shown in Eqs. (12.5.15)-(12.5.17) and (12.5.24) of [8]: 

( )D gµ µ µ= ∂ + Γ
       

 (92)  

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( )1 1'x x D x D x D x D xµ µ µ µ
− −Γ → Γ = Λ Γ Λ − ∂ Λ Λ  (93)  

The Lagrangian density for the quantum electrodynamics (QED) system under 
external gravity is then given as 

EM eL L L= +         (94)  
with the definition 

1 1 ,   
16 16EML F F F F g g F A Aµν µρ νσ

µν µν ρσ µν µ ν ν µπ π
= − = − = ∂ −∂   (95)  

( )( )1 . .
2

a
e aL c i e D g mc h cµ

µψ γ ψ= − +

  

   (96)  

The gravitational covariant derivative ( )D gµ  in Eq. (96), which satisfies Eqs. (92)-(93) 

under the Lorentz transformation, is concretely written as 

( ) 1
2
1          
2

ab
ab

ab
ab

qD g i J i A
c

D i J

µ µ µ µ

µ µ

γ

γ

= ∂ + +

= +

 



     (97)  

where the spin angular momentum abJ  
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,
4

ab a biJ γ γ =  
        (98)  

is added to the covariant derivative Dµ  given in Eq. (57) through the coupling with 

spin connection abµγ  given in Eq. (82). The emergence of the spin connection is 

manifest as the consequence of the principle of equivalence in general relativity. 
It should be noted here that, after some manipulation we can rewrite Eq. (96) in a 

very significant form as follows: 

( )( )

( ) 5

1 . .
2

1 3 1. .
2 4

a
e a

a
a

L c i e D g mc h c

c i e mc h c a j A j
q c

µ
µ

µ µ µ
µ µ µ

ψ γ ψ

ψ γ ψ

= − +

= ∂ − + − −







   (99)  

Namely, which is hidden in Eq. (96), but in this Eq. (99), minimal couplings are 

manifestly shown; those not only of current ( ) j xµ  with photon vector potential 

( )A xµ  but also of chiral current 5 ( )j xµ   (see Appendix A)  with spin coupling 

vector ( )a xµ  defined as 

*1
6

a Tµ µνρσ
νρσε=        (100)   

where *T νρσ  is the torsion tensor given in Eq. (88) and we have used the Levi-Civita 

tensor: 
01231 ,    1

g
µνρσ µνρσε δ δ= =

−
      (101)  

0123,    1gµνρσ µνρσε δ δ= − = −       (102)  

Using the Lagrangian given in Eq. (94), the variation principle with respect to the 
spinor field 

0SIδ
δψ

=         (103)  

leads to the field equation 

( )( ) 0a
ai e D g mcµ

µγ ψ− =       (104)  
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Second, the variation principle with respect to the tetrad field leads to the symmetric 

energy-momentum tensor Tµν  and the conservation law as follows [8]: 

4 41 1 a
S aI L gd x T e gd x

c c
µ

µδ δ δ= − = −∫ ∫      (105)  

b
ab

a

T g e L g
eµν ν µη ∂

− = −
∂

      (106) 

( ) ( )1 ;  symmetric
4 e EMT g g F F g L L Tρσ

µν µν µν µρ νσ µν νµε τ
π

Π Π= − − − − + = (107)  

; 0Tν
µ ν =         (108)  

In Eq. (107), we have shown that the symmetric energy-momentum tensor Tµν  

comprises not only the symmetric tensors but also polarized geometrical tensor µνε Π  

defined as 

( )

*
5

* * * *

4
1        2
2

c e K

D T F T F T F

λρσκ
µν λν ρσµ κ

κ λ ρσ ρσ
λ κλ µν ρσµ ν νρσ µ

ε ε ψγ γ ψΠ =

 + + + − 
 



   



   (109)  

with 

58
abc dabc

d
cF ε ψγ γ ψ=
        (110) 

and polarized stress tensor  ( )gµντ Π   with the covariant derivative ( )D gµ   given in 

Eq. (97) : 

( ) ( )( )( ). .
2
cg i D g h cµν ν µτ ψγ ψΠ = − +      (111)  

Now that the energy-momentum tensor Tµν  is symmetric, the antisymmetric 

components should cancel with each other [6]: 

( ) 0A A gµν µνε τ+ =        (112) 

where  
S Aµν µν µνε ε εΠ = +        (113)  
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( )1
2

Sµν µν νµε ε εΠ Π= +        (114)  

( )1
2

Aµν µν νµε ε εΠ Π= −        (115)  

and  
( ) ( ) ( )S Ag g gµν µν µντ τ τΠ = +       (116)  

( ) ( ) ( )( )1
2

S g g gµν µν νµτ τ τΠ Π= +       (117)  

( ) ( ) ( )( )1
2

A g g gµν µν νµτ τ τΠ Π= −       (118)  

 

2.4 Weak gravitation limit  

In the limit of weak gravitation field 

 ,    a ae gµ µ µν µνδ η→ →        (119)  

the equation of motion of the Dirac spinor field ( )xψ  is reduced from Eq. (104) to the 

Dirac Eq. (56) in due course. Moreover, the antisymmetry cancelling condition of Eq. 

(112) is reduced to ( ) ( ) ( )s x t x x
t

ζ∂
= +

∂





  and 

( ) ( ) ( ) ( )( ) ( )0
1rot . .
2

s x x i D x h c xψ γ ψ= + −Π




 . These equations are nothing but Eqs. 

(55) and (64) respectively. 
 

3 Result and discussion 

We have shown the electron spin torque, zeta force and vorticity as a consequence of 
the symmetry of energy-momentum tensor of gravitation. We have invoked here the 
covariant formalism of general relativity equipped with vierbein (tetrad) field on curved 
spacetime [6-8]. The symmetry we use here is hence restricted in this sense and not 
reflect supersymmetry. The development of the spin torque, zeta force and vorticity in 
the context of supersymmetry should be very interesting, since then the spin of Boson as 
well as Fermion can be treated in a unified manner, which is under way and will be 
published elsewhere. 
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Appendix A 

The electron current is defined by 

( ) ( ) ( )j x cq x xµ µψ γ ψ=
  

     (A1) 

Here we have a very interesting chiral decomposition of electron current ( ) j xµ  as 

( )0 ( ) ( ) ( ) ( )R Lj x cqN x cq N x N x= = +      (A2)  

( )( ) ( ) ( )R Lj x cq x xσ σ= −


        (A3)  

where the charge density is decomposed into the chiral parts as 

( ) ( ) ( ) ( ) ( )†
R LN x x x N x N xψ ψ= = +      (A4) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

††

††

( ) ( )

( ) ( )

A A
R R R

L L L U U

N x x x x x

N x x x x x

ψ ψ ξ ξ

ψ ψ η η

= =

= =
 

     (A5) 

and ( )R xσ and ( )L xσ  are given in Eq. (41). Namely, the spatial part of the current 
density is given by the difference in the chiral parts of the spin density. 

The chiral decomposition of ( ) j xµ  is also realized in a dual manner with the chiral 

current 5 ( )j xµ  defined as  

5 5( ) ( ) ( )j x cq x xµ µψ γ γ ψ=       (A6)  

Here we have the chiral decomposition of electron current 5 ( )j xµ  dual to ( ) j xµ  as 

( )0
5 ( ) ( ) ( )R Lj x cq N x N x= −       (A7)  
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( )5 ( ) ( ) ( ) ( )R Lj x cq x cq x xσ σ σ= = +


        (A8)  

where Eqs. (A7-8) are dual to Eqs. (A2-3). Namely, the chiral charge density 0
5 ( )j x  is 

given by the difference in the chiral parts of the charge density, and the spatial part of 

the chiral current density 5 ( )j x


 is given by the spin density. 

The charge is conserved but not the chiral charge since we have no continuity 
equation for the latter because of the nonzero mass of electron. Actually, using Eq. (56), 

we have continuity equation for ( )j xµ  as 

( ) 0j xµ
µ∂ =

   
     (A9) 

while for ( )5j xµ  we have residual pseudoscalar as the 4th rank antisymmetric tensor as 

( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )

5 5

† †

† † 0
0

1 2

2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

R L L R

AUA A
U U U A

mcj x i x x
cq

mci x x x x

mci x x x x

µ
µ ψ γ ψ

ψ ψ ψ ψ

ξ σ η η σ ξ

∂ =

= − +

= − +


 







  

 (A10) 

which is not zero unless m  is zero. 
 

Appendix B 

The stress tensor is decomposed into the chiral parts as  

( ) ( )( ) R Lx x xτ τ τΠ Π Π= −
         (B1) 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

†

†

( ) ( ) . .
2

( ) ( ) . .
2

Ak A k B
R B

Vk k
L U VU

cx x i D x h c

cx x i D x h c

τ ξ σ ξ

τ η σ η

Π

Π

= − +

= − +

 



 

 







   (B2)  

and therefore the torque as 
( ) ( ) ( )R Lt x t x t x= −
  

       (B3) 
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( ) ( )

( ) ( )

k n
R nk R

k n
L nk L

t x x
t x x

ε τ

ε τ

Π

Π

= −

= −









       (B4) 

and also the zeta force as 

ˆ ˆ ˆ( ) ( ) ( )R Lx x xζ ζ ζ= −
  

       (B5) 

5

5

( ) ( ) 

( ) ( )

k
R k R

k
L k L

x x
x x

ζ φ

ζ φ

= −∂

= −∂
       (B6) 

with the zeta potential 
( ) ( ) ( )R Lx x xφ φ φ= −        (B7) 

2

5

2

5

( ) ( )
2

( ) ( )
2

R R

L L

cx N x

cx N x

φ

φ

=

=





       (B8) 

The chiral parts of the kinetic momentum follows 

( ) ( ) ( )R R Lx x xΠ = Π +Π
  

      (B9) 

( ) ( ) ( )( )
( ) ( ) ( )( )

†

†

1 ( ) ( ) ( ) . .
2
1 ( ) ( ) ( ) . .
2

A A
R

L U U

x x i D x x h c

x x i D x x h c

ξ ξ

η η

Π = +

Π = +
 









    (B10) 

Thus, the chiral partitionings in Eq. (55) are 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )R L R R L Ls x s x t x x t x x
t

ζ ζ∂
+ = + − +

∂

 

 

      (B11)  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

†

0

†
0

rot

1 ( ) ( ) . .
2
1 ( ) ( ) . .
2

R L R L

AA B
B

V
U VU

s x s x x x

x i D x x h c

x i D x x h c

ξ σ ξ

η σ η

+ + Π +Π

= +

− +


 



 

 









    

 (B12)  

 

Appendix C 

The Volkov solution of the Dirac electron under a plane-wave radiation field  

( ) ( )
2

0,    ,    lim 0A A k x k ct k r Aµ µ µ

φ
φ φ φ

→∞
= = ⋅ = − • =



    (C1) 
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is given as [12,19] 
011

2

i Sq kA e u
k p c

ψ
 

/ /= + ⋅ 
       (C2)  

2
2

0
1 1

2
q qS x p p A A d

k p c k p c
φ

φ
−∞

  = − ⋅ − ⋅ −   ⋅ ⋅   
∫     (C3)  

( ) 0,    0p mc u u− = ∂ ⋅ =/        (C4)  

( )22p mc=         (C5)  

Let the asymptotic free boundary condition with the 3rd eigenvalue 1
2

ζ = ±   of spin 

3
zS S e= •





 be 

2

1lim
2φ

ζ
→∞

= ± 

     
   (C6) 

then we have  

2
2

0

1 1 1 1,
2 2

q q qj p cq p A k A p A
p c k p c k p c

µ µ µ µ
      ± = − + ⋅ −      ⋅ ⋅     




 (C7) 

( )

( )

( )

0

0 0
0 00 0

0
5

0 0
0 00 0

2
2 0 0

0 00 0

12
1 1,
2 2 12

1 12
2

z

z
z z

z
z z

z
z z

p
p

p mcA k p k p k
p pp p mcqj p cq

k p c p mck A p A p A
p pp p mc

pq mcA k k p k p k
k p c p pp p mc





   
   − − • −

   +     ± = ± +   ⋅     
   + − • −

   +  
    − − • −   ⋅ +   






























 
 
 



          (C8) 
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( )

( )

( )

( )

0 0

0
0 00 0

1
5

0
0 00 0

2
2 0

0 00 0

1

12
1 1,
2 2 12

1 12
2

z x

z
x z z

z
x z z

z
x z z

p p
p p mc

p mcA k p k p k
p pp p mcqj p cq

k p c p mck A p A p A
p pp p mc

pq mcA k k p k p k
k p c p pp p mc



 +


  
  − − • −

  +    ± = ± +  ⋅     
  + − • −

  +  
    − − • −   ⋅ +   






















 
 
 
 
 
 
 
 
 
 
 



          (C9) 

( )

( )

( )

( )

0 0

0
0 00 0

2
5

0
0 00 0

2
2 0

0 00 0

1

12
1 1,
2 2 12

1 12
2

z y

z
y z z

z
y z z

z
y z z

p p
p p mc

p mcA k p k p k
p pp p mcqj p cq

k p c p mck A p A p A
p pp p mc

pq mcA k k p k p k
k p c p pp p mc



 +


  
  − − • −

  +    ± = ± +  ⋅     
  + − • −

  +  
    − − • −   ⋅ +   






















 
 
 
 
 
 
 
 
 
 
 



          (C10) 

( )

( )

( )

( )

2
0 0 0

0
0 00 0

3
5

0
0 00 0

2
2 0

0 00 0

1

12
1 1,
2 2 12

1 12
2

z

z
z z z

z
z z z

z
z z z

mc p
p p p mc
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Assume then for simplicity, first, radiation field propagates along the 3rd axis 
associated with the electric field along the 1st axis and the magnetic field in the 2nd axis: 

( )0, ,0,0xA Aµ =        (C12)  

( )0 0,0,0,k k kµ =        (C13)  

( ) 01 , , ,0,0x
x y z

dAAE E E E k
c t dφ

 ∂
= − = = − ∂  





  
   (C14)  

( ) 0rot , , 0, ,0x
x y z

dAB A B B B k
dφ

 
= = = − 

 



     (C15)  

and, second, the electron propagates along the 3rd axis asymptotically: 

( )0 ,0,0, zp p pµ =
    

   (C16) 

It follows that the charge density, the spin density and zeta potential are given as 

( ) ( )
2

20
0 0

1 11
2 x

z

qN j A
cq cp p p

 = = +  −  
     (C17)  

( )0

1 1 ,0,1 1
2 x

qs A N
p c

 
= ± − − 

 



       (C18) 

( )5 0 1
2

zpc N
p

φ
 

= ± − − 
 

        (C19)  

The spin torque and zeta force are calculated to be 

( )
0

0

1, , ,0,0
2

x
x y z

dAkt t t t q
p dφ

 
= = ±  

 




     (C20)  
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20

0 0

1, , 0,0,
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x y z x

z

dAck q A
c dp p p

ζ ζ ζ ζ
φ

   = = ± −   −   





 
 (C21)  

Consequently, we have nonnul spin dynamics, which should be so since the Volkov 
state is not stationary: 

0s t
t

ζ∂
= + ≠

∂

 



         (C22)  

As a trivial limit of free electron in the stationary state, the torque and zeta force are 
calculated to be zero: 

0,    0t ζ= =
  



        (C23)  
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and hence the sum: 

0s t
t

ζ∂
= + =

∂

 



         (C24)  

which should be so since the state here is chosen stationary. 
 

Appendix D 

The Landau levels of the Dirac electron under a static uniform magnetic field along the 
3rd axis 

1 10, , ,0
2 2

A Hy Hxµ  = − 
      

   (D1) 

is given in a textbook [16]. Using the Landau eigenfunctions ( ), , ,zn m kR σ ρ


 with 

2 2x yρ = + , the torque and zeta force are calculated to be cancelled with each other, 

which should be so since the state is stationary: 

0s t
t

ζ∂
= + =

∂

 



         (D2)  

But the vector components are nonzero in this case: 

5 5 5grad , ,0
x y

ζ φ φ φ
 ∂ ∂

= − = − − ∂ ∂ 



     (D3)  

with the zeta potential 

( )
( )( )2

5 , , ,2
, , , 2 z

z

z
n m k

n m k

kc RE
mc

c

σ
σ

σφ ρ
π

=
+





      (D4)  

where n
 
and m



 
are the quantum numbers, zk

 
is the wave number along the 3rd axis, 

and where σ
 
is the sign of the 3rd eigenvalue 1

2
ζ = ±   of spin 3

zS S e= •


 . 
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