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We study dynamical partially-localized brane solutions in higher dimensions. We give new descriptions

of the relevant solutions of dynamical branes which are localized along both the overall and relative

transverse directions. The starting point is a system of pr-branes ending on a ps-brane with a time-

dependent warp factor. This system can be related to Dpr � Dps brane system in string theory, where one

brane is localized at the delocalized other brane. We then show that these give Friedmann-Lemaitre-

Robertson-Walker cosmological solutions. Our approach leads to a new and manifest description of the

brane configurations near the delocalized branes, and new solutions in the wave or KK-monopole

background in terms of certain partial differential equations in D dimensions including ten and eleven

dimensions.

DOI: 10.1103/PhysRevD.84.126006 PACS numbers: 11.25.�w, 11.27.+d, 98.80.Cq

I. INTRODUCTION

In recent years much effort has been devoted to the
construction of cosmological models in string theory
produced by enlarging static p-brane solutions [1–5].
Although these calculations are complicated by the occur-
rence of time-dependences, there has been active develop-
ment in constructing time-dependent supergravity
solutions of p-branes and other solitons in string theory
[6–13]. These classical solutions in string theory made it
possible to discuss the dynamics such as cosmological
evolution of our Universe and brane collision within the
framework of string theory. In these studies, brane world
models were obtained by wrapping or intersecting higher-
dimensional p-branes around compact manifolds. In the
course of compactifying p-branes, the dynamical solutions
become smeared or delocalized along the compactified
directions, which include possibly some of overall trans-
verse directions and relative transverse directions that
corresponds to the transverse directions which are longi-
tudinal to some of other constituent branes. Such intersect-
ing p-brane solutions in higher dimensions thus become
localized only along the relative or overall transverse di-
rections. The dynamical intersecting brane solutions which
we have mainly constructed are such delocalized type
[1,2,4,5]. There are several works to construct the static
localized intersecting brane solutions with the restricted
ansatz of fields which has the same form as the correspond-
ing delocalized intersecting brane solutions [14–17]. The
equations of motion along with such simplified assumption
for fields require that one of the branes has to be delocal-
ized on the relative transverse directions. However, it is
difficult to obtain the exact localized solutions even if we
use such simplified ansatz because harmonic functions that
specify branes satisfy coupled partial differential equa-
tions. The solutions of these differential equations in gen-
eral have a complicated form. On the other hand, the

dynamical localized intersecting brane solution is not
well-known, and nobody mentions the explicit expressions
for harmonic functions. This article will describe a method
of dealing with the extension of the time-dependent solu-
tions in the partially localized intersecting brane system,
where branes are localized along the relative transverse
directions but delocalized along the overall transverse
directions [18]. For the purposes of construction of cos-
mological model, we employ the same ansatz of fields as
the static p-brane solutions. It is, in general, possible to
derive intersecting brane solutions in terms of applying
duality transformations in string theory. For instance, we
compactify the direction which becomes delocalized
through smearing or uniform array of branes along it to
apply T-duality transformations in the transverse direc-
tions. Then, the power of the radial coordinate in the har-
monic function changes. Hence, we will construct such
localized intersecting brane solutions case by case.
It is the purpose of this paper to construct various

explicit partially localized intersecting dynamical brane
solutions in various dimensions. We give classification of
these dynamical intersecting brane solutions involving two
branes, and discuss the application of these solutions to
cosmology. We also study the arbitrary single brane on the
KK-monopole and wave background. It is possible to
derive the time-dependent solution if the form of the static
solution is explicitly known, so calculations have generally
relied on an assumption of fields and even strictly metric
form. Also, even where a coupling between scalar field and
gauge field strength in the action is known, the intersection
rule of the brane can be obtained explicitly. Since a warp
factor arises from a field strength, the dynamics of a system
composed of two branes can be characterized by two warp
factors arising from two field strengths. For M-branes and
D-branes, among these warp factors only one function can
depend on time.
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The procedure is described here in generally higher-
dimensional gravity model as well as the supergravity,
the solutions of a D-brane or M-brane in a wave or KK-
monopole background. This is simple enough to illustrate
the use of the method without the general idea being lost in
the complications of higher-dimensional gravity theory,
and yet sufficiently general so that we can see how to
deal with an arbitrary expansion. As we will see, these
methods yield a prescription for intersecting brane solu-
tions that depend not only on the overall transverse direc-
tions, but world-volume and the relative transverse
directions.

The paper is organized as follows. In Sec. II, we show
that the partially localized dynamical intersecting brane
solutions of two p-branes exist as an almost immediate
generalization of the static brane solution where one of
branes is delocalized. We will also study explicit partially
localized p-brane solutions in KK-monopole or wave
background. We will apply these solutions to construct
various explicit partially localized intersecting M-brane
solutions in Sec. III, and various partially localized inter-
secting brane solutions in ten dimensions in Sec. IV. We
then go on in Sec. V to apply these solutions to cosmology.
Section VI is devoted to discussions.

II. THE INTERSECTION OF TWO BRANES
IN D-DIMENSIONAL THEORY

We study the dynamical brane in D-dimensional
theory. We describe the relation of the partially localized
static brane solution to time-dependent solutions in
D-dimensions. We also study solutions in the wave and
KK-monopole background.

A. The intersection of two p-branes
in D-dimensional theory

In this section, we consider a D-dimensional theory
composed of the metric gMN , dilaton �, and two antisym-
metric tensor fields of rank (pr þ 2) and (ps þ 2):

S ¼ 1

2�2

Z �
R � 1� 1

2
d� ^ �d�

� 1

2

1

ðpr þ 2Þ! e�rcr�Fðprþ2Þ ^ �Fðprþ2Þ

� 1

2

1

ðps þ 2Þ! e�scs�Fðpsþ2Þ ^ �Fðpsþ2Þ
�
; (1)

where �2 is the D-dimensional gravitational constant, � is
the Hodge operator in the D-dimensional space-time,
Fðprþ2Þ and Fðpsþ2Þ are (pr þ 2)-form, (ps þ 2)-form field

strengths, respectively. And cI, �IðI ¼ r; sÞ are constants
given by

c2I ¼ NI � 2ðpI þ 1ÞðD� pI � 3Þ
D� 2

; (2a)

�I ¼
�þ if pI � brane is electric

� if pI � brane is magnetic
(2b)

Here NI is constant. The field strength Fðprþ2Þ, Fðpsþ2Þ are
given by the (pr þ 1)-form, (ps þ 1)-form gauge poten-
tials Aðprþ1Þ, Aðpsþ1Þ, respectively

Fðprþ2Þ ¼ dAðprþ1Þ; Fðpsþ2Þ ¼ dAðpsþ1Þ: (3)

After varying the action with respect to the metric, the
dilaton, and the (pr þ 1)-form and (ps þ 1)-form gauge
fields, we obtain the field equations,

RMN ¼ 1

2
@M�@N�þ 1

2

e�rcr�

ðpr þ 2Þ!
�
ðpr þ 2ÞFMA2���Aðprþ2ÞF

A2���Aðprþ2Þ
N � pr þ 1

D� 2
gMNF

2
ðprþ2Þ

�

þ 1

2

e�scs�

ðps þ 2Þ!
�
ðps þ 2ÞFMA2���Aðpsþ2ÞF

A2���Aðpsþ2Þ
N � ps þ 1

D� 2
gMNF

2
ðpsþ2Þ

�
; (4a)

d � d�� 1

2

�rcr
ðpr þ 2Þ! e�rcr�Fðprþ2Þ ^ �Fðprþ2Þ � 1

2

�scs
ðps þ 2Þ! e�scs�Fðpsþ2Þ ^ �Fðpsþ2Þ ¼ 0; (4b)

d½e�rcr� � Fðprþ2Þ� ¼ 0; (4c)

d½e�scs� � Fðpsþ2Þ� ¼ 0: (4d)

To solve the field equations, we assume that the
D-dimensional metric takes the form

ds2 ¼ harr ðx; y; zÞhass ðx; v; zÞq��ðXÞdx�dx�
þ hbrr ðx; y; zÞhass ðx; v; zÞ�ijðY1Þdyidyj
þ harr ðx; y; zÞhbss ðx; v; zÞwmnðY2Þdvmdvn

þ hbrr ðx; y; zÞhbss ðx; v; zÞuabðZÞdzadzb; (5)

where q�� is the (pþ 1)-dimensional metric which de-

pends only on the (pþ 1)-dimensional coordinates x�, �ij

is the (ps � p)-dimensional metric which depends only
on the (ps � p)-dimensional coordinates yi, wmn is the
(pr � p)-dimensional metric which depends only on the
(pr � p)-dimensional coordinates vm and finally uab is
the (Dþ p� pr � ps � 1)-dimensional metric which de-
pends only on the (Dþ p� pr � ps � 1)-dimensional
coordinates za. The parameters aIðI ¼ r; sÞ and bIðI ¼
r; sÞ in the metric (5) are given by
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aI ¼ � 4ðD� pI � 3Þ
NIðD� 2Þ ; bI ¼ 4ðpI þ 1Þ

NIðD� 2Þ : (6)

The brane configuration is given as follows:
The D-dimensional metric (5) implies that the solutions

are characterized by two functions, hr and hs, which
depend on the coordinates transverse to the brane as well
as the world-volume coordinate (see Table I). For the
configurations of two branes, the powers of harmonic
functions have to obey the intersection rule, and then split
the coordinates in three parts. One is the overall world-
volume coordinates, fxg, which are common to the two
branes. The others are overall transverse coordinates, fzg,
and the relative transverse coordinates, fyg and fvg, which
are transverse to only one of the two branes. Each of hr and
hs depends not only on overall transverse coordinates but
also on the corresponding relative coordinates: hr ¼
hrðx; y; zÞ; hs ¼ hsðx; v; zÞ.

We also assume that the scalar field � and the gauge
field strengths Fðprþ2Þ, Fðpsþ2Þ are given by

e� ¼ h2�rcr=Nr
r h2�scs=Ns

s ; (7a)

Fðprþ2Þ ¼ 2ffiffiffiffiffiffi
Nr

p d½h�1
r ðx; y; zÞ� ^�ðXÞ ^�ðY2Þ; (7b)

Fðpsþ2Þ ¼ 2ffiffiffiffiffiffi
Ns

p d½h�1
s ðx; v; zÞ� ^�ðXÞ ^�ðY1Þ; (7c)

where �ðXÞ, �ðY1Þ, and �ðY2Þ denote the volume
(pþ 1)-form, (ps � p)-form, and (pr � p)-form respec-
tively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp; (8a)

�ðY1Þ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ � � � ^ dyps�p; (8b)

�ðY2Þ ¼
ffiffiffiffi
w

p
dv1 ^ dv2 ^ � � � ^ dvpr�p: (8c)

Here, q, �, and w are the determinants of the metrics q��,

�ij, and wmn, respectively.

First we consider the Einstein Eq. (4a). Using the as-
sumptions (5) and (7), the Einstein equations are given by

R��ðXÞ � 4

Nr

h�1
r D�D�hr � 4

Ns

h�1
s D�D�hs þ 2

Nr

@� lnhr

��
1� 4

Nr

�
@� lnhr � 4

Ns

@� lnhs

�

þ 2

Ns

@� lnhs

��
1� 4

Ns

�
@� lnhs � 4

Nr

@� lnhr

�
� 1

2
q��h

�4=Nr
r h�4=Ns

s ½arh�1
r ðh4=Ns

s 4Y1
hr þ4ZhrÞ

þ ash
�1
s ðh4=Nr

r 4Y2
hs þ4ZhsÞ� � 1

2
q��

�
arh

�1
r 4X hr � arq

��@� lnhr

��
1� 4

Nr

�
@� lnhr � 4

Ns

@� lnhs

�

þ ash
�1
s 4X hs � asq

��@� lnhs

��
1� 4

Ns

�
@� lnhs � 4

Nr

@� lnhr

��
¼ 0; (9a)

2

Nr

h�1
r

�
@�@ihr þ 4

Ns

@� lnhs@ihr

�
¼ 0; (9b)

2

Ns

h�1
s

�
@�@mhs þ 4

Nr

@� lnhr@mhs

�
¼ 0;

2

Nr

h�1
r @�@ahr þ 2

Ns

h�1
s @�@ahs ¼ 0; (9c)

RijðY1Þ � 1

2
h4=Nr
r �ij

�
brh

�1
r 4X hr � brq

��@� lnhr

��
1� 4

Nr

�
@� lnhr � 4

Ns

@� lnhs

�
þ ash

�1
s 4X hs

� asq
��@� lnhs

��
1� 4

Ns

�
@� lnhs � 4

Nr

@� lnhr

��
� 1

2
�ijh

�4=Ns
s ðbrh�1

r 4Z hr þ ash
�1
s 4Z hsÞ ¼ 0; (9d)

8

NrNsðD� 2Þ2 ½ðpr þ 1Þðps þ 1Þ � ðD� 2Þðpr � psÞ�@i lnhr@m lnhs ¼ 0; (9e)

RmnðY2Þ � 1

2
h4=Ns
s wmn

�
arh

�1
r 4X hr � arq

��@� lnhr

��
1� 4

Nr

�
@� lnhr � 4

Ns

@� lnhs

�
þ bsh

�1
s 4X hs

� bsq
��@� lnhs

��
1� 4

Ns

�
@� lnhs � 4

Nr

@� lnhr

��
� 1

2
wmnh

�4=Nr
r ðarh�1

r 4Z hr þ bsh
�1
s 4Z hsÞ ¼ 0; (9f)

RabðZÞ � 1

2
h4=Nr
r h

4=Ns
s uab

�
brh

�1
r 4X hr � brq

��@� lnhr

��
1� 4

Nr

�
@� lnhr � 4

Ns

@� lnhs

�
þ bsh

�1
s 4X hs

� bsq
��@� lnhs

��
1� 4

Ns

�
@� lnhs � 4

Nr

@� lnhr

��
� 1

2
uabðbrh�1

r 4Z hr þ bsh
�1
s 4Z hsÞ ¼ 0; (9g)

whereD� is the covariant derivative with respect to the metric q��, and4X,4Y1
,4Y2

,4Z the Laplace operators on X,Y2,
Y1, Z spaces, and R��ðXÞ, RijðY1Þ, RmnðY2Þ, and RabðZÞ are the Ricci tensors associated with the metrics q��ðXÞ, �ijðY1Þ,
wmnðY2Þ and uabðZÞ, respectively, and 	 is defined by
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	 ¼ pþ 1� ðpr þ 1Þðps þ 1Þ
D� 2

þ 1

2
�r�scrcs: (10)

The relation 	 ¼ 0 is consistent with the intersection rule [1,2,4,5,19–22].
We see from Eqs. (9b)–(9d), that the warp factors hr and hs must take the form

hr ¼ h0ðxÞ þ h1ðy; zÞ; hs ¼ hsðv; zÞ; for @�hs ¼ 0; (11a)

hr ¼ hrðy; zÞ; hs ¼ k0ðxÞ þ k1ðv; zÞ; for @�hr ¼ 0: (11b)

Let us first consider the case @�hs ¼ 0. The components of the Einstein Eqs. (9) are rewritten as

R��ðXÞ � 2

Nr

�
h�1
r D�D�h0 � 2

�
1� 4

Nr

�
@� lnhr@� lnhr

�
� 1

2
q��h

�4=Nr
r h�4=Ns

s ½arh�1
r ðh4=Ns

s 4Y1
h1 þ4Zh1Þ

þ ash
�1
s ðh4=Nr

r 4Y2
hs þ4ZhsÞ� � 1

2
arq��

�
h�1
r 4X h0 �

�
1� 4

Nr

�
q��@� lnhr@� lnhr

�
¼ 0; (12a)

RijðY1Þ � 1

2
brh

4=Nr
r �ij

�
h�1
r 4X h0 �

�
1� 4

Nr

�
q��@� lnhr@� lnhr

�
� 1

2
�ijh

�4=Ns
s ½brh�1

r ðh4=Ns
s 4Y1

h1 þ4Zh1Þ

þ ash
�1
s ðh4=Nr

r 4Y2
hs þ4ZhsÞ� ¼ 0; (12b)

8

NrNsðD� 2Þ2 ½ðpr þ 1Þðps þ 1Þ � ðD� 2Þðpr � psÞ�@i lnhr@m lnhs ¼ 0; (12c)

RmnðY2Þ � 1

2
arh

4=Ns
s wmn

�
h�1
r 4X h0 �

�
1� 4

Nr

�
q��@� lnhr@� lnhr

�
� 1

2
wmnh

�4=Nr
r ½arh�1

r ðh4=Ns
s 4Y1

h1 þ4Zh1Þ

þ bsh
�1
s ðh4=Nr

r 4Y2
hs þ4ZhsÞ� ¼ 0; (12d)

RabðZÞ � 1

2
brh

4=Nr
r h4=Ns

s uab

�
h�1
r 4X h0 �

�
1� 4

Nr

�
q��@� lnhr@� lnhr

�
� 1

2
uab½brh�1

r ðh4=Ns
s 4Y1

h1 þ4Zh1Þ

þ bsh
�1
s ðh4=Nr

r 4Y2
hs þ4ZhsÞ� ¼ 0: (12e)

Let us next consider the gauge field Eqs. (4c) and (4d).
Under the assumption (7b) and (7c), we find

d½h4ð	þ1Þ=Ns
s @ihrð�Y1

dyiÞ ^�ðZÞ
þ h

4	=Ns
s @ahrð�ZdzaÞ ^�ðY1Þ� ¼ 0; (13a)

d½h4ð	þ1Þ=Nr
r @mhsð�Y2

dvmÞ ^�ðZÞ
þ h4	=Nr

r @ahsð�ZdzaÞ ^�ðY2Þ� ¼ 0; (13b)

where �Y1
, �Y2

, and �Z denote the Hodge operator on Y1,

Y2, and Z, respectively, and 	 is defined by (10). Then, for
	 ¼ 0, the Eq. (13a) leads to

hs 4Y1
hr þ4Zhr ¼ 0;

@�@ihr þ 4

Ns

@� lnhs@ihr ¼ 0;

@�@ahr ¼ 0;

(14)

where4Y1
, and4Z are the Laplace operators on the space

of Y1, and Z, respectively. On the other hand, it follows
from (13b) that

hr 4Y2
hs þ4Zhs ¼ 0;

@�@mhs þ 4

Nr

@� lnhr@mhs ¼ 0;

@�@ahs ¼ 0;

(15)

where 4Y2
is the Laplace operator on the space of Y2.

Finally we should consider the scalar field equation.
Substituting Eqs. (7) and (11) and the intersection rule
	 ¼ 0 into Eq. (4b), we obtain
�rcr
Nr

h4=Nr
r h4=Ns

s

�
h�1
r 4X h0�

�
1� 4

Nr

�
q��@� lnhr@� lnhr

�

þ�rcr
Nr

h�1
r ðh4=Ns

s 4Y1
h1þ4Zh1Þ

þ�scs
Ns

h�1
s ðh4=Nr

r 4Y2
hsþ4ZhsÞ ¼ 0: (16)

TABLE I. Intersections of two p-branes in the metric (5).

Case 0 1 � � � p pþ 1 � � � ps ps þ 1 � � � ps þ pr � p ps þ pr � pþ 1 � � � D� 1

pr � � � � � � �
pr-ps ps � � � � � � �

xN t x1 � � � xp y1 � � � yps�p�1 v1 � � � vpr�p�1 z1 � � � zDþp�pr�ps�1
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Thus, the warp factors hr and hs should satisfy the equations

hr 4X h0 þ
�
1� 4

Nr

�
q��@�h0@�h0 ¼ 0; h

4=Ns
s 4Y1

h1 þ4Zh1 ¼ 0; (17a)

h4=Nr
r 4Y2

hs þ4Zhs ¼ 0: (17b)

Combining these, we find that these field equations lead to

R��ðXÞ ¼ 0; RijðY1Þ ¼ 0; RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; (18a)

hr ¼ h0ðxÞ þ h1ðy; zÞ; hs ¼ hsðv; zÞ; @ihr@mhs ¼ 0; (18b)

D�D�h0 ¼ 0;

�
1� 4

Nr

�
@�h0@�h0 ¼ 0; h

4=Ns
s 4Y1

h1 þ4Zh1 ¼ 0; (18c)

h4=Nr
r 4Y2

hs þ4Zhs ¼ 0: (18d)

The function hr can depend on the coordinate x� only if Nr ¼ 4. We can also choose the solution in which the ps-brane
part depends on x�. Then, we have

R��ðXÞ ¼ 0; RijðY1Þ ¼ 0; RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; (19a)

hr ¼ hrðy; zÞ; hs ¼ k0ðxÞ þ k1ðv; zÞ; @ihr@mhs ¼ 0; (19b)

D�D�k0 ¼ 0;

�
1� 4

Ns

�
@�k0@�k0 ¼ 0; h4=Nr

r 4Y2
k1 þ4Zk1 ¼ 0; (19c)

h4=Ns
s 4Y1

hr þ4Zhr ¼ 0: (19d)

It is clear that there is no solution for k0ðxÞ such as
@�hs � 0 unless Ns ¼ 4. If Fðprþ2Þ ¼ 0 and Fðpsþ2Þ ¼ 0,
the functions h1 and k1 become trivial, and the
D-dimensional spacetime is no longer warped [23,24].
Moreover, the Eq. (18b) @ihr@mhs ¼ 0 implies the follow-
ing two cases:

(i) Two branes are delocalized, which are localized only
along the overall transverse directions.

(ii) One brane is completely localized on the other
brane which is localized only along the overall
transverse directions.

As a special example, let us consider the case

q�� ¼ 
��; �ij ¼ �ij; wmn ¼ �mn;

uab ¼ �ab; Nr ¼ Ns ¼ 4; hs ¼ hsðzÞ;
(20)

where 
�� is the (pþ 1)-dimensional Minkowski metric

and �ij, �mn, �ab are the (ps � p)-, (pr � p)-, and

ðDþ p� pr � ps � 1Þ-dimensional Euclidean metrics,
respectively. This means that both branes have physically
the same total amount of charge. Since the function h0
obeys the equation @�@�h0 ¼ 0, we can easily get the

solution

h0ðxÞ ¼ A�x
� þ B; (21)

where A� and B are constants. On the other hand, the

functions h1 and hs satisfy the coupled partial differential
equations

hs 4Y1
h1 þ4Zh1 ¼ 0; 4Zhs ¼ 0: (22)

The harmonic function hs that satisfies the second differ-
ential equation in (18d) has the form

hs ¼ 1þX
l

Ml

jz� z‘jdz�2
; (23)

where dz � Dþ p� pr � ps � 1, and zal are locations of
the l-th ps-brane with charge Ml. We will mainly discuss
the case in which the ps-branes coincide at the same
location in the overall transverse directions. Now we
choose the following form of the harmonic function hs:

hsðzÞ ¼ M

jz� z0jdz�2
; (24)

where M is constant, z0 is the location of the stack of
ps-branes. It is not so easy to find solutions for the har-
monic function h1 in the case where each of the ps-branes
are located at different points along the z-directions.
If the dimensionality of the overall transverse space is

dz � 2 and dz � 4, the equation Eq. (22) can be solved
as [18]

h1ðy; zÞ ¼ 1þ M‘

½jy� y‘j2 þ 4M
ð4�dzÞ2 jz� z0j4�dz�1=2ðps�p�1þdz=ð4�dzÞÞ ; (25)
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where M‘ is constant. Hence, the functions hr and hs can be written explicitly as

hrðx; y; zÞ ¼ A�x
� þ BþX

‘

M‘

½jy� y‘j2 þ 4M
ð4�dzÞ2 jz� z0j4�dz�1=2ðps�p�1þdz=ð4�dzÞÞ ; (26a)

hsðzÞ ¼ M

jz� z0jdz�2
; (26b)

where A�, B, M‘ and M are constant parameters, and y‘
and z0 are constant vectors representing the positions of
the branes. Since the functions coincide, the locations of
the branes will also coincide. There are curvature singu-
larities at hr ¼ 0 or hs¼0 in theD-dimensional metric (5).
Moreover, we have a singularity at z ¼ z0 unless the
dilaton is trivial.

In the case of dz ¼ 2, we have

hrðx; y; zÞ ¼ A�x
� þ B

þX
‘

M‘

½jy� y‘j2 þMjz� z0j2�1=2ðps�pþ1Þ ;

(27a)

hsðzÞ ¼ M lnjz� z0j: (27b)

For dz ¼ 4, the solution of Eq. (22) can be written by

hrðx; y; zÞ ¼ A�x
� þ BþX

‘

M‘ ln½jy� y‘j2

� ðps � pÞMjz� z0j�; (28a)

hsðzÞ ¼ M

jz� z0j2
: (28b)

We note that the solutions (27) and (28) have curvature
singularities not only at hr ¼ 0 but also at the infinity due
to the logarithmic spatial dependence of the metric. There
is also a singularity at z ¼ z0 if the dilaton is nontrivial.
One can easily get the solution for @�hr ¼ 0 and

@�hs � 0 if the roles of Y1 and Y2 are exchanged. The

solution of field equations for dz � 2 and dz � 4 is thus
expressed as

hsðx; v; zÞ ¼ A�x
� þ BþX

‘

M‘

½jv� v‘j2 þ 4M
ð4�dzÞ2 jz� z0j4�dz�1=2ðpr�p�1þdz=ð4�dzÞÞ ; (29a)

hrðzÞ ¼ M

jz� z0jdz�2
: (29b)

For dz ¼ 2 and dz ¼ 4, the harmonic functions have loga-
rithmic spatial dependence like (27) and (28).

Let us briefly summarize the intersecting rules in 11-
dimensional supergravity and in 10-dimensional string
theory. For the M-branes in 11-dimensional supergravity,
there is 4-form field strength without dilaton, the intersec-
tion rule 	 ¼ 0 gives

p ¼ ðpr þ 1Þðps þ 1Þ
9

� 1; (30)

where p denotes the number of overlapping dimensions of
the pr and ps branes. Then we get the intersections involv-
ing the M2 and M5-branes [2,4,20,22]

M2\M2¼ 0; M2\M5¼ 1; M5\M5¼ 3: (31)

For the ten-dimensional string theory, the couplings to
dilaton for the RR-charged D-branes are given by

�rcr ¼ 1

2
ð3� prÞ; �scs ¼ 1

2
ð3� psÞ: (32)

The condition 	 ¼ 0 then gives

p ¼ 1

2
ðpr þ ps � 4Þ: (33)

The intersections for the D-branes are thus given by
[4,20,22]

Dpr \ Dps ¼ 1

2
ðpr þ psÞ � 2: (34)

We finally consider the intersections for NS-branes.
The parameters cr for fundamental string (F1) and soli-
tonic 5-brane are �1c1 ¼ �1 (for F1) and �5c5 ¼ 1 (for
NS5), respectively. Then the intersections involving the
F1 and NS5-branes are [4,20,22]

F1 \ NS5 ¼ 1; NS5 \ NS5 ¼ 3; (35a)

F1 \ D �p ¼ 0; (35b)

D �p \ NS5 ¼ �p� 1; 1 � �p � 6: (35c)

There is no solution for the F1-F1 and D0-NS5 intersecting
brane systems because the numbers of space dimensions
for each pairwise overlap are negative by the intersection
rule.

B. The intersection of p-brane
and KK-monopole system

Now we discuss the dynamical intersecting brane
solutions including KK-monopoles in D dimensions. The
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p-branes we have described above carry a charge in
D-dimensions. The Kaluza-Klein (KK) charged objects
are also in general branes living in the compactified
space-time and carrying a electric or magnetic charge
with respect to the 2-form field strength generated by
dimensional reduction in D-dimensional theory. If after
compactification on one direction the space-time dimen-
sion is D, we then have an electric KK 0-brane and a
magnetic KK (D� 4)-brane. These two objects corre-
spond, in the (Dþ 1)-dimensional uncompactified space-
time to configurations where the only nontrivial field is the
metric, and which are identified, respectively, to a KK-
wave and a KK-monopole. The metric in the uncompacti-
fied space necessarily has nontrivial off-diagonal terms. In
this section, we discuss the KK-monopole and summarize
those objects. We extend our brane solutions to the cases
with waves next section.

We will start from the D-dimensional theory, for which
the action in the Einstein frame contains the metric gMN ,
the dilaton �, and the antisymmetric tensor field of rank
(pþ 2), Fðpþ2Þ

S ¼ 1

2�2

Z �
R � 1D � 1

2
d� ^ �d�

� 1

2 � ðpþ 2Þ! e�c�Fðpþ2Þ ^ �Fðpþ2Þ
�
; (36)

where �2 is the D-dimensional gravitational constant, � is
the Hodge operator in the D-dimensional space-time,
Fðpþ2Þ is the (pþ 2)-form field strength, and c, � are

constants given by

c2 ¼ N � 2ðpþ 1ÞðD� p� 3Þ
D� 2

; (37a)

� ¼
�þ if p� brane is electric

� if p� brane is magnetic
(37b)

Here N is a constant. The field strength Fðpþ2Þ is given by

the (pþ 1)-form gauge potential Aðpþ1Þ

Fðpþ2Þ ¼ dAðpþ1Þ: (38)

The field equations are given by

RMN ¼ 1

2
@M�@N�þ 1

2 � ðpþ 2Þ! e�c�
�
ðpþ 2ÞFMA2���Apþ2

F
A2���Apþ2

N � pþ 1

D� 2
gMNF

2
ðpþ2Þ

�
; (39a)

d � d�� �c

2 � ðpþ 2Þ! e�c�Fðpþ2Þ ^ �Fðpþ2Þ ¼ 0; (39b)

d½e�c� � Fðpþ2Þ� ¼ 0: (39c)

We assume that theD-dimensional metric takes the form

ds2 ¼ haðx; y; zÞq��ðXÞdx�dx� þ hbðx; y; zÞ
� ½�ijðYÞdyidyj þ hkðx; zÞuabðZÞdzadzb
þ h�1

k ðx; zÞðdvþ Aadz
aÞ2�; (40)

where q�� is the (pþ 1)-dimensional metric which de-

pends only on the (pþ 1)-dimensional coordinates x�, �ij

is the ðD� p� dz � 2Þ-dimensional metric which de-
pends only on the ðD� p� dz � 2Þ-dimensional coordi-
nates yi, and finally uab is the dz-dimensional metric which
depends only on the dz-dimensional coordinates za. The
parameters a and b in the metric (40) are given by

a ¼ � 4ðD� p� 3Þ
NðD� 2Þ ; b ¼ 4ðpþ 1Þ

NðD� 2Þ : (41)

The brane configuration is given in Table II. The
D-dimensional metric (40) implies that the solutions are
characterized by two functions, h and hk, which depend on
the coordinates transverse to the brane as well as the world
volume coordinate.
We also assume that the scalar field � and the gauge

field strength Fðpþ2Þ are given by

e� ¼ h2�c=N; (42a)

Fðpþ2Þ ¼ 2ffiffiffiffi
N

p d½h�1ðx; y; zÞ� ^�ðXÞ; (42b)

where �ðXÞ denotes the volume (pþ 1)-form

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp: (43)

Here, q is the determinant of the metric q��.

First we consider the Einstein Eq. (39a). Using the as-
sumptions (40) and (42), the Einstein equations are given by

TABLE II. Intersections of p-brane and KK-monopole in the metric (40).

Case 0 1 � � � p pþ 1 � � � D� dz � 2 D� dz � 1 D� dz � � � D� 1

p � � � �
p-KK KK � � � � � � � A1 � � � Adz

xN t x1 � � � xp y1 � � � yD�p�dz�2 v z1 � � � zdz
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R��ðXÞ � 4

N
h�1D�D�hþ 2

N

�
1� 4

N

�
h�1@� lnh@� lnh� a

2
q��

�
h�1 4X hþ q��@� lnh

��
4

N
� 1

�
@� lnh

þ 1

2
ðdz � 1Þ@� lnhk

��
� a

2
q��h

�1�ð4=NÞ 4Y h� a

2
q��h

�1�ð4=NÞh�1
k 4Z h

þ
�
a

2
� 1

N
ðdz þ 1Þ�@� lnh@� lnhk þ 1

4
ðdz � 3Þ½@� lnhk@� lnhk � h�4=Nh�1

k q��u
ab@a lnh@b lnhk� ¼ 0; (44a)

2

N

�
h�1@�@ihþ 1

2
ðdz � 1Þ@� lnhk@i lnh

�
¼ 0; (44b)

h�1@�@ahþ 1

2
ðdz � 2Þh�1

k @�@ahk � 1

N
ðdz � 3Þ@� lnh@a lnhk ¼ 0; (44c)

RijðYÞ � b

2
h4=N�ij

�
h�1 4X hþ q��@� lnh

��
4

N
� 1

�
@� lnhþ 1

2
ðdz � 1Þ@� lnhk

��
� b

2
h�1�ijð4Yhþ h�1

k 4Z hÞ

� b

4
ðdz � 3Þ�ijh

�1
k uab@a lnh@b lnhk ¼ 0; (44d)

RabðZÞ � b

2
h4=Nhkðuab þ h�2

k AaAbÞ
�
h�1 4X hþ q��@� lnh

��
4

N
� 1

�
@� lnhþ 1

2
ðdz � 1Þ@� lnhk

��

� b

2
h�1hkðuab þ h�2

k AaAbÞð4Yhþ h�1
k 4Z hÞ � 1

2
h�1
k ðuab � h�2

k AaAbÞ 4Z hk � 1

2
ðdz � 3Þh�1

k DaDbhk

� b

4
ðdz � 3Þðuab þ h�2

k AaAbÞuab@a lnh@b lnhk ¼ 0; (44e)

h4=Nh�1
k

�
h�1 4X h� h�1

k 4X hk þ b

�
1� 4

N

�
q��@� lnh@� lnh�

�
aþ b

2
ðdz � 3Þ

�
q��@� lnh@� lnhk

þ 1

2
ðdz � 3Þq��@� lnhk@� lnhk

�
� bðhhkÞ�1

�
4Yhþ h�1

k 4Z hþ 1

2
ðdz � 3Þuab@a lnhkðb@b lnh� @b lnhkÞ

�
¼ 0;

(44f)

where D� is the covariant derivative with respect to the
metric q��, and we assumed dhk ¼ �ZdAð1Þ, and 4X, 4Y,
4Z are the Laplace operators on X, Y, Z space, and
R��ðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors associated
with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ, respectively. For
dz ¼ 3, we see from Eqs. (44b) and (44c) that the warp
factors h must take the form

h ¼ h0ðxÞ þ h1ðy; zÞ; hk ¼ hkðzÞ;
for @�hk ¼ 0 and N ¼ 4:

(45)

Now we consider the case @�hk ¼ 0 and N ¼ 4. The
components of the Einstein Eqs. (44) are rewritten as

R��ðXÞ � h�1D�D�h� a

2
q��ðh�1 4X hþ q��@� lnh@� lnhkÞ þ a

2
ða� 2Þ@� lnh@� lnhk

� a

2
q��h

�2ð4Yhþ h�1
k 4Z hÞ ¼ 0; (46a)

RijðYÞ � b

2
h�ijðh�1 4X hþ q��@� lnh@� lnhkÞ � b

2
h�1�ijð4Yhþ h�1

k 4Z hÞ ¼ 0; (46b)

RabðZÞ � b

2
hhkðuab þ h�2

k AaAbÞðh�1 4X hþ q��@� lnh@� lnhkÞ � b

2
h�1hkðuab þ h�2

k AaAbÞð4Yhþ h�1
k 4Z hÞ

� 1

2
h�1
k ðuab � h�2

k AaAbÞ 4Z hk ¼ 0; (46c)

h�1
k ð4Xh� hh�1

k 4X hkÞ � bðhhkÞ�1ð4Yhþ h�1
k 4Z hÞ ¼ 0: (46d)

Next we consider the gauge field Eqs. (39c). Under the
assumption (42b), we find

d½hk@ihð�YdyiÞ^�ðZÞþ@ahð�ZdzaÞ^�ðYÞ�^dv¼0;

(47)

where �Y, �Z denote the Hodge operator on Y, Z,, res-
pectively, and �ðYÞ, �ðZÞ denote the volume ðD� p�
dz � 2Þ-, dz-form respectively:

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ � � � ^ dyD�p�dz�2; (48a)

�ðZÞ ¼ ffiffiffi
u

p
dz1 ^ dz2 ^ � � � ^ dzdz : (48b)

MASATO MINAMITSUJI AND KUNIHITO UZAWA PHYSICAL REVIEW D 84, 126006 (2011)

126006-8



Then, the Eq. (47) gives

hk 4Y hþ4Zh ¼ 0;

@�@ihþ @�hk@ih ¼ 0;

@�@ah ¼ 0;

(49)

where4Y,4Z are the Laplace operators on the space of Y,
Z, respectively.

Finally we should consider the scalar field equation.
Substituting Eqs. (42) and (45) into Eq. (39b), we obtain

h4=N
�
h�1 4X h0 þ q��@� lnh@� lnhk

�
�
1� 4

N

�
q��@� lnh@� lnh

þ h�1ð4Yh1 þ h�1
k 4Z h1Þ

�
¼ 0: (50)

Thus, for N ¼ 4, the warp factor h should satisfy the
equations

4X h0 ¼ 0; @�h0@�hk ¼ 0; 4Yh1þh�1
k 4Z h1 ¼ 0:

(51)

Combining these, we find that these field equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (52a)

h ¼ h0ðxÞ þ h1ðzÞ; (52b)

D�D�h0 ¼ 0; @�h0@�hk ¼ 0;�
1� 4

N

�
q��@� lnh@� lnh ¼ 0; 4Zh1 ¼ 0; (52c)

h4=Nk 4Y h1 þ4Zh1 ¼ 0: (52d)

The function h can depend on the coordinate x only if
N ¼ 4. If Fðpþ2Þ ¼ 0, the function h1 becomes trivial.

As a special example, let us consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab;

N ¼ 4; hk ¼ hkðzÞ;
(53)

where 
�� is the (pþ 1)-dimensional Minkowski metric

and �ij, �ab are the (5� p)-, three-dimensional Euclidean

metrics, respectively. The solution for h and hk can be
obtained explicitly as

hðx; y; zÞ ¼ A�x
� þ ~c

þX
‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�1=2ðD�p�3Þ ;

(54a)

hkðzÞ ¼ M

jz� z0j ; (54b)

where A�, ~c, M‘ and M are constant parameters, and y‘
and z0 are constant vectors representing the positions of
the branes. Since the functions coincide, the locations of
the branes will also coincide. The D-dimensional metric
(40) exists for h > 0 and has curvature singularities at
h ¼ 0.

C. The intersection of p-brane and plane wave system

Let us next consider the solutions with the plane wave.
One can obtain the electric 0-brane and the magnetic
(D� 5)-brane solutions in (D� 1)-dimensional spacetime
because the dimensional reduction generates the Kaluza-
Klein charge in the 2-form field strengths. After we lift up
those solutions by one dimension, we obtain the plane
wave solutions in D-dimensions. We briefly discuss the
plane wave solution in this section.
Now we look for solution whose spacetime metric has

the form

ds2 ¼ hawðt; zÞ½�dt2 þ dx2 þ fhwðt; y; zÞ � 1gðdt� dxÞ2
þ �ijðYÞdyidyj� þ hbwðt; zÞuabðZÞdzadzb; (55)

where �ij is the (p� 1)-dimensional metric which de-

pends only on the (p� 1)-dimensional coordinates yi,
and finally uab is the ðD� p� 1Þ-dimensional metric
which depends only on the ðD� p� 1Þ-dimensional co-
ordinates za. The parameters a and b in the metric (55) are
given by

aw ¼ � 4ðD� p� 3Þ
NðD� 2Þ ; bw ¼ 4ðpþ 1Þ

NðD� 2Þ : (56)

We show the brane configuration in Table III.
We also assume that the scalar field � and the gauge

field strength Fðpþ2Þ are given by

e� ¼ h2�c=N (57a)

Fðpþ2Þ ¼ 2ffiffiffiffi
N

p d½h�1ðt; zÞ� ^ dt ^ dx ^�ðYÞ; (57b)

where �ðYÞ denotes the volume (p� 1)-form:

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ � � � ^ dyp�1: (58)

Here, � is the determinant of the metric �ij.

First, we consider the Einstein Eqs. (39a). Using the
assumptions (55) and (57), the Einstein equations are
given by

TABLE III. Intersections of p-brane and plane wave in the
metric (55).

Case 0 1 2 � � � p pþ 1 � � � D� 1

p � � � � �
p-W W �

xN t x y1 � � � yp�1 z1 � � � zD�p�1
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�
awð2� hwÞ � 8

N

�
h�1@2t hþ ð2� hwÞ@2t hw þ4Yhw þ h�4=N 4Z hw þ 2ð2� hwÞh�1�ð4=NÞ 4Z h

� 4

N

�
4

N
� 1

�
ð@t lnhÞ2 � awhwð2� hwÞ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@t lnhþ 4

N
ð2� hwÞ@t lnh@thw ¼ 0; (59a)

@t@ihw ¼ 0; (59b)

@t@ahw þ 4

N
h�1@t@ah ¼ 0; (59c)

awh
2
wh

�1@2t hþ hw@
2
t hw �4Yhw � h�4=N 4Z hw þ awhwh

�1�4=N 4Z h

þ awh
2
w

��
4

N
� 1

�
@t lnhþ

�
4

N
þ 1

�
@t lnhw�@t lnh ¼ 0; (59d)

RijðYÞ þ aw
2
h�1hw�ij

�
@2t hþ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@t lnh

�
� aw

2
h�1�ð4=NÞ 4Z h ¼ 0; (59e)

RabðZÞ þ aw
2
h4=Nhwuab

�
h�1@2t hþ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@t lnh

�
� bw

2
h�1 4Z h ¼ 0; (59f)

where4Y,4Z are the Laplace operators on Y, Z space, and RijðYÞ, RabðZÞ are the Ricci tensors associated with the metrics
�ijðYÞ, uabðZÞ, respectively.

We see from Eqs. (59b) and (59c) that the warp factors h must take the form

h ¼ h0ðtÞ þ h1ðzÞ; hw ¼ hwðy; zÞ; for @thw ¼ 0; (60a)

h ¼ hðzÞ; hw ¼ k0ðtÞ þ k1ðy; zÞ; for @th ¼ 0: (60b)

Let us first consider the case @thw ¼ 0. The components of the Einstein Eqs. (59) are rewritten as

�
awð2� hwÞ � 8

N

�
h�1@2t h0 þ4Yhw þ h�1 4Z hw þ 2ð2� hwÞh�2 4Z h1

� 4

N

�
4

N
� 1

�
ð@t lnhÞ2 � awhwð2� hwÞ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@t lnhþ 4

N
ð2� hwÞ@t lnh@thw ¼ 0; (61a)

awh
2
wh

�1@2t h0 �4Yhw � h�1 4Z hw þ awhwh
�2 4Z h1 þ awh

2
w

��
4

N
� 1

�
@t lnhþ

�
4

N
þ 1

�
@t lnhw

�
@t lnh ¼ 0; (61b)

RijðYÞ þ aw
2
h�1hw�ij

�
@2t h0 þ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@t lnh

�
� aw

2
h�2 4Z h1 ¼ 0; (61c)

RabðZÞ þ aw
2
uabhw

�
h�1@2t h0 þ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@t lnh

�
� bw

2
h�1 4Z h1 ¼ 0: (61d)

Now we consider the gauge field Eqs. (39c). Under the
assumption (57b), we find

d½@ahð�ZdzaÞ� ¼ 0; (62)

where �Z denotes the Hodge operator on Z.
Then, the Eq. (62) gives

4Z h ¼ 0; @t@ah ¼ 0: (63)

Finally we should consider the scalar field equation.
Substituting Eqs. (57) and (60) into Eq. (39b), we obtain

2�c

N
h�bþ4=N�1hw

�
@2t h0 þ

��
4

N
� 1

�
@t lnhþ @t lnhw

�
@th0

þ hw 4Z h1

�
¼ 0; (64)

where we used (60a). Thus, the warp factor h should satisfy
the equations

@2t h0 ¼ 0;�
4

N
� 1

�
@t lnhþ @t lnhw ¼ 0;

4Zh1 ¼ 0:

(65)

Combining these, we find that these field equations lead to

RijðYÞ¼0; RabðZÞ¼0; (66a)

h¼h0ðtÞþh1ðzÞ; (66b)

@2t h0¼0; @th0@thw¼0;�
4

N
�1

�
@t lnhþ@t lnhw¼0; 4Zh1¼0; (66c)

h4=N4Yhwþ4Zhw¼0: (66d)

The function h can depend on the coordinate t only if
N ¼ 4. We can also choose the solution in which the
function hw depends on t. Then, we have
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RijðYÞ ¼ 0; RabðZÞ ¼ 0; (67a)

h ¼ hðzÞ; hw ¼ k0ðtÞ þ k1ðy; zÞ; (67b)

@2t k0 ¼ 0; h4=N 4Y k1 þ4Zk1 ¼ 0: (67c)

If Fðpþ2Þ ¼ 0, the functions h1 become trivial.

As a special example, let us consider the case

�ij ¼ �ij; uab ¼ �ab; N¼ 4; h¼ hðzÞ; (68)

where �ij, �ab are the (p� 1)-, ðD� p� 1Þ-dimensional

Euclidean metrics, respectively. This physically means that
both branes have the same total amount of charge. The
solution for h and hw can be obtained explicitly as

hwðt; zÞ ¼ A�x
� þ BþX

‘

M‘�
jy� y‘j2 þ 4M

ðD�p�5Þ2 jz� z0j�Dþpþ5

�
1=2ðp�2�ðD�p�1=D�p�5Þ ; (69a)

hðzÞ ¼ M

jz� z0jD�p�3
; (69b)

where A�, B, M‘ and M are constant parameters, and y‘
and z0 are constant vectors representing the positions of
the branes. Since the functions coincide, the locations of
the branes will also coincide. Even if the near-brane struc-
ture is regular, we expect another type of singularity may
appear at hw ¼ 0 due to the presence of the time depen-
dence. For c � 0, the D-dimensional spacetime has curva-
ture singularities where z ¼ z0 since the scalar field
diverges there.

III. THE INTERSECTION OF DYNAMICAL
BRANES IN 11-DIMENSIONAL THEORY

In this section, we apply the above solutions to 11-
dimensional theory. In this theory, we have a 4-form field
strength and no dilaton. The 4-form gives rise to 2- and 5-
branes, called, respectively, M2 andM5.We also obtain the
KK-wave and KK-monopole in 11 dimensions. In particu-
lar, KK-wave is called ‘‘M-wave’’ in 11-dimensional theory
[2,25,26]. The 11-dimensional action which contains the
metric gMN , and 4-form field strength Fð4Þ is given by

S ¼ 1

2�2

Z �
R � 1� 1

2 � 4!Fð4Þ ^ �Fð4Þ
�
; (70)

where �2 is the 11-dimensional gravitational constant, � is
the Hodge operator in the 11-dimensional space-time. The
field strengths Fð4Þ is given by the 3-form gauge potential

Fð4Þ ¼ dCð3Þ: (71)

The field equations are given by

RMN ¼1

2
@M�@N�þ 1

2 �4!
�
4FMABCF

ABC
N �1

2
gMNF

2
ð4Þ

�
;

(72a)

d½�Fð4Þ�¼0; dFð4Þ ¼0: (72b)

In the following, we discuss the dynamical brane solu-
tion for all the possible combinations of intersecting brane
pairs in the 11-dimensional theory.

A. The intersection of two M2-branes

Let us consider the solution of two M2-branes. We
assume that the 11-dimensional metric is written by

ds2¼h�2=3
2 ðt;y;zÞ �h�2=3

2 ðzÞ½�dt2þh2ðt;y;zÞ�ijðY1Þdyidyj
þ �h2ðzÞwmnðY2Þdvmdvn

þh2ðt;y;zÞ �h2ðzÞuabðZÞdzadzb�; (73)

where �ij is the two-dimensional metric which depends

only on the two-dimensional coordinates yi, wmn is
the two-dimensional metric which depends only on the
two-dimensional coordinates vm, and finally uab is the
six-dimensional metric which depends only on the six-
dimensional coordinates za.
We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ d½h�1
2 ðt; y; zÞdt ^�ðY2Þ þ �h�1

2 ðzÞdt ^�ðY1Þ�;
(74)

where �ðY1Þ and �ðY2Þ denote the volume 2-form and 2-
form, respectively

�ðY1Þ ¼ ffiffiffiffi
�

p
dy1 ^ dy2; (75a)

�ðY2Þ ¼
ffiffiffiffi
w

p
dv1 ^ dv2: (75b)

Here, � and w are the determinant of the metric �ij, and

wmn, respectively.
In terms of ansatz for fields (73) and (74), the field

equations lead to

RijðY1Þ ¼ 0; RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; (76a)

h2 ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

�h2 4Y1
h1 þ4Zh1 ¼ 0; 4Z

�h2 ¼ 0; (76b)

where 4Y1
, 4Z are the Laplace operators on Y1, Z space,

and RijðY1Þ, RmnðY2Þ, RabðZÞ are the Ricci tensors asso-

ciated with the metrics �ijðY1Þ, wmnðY2Þ, uabðZÞ, respec-
tively. As a special example, let us consider the case
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�ij ¼ �ij; wmn ¼ �mn; uab ¼ �ab; (77)

where �ij, �mn, �ab are the two-, two-, six-dimensional

Euclidean metrics, respectively. The solution for h2 and �h2
can be obtained explicitly as

h2ðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘½jy� y‘j2 þMjz� z0j�2�;

(78a)

�h2ðzÞ ¼ M

jz� z0j4
; (78b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes. Since the functions coincide, the locations of
the branes will also coincide. If we delocalize along n of
the overall transverse directions, the harmonic functions
take the following form:

h2ðt;y;zÞ¼ �ctþ~cþX
‘

M‘

½jy�y‘j2þ 4M
ðn�2Þ2 jz�z0jn�2�2=ðn�2Þ ;

(79a)

�h2ðzÞ¼ M

jz�z0j4�n
: (79b)

B. Intersecting M2- and M5-branes

Next we consider the solution of M2-M5 branes. We
assume that the 11-dimensional metric is written by

ds2 ¼ h�2=3
2 ðx; y; zÞh�1=3

5 ðzÞ½q��ðXÞdx�dx�
þ h2ðx; y; zÞ�ijðYÞdyidyj þ h5ðzÞdv2

þ h2ðx; y; zÞh5ðzÞuabðZÞdzadzb�; (80)

where q�� is the two-dimensional metric which depends

only on the two-dimensional coordinates x�, �ij is the

four-dimensional metric which depends only on the
four-dimensional coordinates yi, and finally uab is
the four-dimensional metric which depends only on the
four-dimensional coordinates za.

We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ d½h�1
2 ðx; y; zÞ� ^�ðXÞ ^ dv

þ �½dh�1
5 ðzÞ�ðXÞ ^�ðYÞ�; (81)

where �ðXÞ and �ðYÞ denote the volume 2-form and
4-form, respectively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1; (82a)

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ dy3 ^ dy4: (82b)

Here, q and � are the determinant of the metric q�� and

�ij, respectively.

In terms of ansatz for fields (80) and (81), the field
equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (83a)

h2 ¼ h0ðxÞ þ h1ðy; zÞ; (83b)

D�D�h0 ¼ 0; h5 4Y h1 þ4Zh1 ¼ 0; 4Zh5 ¼ 0;

(83c)

where D� is the covariant derivative constructed by the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and R��ðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ, respec-
tively. As a special example, let us consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (84)

where 
�� is the two-dimensional Minkowski metric and

�ij, �ab are the four-, four-dimensional Euclidean metrics,

respectively. The solution for h2 and h5 can be obtained
explicitly as

h2ðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘ ln½jy� y‘j2 �Mjz� z0j�;

(85a)

h5ðzÞ ¼ M

jz� z0j2
; (85b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.

C. The intersection of two M5-branes

Let us consider the solution of two M5-branes. We
assume that the 11-dimensional metric is written by

ds2 ¼ h�1=3
5 ðx; y; zÞ �h�1=3

5 ðzÞ½q��ðXÞdx�dx�
þ h5ðx; y; zÞ�ijðY1Þdyidyj
þ �h5ðzÞwmnðY2Þdvmdvn

þ h5ðx; y; zÞ �h5ðzÞuabðZÞdzadzb�; (86)

where q�� is the four-dimensional metric which de-

pends only on the four-dimensional coordinates x�, �ij

is the two-dimensional metric which depends only on
the two-dimensional coordinates yi, wmn is the two-
dimensional metric which depends only on the two-
dimensional coordinates vm, and finally uab is the
three-dimensional metric which depends only on the
three-dimensional coordinates za.
We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ �d½h�1
5 ðx; y; zÞ�ðXÞ ^�ðY2Þ

þ �h�1
5 ðzÞ�ðXÞ ^�ðY1Þ�; (87)

where�ðXÞ,�ðY1Þ and�ðY2Þ denote the volume 4-form,
2-form and 2-form, respectively
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�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ dx2 ^ dx3; (88a)

�ðY1Þ ¼ ffiffiffiffi
�

p
dy1 ^ dy2; (88b)

�ðY2Þ ¼
ffiffiffiffi
w

p
dv1 ^ dv2: (88c)

Here, q, � andw are the determinant of the metric q��, �ij,

and wmn, respectively.
In terms of ansatz for fields (86) and (87), the field

equations lead to

R��ðXÞ ¼ 0; RijðY1Þ ¼ 0;

RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; (89a)

h5 ¼ h0ðxÞ þ h1ðy; zÞ; (89b)

D�D�h0 ¼ 0; �h5 4Y1
h1 þ4Zh1 ¼ 0; 4Z

�h5 ¼ 0;

(89c)

where D� is the covariant derivative constructed by the

metric q��, and 4Y1
, 4Z are the Laplace operators on Y1,

Z space, and R��ðXÞ, RijðY1Þ, RmnðY2Þ, RabðZÞ are the

Ricci tensors associated with the metrics q��ðXÞ, �ijðY1Þ,
wmnðY2Þ, uabðZÞ, respectively. As a special example, let us
consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (90)

where 
�� is the four-dimensional Minkowski metric and

�ij, �mn, �ab are the two-, two-, three-dimensional

Euclidean metrics, respectively. The solution for h5 and
�h5 can be obtained explicitly as

h2ðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�2
;

(91a)

h5ðzÞ ¼ M

jz� z0j ; (91b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.

D. The intersection of M2-brane
and one Kaluza-Klein monopole

Now we discuss the KK-monopole in the transverse
space of M2-brane. We assume that the 11-dimensional
metric takes the form

ds2 ¼ h�2=3
2 ðx; y; zÞq��ðXÞdx�dx�

þ h1=32 ðx; y; zÞ½�ijðYÞdyidyj þ hkðzÞuabðZÞdzadzb
þ h�1

k ðzÞðdvþ Aadz
aÞ2�; (92)

where q�� is the three-dimensional metric which depends

only on the three-dimensional coordinates x�, �ij is

the four-dimensional metric which depends only on the
four-dimensional coordinates yi, and finally uab is the

three-dimensional metric which depends only on the three-
dimensional coordinates za.
We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ d½h�1
2 ðx; y; zÞ� ^�ðXÞ; (93)

where �ðXÞ denotes the volume3-form

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ dx2: (94)

Here, q is the determinant of the metric q��.

In terms of ansatz for fields (92) and (93), the field
equations lead to

R��ðXÞ¼0; RijðYÞ¼0; RabðZÞ¼0; (95a)

h2¼h0ðxÞþh1ðy;zÞ; dhk¼�ZdA; (95b)

D�D�h0¼0; hk4Yh1þ4Zh1¼0; 4Zhk¼0; (95c)

where D� is the covariant derivative with respect to

the metric q��, and 4Y, 4Z are the Laplace operators on

X, Y, Z space, and R��ðXÞ, RijðYÞ, RabðZÞ are the Ricci

tensors associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ,
respectively.
As a special example, let us consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (96)

where 
�� is the three-dimensional Minkowski metric and

�ij, �ab are the four-, three-dimensional Euclidean metrics,

respectively. The solution for h2 and hk can be obtained
explicitly as

h2ðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�3
;

(97a)

hkðzÞ ¼ M

jz� z0j ; (97b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes. Since the functions coincide, the locations of the
branes will also coincide.

E. The intersection of M5-brane
and one Kaluza-Klein monopole

In this subsection, we discuss the KK-monopole in
the transverse space of the M5-brane. We assume that the
11-dimensional metric takes the form

ds2¼h�1=3
5 ðx;y;zÞq��ðXÞdx�dx�þh2=35 ðx;y;zÞ

�½dy2þhkðzÞuabðZÞdzadzbþh�1
k ðzÞðdvþAadz

aÞ2�;
(98)

where q�� is the six-dimensional metric which depends

only on the six-dimensional coordinates x�, and finally uab
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is the three-dimensional metric which depends only on the
three-dimensional coordinates za.

We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ �d½h�1
5 ðx; y; zÞ ^�ðXÞ�; (99)

where �ðXÞ denotes the volume 6-form

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dx5: (100)

Here, q is the determinant of the metric q��.

In terms of ansatz for fields (98) and (99), the field
equations lead to

R��ðXÞ¼0; RabðZÞ¼0; (101a)

h5¼h0ðxÞþh1ðy;zÞ; dhk¼�ZdA; (101b)

D�D�h0¼0; hk@
2
yh1þ4Zh1¼0; 4Zhk¼0; (101c)

where D� is the covariant derivative with respect to the

metric q��, and4X,4Z are the Laplace operators on X, Z

space, and R��ðXÞ, RabðZÞ are the Ricci tensors associated
with the metrics q��ðXÞ, uabðZÞ, respectively.

As a special example, let us consider the case

q�� ¼ 
��; uab ¼ �ab; (102)

where 
�� is the six-dimensional Minkowski metric and

�ab is the three-dimensional Euclidean metric. The solu-
tion for h5 and hk can be obtained explicitly as

h5ðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�3=2
;

(103a)

hkðzÞ ¼ M

jz� z0j ; (103b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes. Since the functions coincide, the locations of the
branes will also coincide.

F. The intersection involving plane wave
and M2-brane

We present the M2-brane with the plane wave propagat-
ing along its longitudinal direction. We assume that the 11-
dimensional metric takes the form

ds2 ¼ h�2=3
2 ðzÞ½�dt2 þ dx2 þ dy2 þ fhwðt; y; zÞ � 1g

� ðdt� dxÞ2 þ h2ðzÞuabðZÞdzadzb�; (104)

where uab is the eight-dimensional metric which depends
only on the eight-dimensional coordinates za.

We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ d½h�1
2 ðzÞ� ^ dt ^ dx ^ dy: (105)

In terms of ansatz for fields (104) and (105), the field
equations lead to

RabðZÞ ¼ 0; (106a)

hw ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

h2@
2
yh1 þ4Zh1 ¼ 0; 4Zh2 ¼ 0; (106b)

where 4Z is the Laplace operator on Z space, and RabðZÞ
are the Ricci tensor associated with the metric uabðZÞ. As a
special example, let us consider the case

uab ¼ �ab; (107)

where �ab is the eight-dimensional Euclidean metrics,
respectively. The solution for h2 and hw can be obtained
explicitly as

hwðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þ M
4 jz� z0j�4��1

;

(108a)

h2ðzÞ ¼ M

jz� z0j6
; (108b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes. If we delocalize along n of the overall transverse
directions, the harmonic functions take the following form:

hwðt;y;zÞ¼ �ctþ~c

þX
‘

M‘

½jy�y‘j2þ 4M
ðn�4Þ2 jz�z0jn�4�8�n=2ðn�4Þ ;

(109a)

h2ðzÞ¼ M

jz�z0j6�n
: (109b)

G. The intersection involving wave and M5-brane

We present the M5-brane with the plane wave propagat-
ing along its longitudinal direction. We assume that the 11-
dimensional metric takes the form

ds2 ¼ h�1=3
5 ðzÞ½�dt2 þ dx2 þ fhwðt; y; zÞ � 1gðdt� dxÞ2

þ �ijðYÞdyidyj þ h5ðzÞuabðZÞdzadzb�; (110)

where �ij is the four-dimensional metric which depends

only on the four-dimensional coordinates yi, and finally
uab is the five-dimensional metric which depends only on
the five-dimensional coordinates za.
We also assume that the gauge field strength Fð4Þ is

given by

Fð4Þ ¼ �d½h�1
5 ðzÞ ^ dt ^ dx ^�ðYÞ�; (111)

where �ðYÞ denotes the volume 4-form
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�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ dy3 ^ dy4: (112)

Here, � is the determinant of the metric �ij.

In terms of ansatz for fields (110) and (111), the field
equations lead to

RijðYÞ ¼ 0; RabðZÞ ¼ 0; (113a)

hw ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

h5 4Y h1 þ4Zh1 ¼ 0; 4Zh5 ¼ 0; (113b)

where4Y,4Z are the Laplace operators on Y, Z space, and
RijðYÞ, RabðZÞ are the Ricci tensors associated with the

metrics �ijðYÞ, uabðZÞ, respectively. As a special example,

let us consider the case

�ij ¼ �ij; uab ¼ �ab; (114)

where �ij, �ab are the four-dimensional Euclidean metrics,

respectively. The solution for h5 and hw can be obtained
explicitly as

hwðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�1��1
;

(115a)

h5ðzÞ ¼ M

jz� z0j3
; (115b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes. If we delocalize along n of the overall transverse
directions, the harmonic functions take the following form:

hwðt;y;zÞ¼ �ctþ ~c

þX
‘

M‘

½jy�y‘j2þ 4M
ðn�1Þ2 jz�z0jn�1�ðnþ1Þ=ðn�1Þ ;

(116a)

h5ðzÞ¼ M

jz�z0j3�n
: (116b)

H. The plane wave in the KK-monopole background

We consider the plane wave propagating in the back-
ground of the KK-monopole. The solution of ten-
dimensional metric is given by

ds2 ¼ �dt2 þ dx2 þ fhwðt; y; zÞ � 1gðdt� dxÞ2
þ �ijðYÞdyidyj þ hkðzÞuabðZÞdzadzb
þ h�1

k ðzÞðdvþ Aadz
aÞ2; (117)

where �ij is the five-dimensional metric which depends

only on the five-dimensional coordinates yi, and finally uab
is the three-dimensional metric which depends only on the
three-dimensional coordinates za.
The ten-dimensional metric and the function hk obey

RijðYÞ ¼ 0; RabðZÞ ¼ 0; (118a)

hw ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

hk 4Y h1 þ4Zh1 ¼ 0; 4Zhk ¼ 0; (118b)

dhk ¼ �ZdA; (118c)

where �Z is the Hodge operator in the Z space, and4Y,4Z

are the Laplace operators on Y, Z space, and RijðYÞ, RabðZÞ
are the Ricci tensors associated with the metrics q��ðXÞ,
�ijðYÞ, uabðZÞ, respectively. As a special example, let us

consider the case

�ij ¼ �ij; uab ¼ �ab; (119)

where �ij, �ab are the five-, three-dimensional Euclidean

metrics, respectively. The solution for h and hk can be
obtained explicitly as

hwðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�7=2
;

(120a)

hkðzÞ ¼ M

jz� z0j ; (120b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the

TABLE IV. Pair intersections between M-brane and KK-monopole in D ¼ 11 with dependence on overall transverse coordinates.

Case 0 1 2 3 4 5 6 7 8 9 10 ~M �ð ~MÞ �Eð ~MÞ
M2 � � � p

�ðYÞ ¼ 2=5 �EðYÞ ¼ �3þd1
�12þ2d1þd2þd3

M2-KK KK � � � � � � � A1 A2 A3 Y & v & Z �ðvÞ ¼ 2=5 �EðvÞ ¼ �3þd1
�12þ2d1þd2þd3

xN t x1 x2 y1 y2 y3 y4 v z1 z2 z3 �ðZÞ ¼ 2=5 �EðZÞ ¼ �3þd1
�12þ2d1þd2þd3

M5 � � � � � � p ~X �ð~XÞ ¼ �1=5 �Eð~XÞ ¼ 3�d2�d3�d4
�15þ2d1þd2þd3

M5-KK KK � � � � � � � A1 A2 A3 Y & v & Z �ðYÞ ¼ 2=5 �EðYÞ ¼ 6�d1
15�2d1�d2�d3

xN t x1 x2 x3 x4 x5 y v z1 z2 z3 �ðvÞ ¼ �ðZÞ ¼ 2=5 �EðvÞ ¼ �EðZÞ ¼ 6�d1
15�2d1�d2�d3
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branes. Since the functions coincide, the locations of the
branes will also coincide.

For the static case, there is a classification of the multiple
intersecting branes with the M-waves and/or KK-
monopoles [27,28]. The dynamical delocalized branes
are also classified in [2]. We show the intersection
rule for the branes with M-wave and KK-monopoles,
which is summarized in Table IV. In the Table, circles
indicate where the brane world-volumes enter, v re-
presents the coordinate of the KK-monopole, and the
time-dependent branes are indicated by

p
for different

solutions.

IV. THE INTERSECTION OF DYNAMICAL
BRANES IN TEN-DIMENSIONAL THEORY

In this section, we apply the dynamical brane solutions
to ten-dimensional string theory. The ten-dimensional

action for the p-brane system in the Einstein frame can
be written as

S ¼ 1

2�2

Z �
R � 1� 1

2
d� ^ �d�� 1

2 � 3! e
��Hð3Þ ^ �Hð3Þ

�X
I

1

2 � ðpI þ 2Þ! e
ð3�pIÞ�=2FðpIþ2Þ ^ �FðpIþ2Þ

�
;

(121)

where �2 is the ten-dimensional gravitational constant, and
� is the dilaton, and � is the Hodge operator in the ten-
dimensional spacetime, and Hð3Þ, FðpIþ2Þ are 3-, ðpI þ
2Þ-form field strength, respectively. We assume that the
field strengths Hð3Þ, FðpIþ2Þ are given by following gauge

potentials

Hð3Þ ¼ dBð2Þ; FðpIþ2Þ ¼ dCðpIþ1Þ: (122)

The field equations are given by

RMN ¼ 1

2
@M�@N�þ 1

2 � 3! e��

�
3FMABH

AB
N � 1

4
gMNH

2
ð3Þ

�

þX
I

eð3�pIÞ�=2

2 � ðpI þ 2Þ!
�
ðpI þ 2ÞFMA1���ApIþ1

H
A1���ApIþ1

N � 1

8
ðpI þ 1ÞgMNF

2
ðpIþ2Þ

�
; (123a)

d � d�þ 1

2 � 3! e��Hð3Þ ^ �Hð3Þ �
X
I

ð3� pIÞ
4 � ðpI þ 2Þ! eð3�pIÞ�=2FðpIþ2Þ ^ �FðpIþ2Þ ¼ 0; (123b)

d½e�� �Hð3Þ� ¼ 0; (123c)

d½eð3�pIÞ�=2 � FðpIþ2Þ� ¼ 0: (123d)

In what follows, we look for the possible configurations of
intersecting branes and present explicit solutions. The case
with waves or KK-monopoles will be also discussed.

A. The intersection involving two Dp-brane

Let us first discuss the dynamical solution of two
Dp-branes. The ten-dimensional metric thus takes the form

ds2 ¼ hðp�7Þ=8ðx; y; zÞ �hðp�7Þ=8ðzÞ½q��ðXÞdx�dx�
þ hðx; y; zÞ�ijðY1Þdyidyj þ �hðzÞwmnðY2Þdvmdvn

þ hðx; y; zÞ �hðzÞuabðZÞdzadzb�; (124)

where q�� is the (p� 1)-dimensional metric which de-

pends only on the (p� 1)-dimensional coordinates x�, �ij

is the two-dimensional metric which depends only on the
two-dimensional coordinates yi, wmn is the two-
dimensional metric which depends only on the two-
dimensional coordinates wm, and finally uab is the
(7� p)-dimensional metric which depends only on the
(7� p)-dimensional coordinates za.

We also assume that the scalar field � and the gauge
field strength Fð4Þ are given by

e� ¼ ðh �hÞð3�pÞ=4; (125a)

Fðpþ2Þ ¼ d½h�1ðx; y; zÞ��ðXÞ ^�ðY1Þ
þ d½ �h�1ðzÞ��ðXÞ ^�ðY2Þ; (125b)

where �ðXÞ, �ðY1Þ, �ðY2Þ denote the volume (p� 1)-,
2-, 2-form, respectively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp�2; (126a)

�ðY1Þ ¼ ffiffiffiffi
�

p
dy1 ^ dy2; (126b)

�ðY2Þ ¼
ffiffiffiffi
w

p
dv1 ^ dv2: (126c)

Here, q, �, w are the determinant of the metrics q��, �ij,

wmn.
In terms of ansatz for fields (124) and (125), the field

equations lead to

R��ðXÞ ¼ 0; RijðY1Þ ¼ 0;

RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; (127a)

h ¼ h0ðxÞ þ h1ðy; zÞ D�D�h0 ¼ 0;

�h4Y1
h1 þ4Zh1 ¼ 0; 4Z

�h ¼ 0; (127b)

where D� is the covariant derivative with respect to the

metric q��, and 4Y1
, 4Z are the Laplace operators on Y1,

Z space, and R��ðXÞ, RijðY1Þ, RmnðY2Þ, RabðZÞ are the
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Ricci tensors associated with the metrics q��ðXÞ, �ijðY1Þ,
wmnðY2Þ, uabðZÞ, respectively.

Let us consider the case

q�� ¼ 
��; �ij ¼ �ij; wmn ¼ �mn; uab ¼ �ab;

(128)

where 
�� is the (p� 1)-dimensional Minkowski metric

and �ij, �mn, �ab are the two-, two-, (7� p)-dimensional

Euclidean metrics, respectively. For p � 3 and p � 5, the
solution for h and �h can be obtained explicitly as

hðx; y; zÞ ¼ c�x
� þ ~c

þX
‘

M‘

½jy� y‘j2 þ 4M
ðp�3Þ2 jz� z0jp�3�2=ðp�3Þ ;

(129a)

�hðzÞ ¼ M

jz� z0j5�p
; (129b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes. Since the functions coincide, the locations of the
branes will also coincide. In the case of p ¼ 3, the field
equations give

hFðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘ ln½jy� y‘j2 � 2Mjz� z0j�;

(130a)

hðzÞ ¼ M

jz� z0j2
: (130b)

For p ¼ 5, the solution becomes

hðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þMjz� z0j2�
;

(131a)

�hðzÞ ¼ M lnjz� z0j: (131b)

B. The intersection of Dp� Dðpþ 2Þ branes
Next we discuss the Dp-branes ending on Dðpþ

2Þ-branes. Let us consider the solution to be delocalized
along the relative transverse direction of the Dp-branes.
The ten-dimensional metric thus takes the form

ds2 ¼ hðp�7Þ=8
p ðx; y; zÞhðp�5Þ=8

pþ2 ðzÞ½q��ðXÞdx�dx�
þ hpðx; y; zÞ�ijðYÞdyidyj þ hpþ2ðzÞdv2

þ hpðx; y; zÞhpþ2ðzÞuabðZÞdzadzb�; (132)

where q�� is the p-dimensional metric which depends only

on the p-dimensional coordinates x�, �ij is the three-

dimensional metric which depends only on the three-
dimensional coordinates yi, and finally uab is the

(6� p)-dimensional metric which depends only on the
(6� p)-dimensional coordinates za.
We also assume that the scalar field � and the gauge

field strengths Fðpþ2Þ, Fðpþ4Þ are given by

e� ¼ hð3�pÞ=4
p hð1�pÞ=4

pþ2 ; (133a)

Fðpþ2Þ ¼ d½h�1
p ðx; y; zÞ� ^�ðXÞ ^ dv; (133b)

Fðpþ4Þ ¼ d½h�1
pþ2ðzÞ� ^�ðXÞ ^�ðYÞ; (133c)

where �ðXÞ and �ðYÞ denote the volume p-, 3-form,
respectively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp�1; (134a)

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ dy3: (134b)

Here, q, � are the determinant of the metrics q��, �ij.

Under the assumptions (162) and (163), the field equa-
tions lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (135a)

hp ¼ h0ðxÞ þ h1ðy; zÞ; D�D�h0 ¼ 0;

hpþ2 4Y h1 þ4Zh1 ¼ 0; 4Zhpþ2 ¼ 0; (135b)

where D� is the covariant derivative with respect to the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and RijðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ, respec-
tively. Now we assume that the ten-dimensional metric is
given by

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (136)

where
�� is the p-dimensional Minkowski metric and �ij,

�ab are the three-, (6� p)-dimensional Euclidean metrics,
respectively. For p � 2, p � 4, the solution for hp and

hpþ2 can be obtained explicitly as

hpðx;y;zÞ¼c�x
�þ ~c

þX
‘

M‘

½jy�y‘j2þ 4M
ðp�2Þ2 jz�z0jp�2�pþ2=2ðp�2Þ ;

(137a)

hpþ2ðzÞ¼ M

jz�z0j4�p
; (137b)

where A, ~c,M‘ andM are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes.
If we set p ¼ 2, the solution becomes

h2ðx; y; zÞ ¼ c�x
� þ ~c

þX
‘

M‘ ln½jy� y‘j2 � 3Mjz� z0j�; (138a)

h4ðzÞ ¼ M

jz� z0j2
: (138b)
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Next we consider the case of p ¼ 4. The solution is
given by

h4ðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þMjz� z0j2�ð3=2Þ
;

(139a)

h6ðzÞ ¼ M lnjz� z0j: (139b)

C. The Dp� Dðpþ 4Þ brane system
Now we consider the dynamical solution of Dp�

Dðpþ 4Þ brane system. Let us discuss the solution to be
delocalized along the relative transverse direction of the
Dp-branes. The ten-dimensional metric thus takes the form

ds2 ¼ hðp�7Þ=8
p ðx; y; zÞhðp�3Þ=8

pþ4 ðzÞ½q��ðXÞdx�dx�
þ hpðx; y; zÞ�ijðYÞdyidyj
þ hpðx; y; zÞhpþ4ðzÞuabðZÞdzadzb�; (140)

where q�� is the (pþ 1)-dimensional metric which de-

pends only on the (pþ 1)-dimensional coordinates x�, �ij

is the four-dimensional metric which depends only on
the four-dimensional coordinates yi, and finally uab is the
(5� p)-dimensional metric which depends only on the
(5� p)-dimensional coordinates za.

We also assume that the scalar field � and the gauge
field strengths Fðpþ2Þ, Fðpþ6Þ are given by

e� ¼ hð3�pÞ=4
p h�ð1þpÞ=4

pþ4 ; (141a)

Fðpþ2Þ ¼ d½h�1
p ðx; y; zÞ� ^�ðXÞ; (141b)

Fðpþ6Þ ¼ d½h�1
pþ4ðzÞ� ^�ðXÞ ^�ðYÞ; (141c)

where �ðXÞ and �ðYÞ denote the volume (pþ 1)-, 4-
form, respectively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp; (142a)

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ dy3 ^ dy4: (142b)

Here, q and � are the determinant of the metrics q�� and

�ij.

In terms of ansatz for fields (140) and (141), the field
equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (143a)

hp ¼ h0ðxÞ þ h1ðy; zÞ; D�D�h0 ¼ 0;

hpþ4 4Y h1 þ4Zh1 ¼ 0; 4Zhpþ4 ¼ 0; (143b)

where D� is the covariant derivative with respect to the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and R��ðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ,
respectively.

Let us consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (144)

where 
�� is the (pþ 1)-dimensional Minkowski metric

and �ij, �ab are the four-, (5� p)-dimensional Euclidean

metrics, respectively. In the case of p � 1, p � 3, the
solution for hp and hpþ4 can be expressed as

hpðx; y; zÞ ¼ c�x
� þ ~c

þX
‘

M‘

½jy� y‘j2 þ 4M
ðp�1Þ2 jz� z0jp�1�pþ1=p�1

;

(145a)

hpþ4ðzÞ ¼ M

jz� z0j3�p
; (145b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.
For p ¼ 1, we find

h1ðx; y; zÞ ¼ c�x
� þ ~c

þX
‘

M‘ ln½jy� y‘j2 � 4Mjz� z0j�; (146a)

h5ðzÞ ¼ M

jz� z0j2
: (146b)

If we consider the D3-D7 brane system, the solution is
given by

h3ðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þMjz� z0j2�2
;

(147a)

h7ðzÞ ¼ M lnjz� z0j: (147b)

D. The intersection of Dp-brane and KK-monopole

Now we discuss the KK-monopole in the transverse
space of Dp-brane with p � 4. We assume that the ten-
dimensional metric is given by

ds2 ¼ hðp�7Þ=8ðx; y; zÞq��ðXÞdx�dx�
þ hðpþ1Þ=8ðx; y; zÞ½�ijðYÞdyidyj
þ hkðzÞuabðZÞdzadzb þ h�1

k ðzÞðdvþ Aadz
aÞ2�;

(148)

where q�� is the (pþ 1)-dimensional metric which de-

pends only on the (pþ 1)-dimensional coordinates x�, �ij

is the (5� p)-dimensional metric which depends only on
the (5� p)-dimensional coordinates yi, and finally uab is
the three-dimensional metric which depends only on the
three-dimensional coordinates za.
We also assume that the scalar field � and the gauge

field strength Fðpþ2Þ are given by
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e� ¼ hð3�pÞ=4; (149a)

Fðpþ2Þ ¼ d½h�1ðx; y; zÞ� ^�ðXÞ; (149b)

where �ðXÞ denotes the volume (pþ 1)-form

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp: (150)

Here, q is the determinant of the metric q��.

Using the ansatz for fields (148) and (149), the field
equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (151a)

h ¼ h0ðxÞ þ h1ðy; zÞ; dhk ¼ �ZdA; (151b)

D�D�h0 ¼ 0; hk 4Y h1 þ4Zh1 ¼ 0; 4Zhk ¼ 0;

(151c)

where D� is the covariant derivative with respect to the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and R��ðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ,
respectively.

Now we set the metric:

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (152)

where 
�� is the (pþ 1)-dimensional Minkowski metric

and �ij, �ab are the (5� p)-, three-dimensional Euclidean

metrics, respectively. The solution for h and hk can be
obtained explicitly as

hðx;y;zÞ¼c�x
�þ~cþX

‘

M‘

½jy�y‘j2þ4Mjz�z0j�ð7�pÞ=2 ;

(153a)

hkðzÞ¼ M

jz�z0j ; (153b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.

E. The intersection of Dp-brane and plane wave

We present the Dp-brane with the plane wave propagat-
ing along its longitudinal direction. We assume that the
ten-dimensional metric takes the form

ds2¼hðp�7Þ=8ðzÞ½�dt2þdx2þfhwðt;y;zÞ�1gðdt�dxÞ2
þ�ijðYÞdyidyjþhðzÞuabðZÞdzadzb�; (154)

where �ij is the (p� 1)-dimensional metric which de-

pends only on the (p� 1)-dimensional coordinates yi,
and finally uab is the (9� p)-dimensional metric which
depends only on the (9� p)-dimensional coordinates za.
We also assume that the gauge field strength Fðpþ2Þ is

given by

e� ¼ hð3�pÞ=4; (155a)

Fðpþ2Þ ¼ d½h�1ðzÞ ^ dt ^ dx ^�ðYÞ�; (155b)

where �ðYÞ denotes the volume (p� 1)-form

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 � � � ^ dyp�1: (156)

Here, � is the determinant of the metric �ij.

In terms of ansatz for fields (154) and (155), the field
equations lead to

RijðYÞ ¼ 0; RabðZÞ ¼ 0; (157a)

hw ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

h4Y h1 þ4Zh1 ¼ 0; 4Zh ¼ 0; (157b)

where4Y,4Z are the Laplace operators on Y, Z space, and
RijðYÞ, RabðZÞ are the Ricci tensors associated with the

metrics �ijðYÞ, uabðZÞ, respectively. Now we set the ten-

dimensional metric

�ij ¼ �ij; uab ¼ �ab; (158)

where �ij, �ab are the four-dimensional Euclidean metrics,

respectively. Using Eq. (158), the solution for p � 5 and
p � 7 can be written as

hwðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þ 4M
ðp�5Þ2 jz� z0jp�5�p2�8pþ19=2ðp�5Þ ; (159a)

hðzÞ ¼ M

jz� z0j7�p
; (159b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes. The solution (159a) for p ¼ 5 becomes

hwðt; y; zÞ ¼ �ctþ ~c

þX
‘

M‘ ln½jy� y‘j2 � ðp� 1ÞMjz� z0j�;

(160a)

hðzÞ ¼ M

jz� z0j2
: (160b)

If we consider the case of p ¼ 7, the harmonic functions
take the following form:

hwðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þMjz� z0j2�3
;

(161a)

hðzÞ ¼ M lnjz� z0j: (161b)
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F. The pair intersection involving fundamental string

Next we present intersecting fundamental string con-
figurations of all the possible combinations. The basic
constituents of intersecting branes are D-branes, funda-
mental string, solitonic NS5-brane, the KK-monopole
and the plane wave.

1. The intersection of Dp-brane and fundamental string

First we discuss the Dp-branes ending on fundamental
string. Let us consider the solution to be delocalized along
the relative transverse direction of the Dp-branes. The ten-
dimensional metric thus takes the form

ds2 ¼ h�3=4
F ðt; y; zÞhðp�7Þ=8ðzÞ

� ½�dt2 þ hFðt; y; zÞ�ijðYÞdyidyj
þ hðzÞdv2 þ hFðt; y; zÞhðzÞuabðZÞdzadzb�; (162)

where �ij is the p-dimensional metric which depends only

on the p-dimensional coordinates yi, and finally uab is the
(8� p)-dimensional metric which depends only on the
(8� p)-dimensional coordinates za.

The scalar field � and the gauge field strength Hð3Þ are
also assumed to be

e� ¼ h�1=2
F hð3�pÞ=4; (163a)

Hð3Þ ¼ d½h�1
F ðt; y; zÞ� ^ dt ^ dv; (163b)

Fðpþ2Þ ¼ d½h�1ðzÞ� ^ dt ^�ðYÞ; (163c)

where �ðYÞ denotes the volume p-form

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ � � � ^ dyp: (164)

Here, � is the determinant of the metric �ij.

If we use ansatz for fields (162) and (163), the field
equations give

RijðYÞ ¼ 0; RabðZÞ ¼ 0; (165a)

hF ¼ h0ðxÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

h4Y h1 þ4Zh1 ¼ 0; 4Zh ¼ 0; (165b)

where4Y,4Z are the Laplace operators on Y, Z space, and
RijðYÞ, RabðZÞ are the Ricci tensors associated with the

metrics �ijðYÞ, uabðZÞ, respectively. We consider the case

�ij ¼ �ij; uab ¼ �ab; (166)

where �ij, �ab are the p-, (8� p)-dimensional Euclidean

metrics, respectively. Under the metric Eq. (166), the
solution of h and hF for p ¼ 4 and p ¼ 6 can be written by

hFðt;y;zÞ¼ �ctþ ~c

þX
‘

M‘

½jy�y‘j2þ 4M
p�4jz�z0jp�4�p2�6pþ12=2ðp�4Þ ;

(167a)

hðzÞ¼ M

jz�z0j6�p
; (167b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes. For p ¼ 4, the solution becomes

hFðt; y; zÞ ¼ �ctþ ~c

þX
‘

M‘ ln½jy� y‘j2 � pMjz� z0j�; (168a)

hðzÞ ¼ M

jz� z0j2
: (168b)

Next we consider the case of p ¼ 6. The solution is
given by

hFðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þMjz� z0j2�3
;

(169a)

hðzÞ ¼ M lnjz� z0j: (169b)

2. The intersection involving fundamental
string and NS5-branes

We discuss the solution of the fundamental strings with
NS5-branes. We consider the case to be delocalized along
one of the overall transverse directions. The ten-
dimensional metric thus takes the form

ds2 ¼ h�3=4
F ðx; y; zÞh�1=4

NS ðzÞ
� ½q��ðXÞ þ hFðx; y; zÞ�ijðYÞdyidyj
þ hFðx; y; zÞhNSðzÞuabðZÞdzadzb�; (170)

where q�� is the two-dimensional metric which depends

only on the two-dimensional coordinates x�, �ij is the

four-dimensional metric which depends only on the four-
dimensional coordinates yi, and finally uab is the four-
dimensional metric which depends only on the
four-dimensional coordinates za.
We also assume that the scalar field � and the gauge

field strength Hð3Þ are given by

e� ¼ h�1=2
F h1=2NS ; (171a)

Hð3Þ ¼ d½h�1
F ðx; y; zÞ� ^�ðXÞ

þ e�� � d½h�1
NSðzÞ�ðXÞ ^�ðYÞ�; (171b)

where �ðXÞ and �ðYÞ denote the volume 2- and 4-form
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�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1; (172a)

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ dy3 ^ dy4: (172b)

Here, q and � are the determinant of the metric q�� and

�ij, respectively.

In terms of ansatz for fields (170) and (171), the field
equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (173a)

hF ¼ h0ðxÞ þ h1ðy; zÞ; D�D�h0 ¼ 0;

hNS 4Y h1 þ4Zh1 ¼ 0; 4ZhNS ¼ 0; (173b)

where D� is the covariant derivative with respect to the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and RijðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ, respec-
tively. We assume that the ten-dimensional metric is
given by

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (174)

where 
�� is the two-dimensional Minkowski metric and

�ij, �ab are the four-dimensional Euclidean metrics, re-

spectively. The solution for hF and hNS can be obtained
explicitly as

hFðx; y; zÞ ¼ c�x
� þ ~c

þX
‘

M‘ ln½jy� y‘j2 � 4Mjz� z0j�; (175a)

hNSðzÞ ¼ M

jz� z0j2
; (175b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes. If we delocalize the solution along one of the
overall transverse directions, the solution can be written as

hFðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�3
;

(176a)

hNSðzÞ ¼ M

jz� z0j : (176b)

3. The pair involving fundamental string
and one Kaluza- Klein monopole

Now we discuss the KK-monopole in the transverse
space of the fundamental string. We set the ten-
dimensional metric takes the form

ds2 ¼ h�3=4
F ðx; y; zÞq��ðXÞdx�dx�

þ h1=4F ðx; y; zÞ½�ijðYÞdyidyj
þ hkðzÞuabðZÞdzadzb þ h�1

k ðzÞðdvþ Aadz
aÞ2�;

(177)

where q�� is the two-dimensional metric which depends

only on the two-dimensional coordinates x�, �ij is the

four-dimensional metric which depends only on the four-
dimensional coordinates yi, and finally uab is the three-
dimensional metric which depends only on the three-
dimensional coordinates za.
We assume that the scalar field � and the gauge field

strength Hð3Þ are given by

e� ¼ h�1=2
F ; (178a)

Hð3Þ ¼ d½h�1
F ðx; y; zÞ� ^�ðXÞ; (178b)

where �ðXÞ denotes the volume 2-form

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1: (179)

Here, q is the determinant of the metric q��.

In terms of ansatz for fields (177) and (178), the field
equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (180a)

hF ¼ h0ðxÞ þ h1ðy; zÞ; D�D�h0 ¼ 0;

hk 4Y h1 þ4Zh1 ¼ 0; 4Zhk ¼ 0; (180b)

where D� is the covariant derivative with respect to the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and RijðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ,
respectively.
Now let us consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (181)

where 
�� is the two-dimensional Minkowski metric and

�ij, �ab are the four-, three-dimensional Euclidean metrics,

respectively. The solution for hF and hk can be obtained
explicitly as

hFðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�3
;

(182a)

hkðzÞ ¼ M

jz� z0j ; (182b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.
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G. The intersection involving NS5-branes

In this subsection, we discuss the intersecting brane
involving NS5-branes. For the KK-monopole, we cannot
find partially delocalized solutions because the intersection
does not have the relative transverse directions.

1. The intersection involving Dp-brane and NS5-branes

Let us first consider the Dp-branes ending on NS5-
branes. We discuss the solution to be delocalized along
the relative transverse direction of the NS5-branes. The
ten-dimensional metric of Dp-branes (p � 6) ending on
NS5-branes thus takes the form

ds2 ¼ hðp�7Þ=8ðx; y; zÞh�1=4
NS ðzÞ½q��ðXÞdx�dx�

þ hðx; y; zÞ�ijðYÞdyidyj þ hNSðzÞdv2

þ hðx; y; zÞhNSðzÞuabðZÞdzadzb�; (183)

where q�� is the p-dimensional metric which depends

only on the p-dimensional coordinates x�, �ij is the

(6� p)-dimensional metric which depends only on the
(6� p)-dimensional coordinates yi, and finally uab is
the three-dimensional metric which depends only on the
three-dimensional coordinates za.

We assume that the scalar field � and the gauge field
strength Hð3Þ are given by

e� ¼ h1=2NS h
ð3�pÞ=4; (184a)

Hð3Þ ¼ e�� � d½h�1
NSðzÞ�ðXÞ ^�ðYÞ�; (184b)

Fðpþ2Þ ¼ d½h�1ðx; y; zÞ� ^�ðXÞ; (184c)

where�ðXÞ and�ðYÞ denote the volume p-form, (6� p)-
form, respectively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ � � � ^ dxp�1; (185a)

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ � � � ^ dy6�p: (185b)

Here, q and � are the determinant of the metric q��, �ij,

respectively.
Using the ansatz for fields (183) and (184), the field

equations lead to

R��ðXÞ ¼ 0; RijðYÞ ¼ 0; RabðZÞ ¼ 0; (186a)

h ¼ h0ðxÞ þ h1ðzÞ; D�D�h0 ¼ 0;

hNS 4Y h1 þ4Zh1 ¼ 0; 4ZhNS ¼ 0; (186b)

where D� is the covariant derivative constructed by the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and R��ðXÞ, RijðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ, respec-
tively. Let us consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (187)

where
�� is the p-dimensional Minkowski metric and �ij,

�ab are the (6� p)-, three-dimensional Euclidean metrics,

respectively. The solution for h and hNS can be obtained
explicitly as

hðx;y;zÞ¼c�x
�þ ~c

þX
‘

M‘

½jy�y‘j2þ4Mjz�z0j�ðp�8Þ=2 ; (188a)

hNSðzÞ¼ M

jz�z0j ; (188b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.

2. The intersection of two NS5-branes

Next we consider the solution of two NS5-brane. As
we mentioned in Sec. II A, these intersect over three di-
mensions. We assume that the ten-dimensional metric is
written by

ds2 ¼ h�1=4
NS ðx; y; zÞ �h�1=4

NS ðzÞ½q��ðXÞdx�dx�
þ hNSðx; y; zÞ�ijðY1Þdyidyj
þ �hNSðzÞwmnðY2Þdvmdvn

þ hNSðx; y; zÞ �hNSðzÞuabðZÞdzadzb�; (189)

where q�� is the four-dimensional metric which depends

only on the four-dimensional coordinates x�, �ij is the

two-dimensional metric which depends only on the two-
dimensional coordinates yi, wmn is the two-dimensional
metric which depends only on the two-dimensional co-
ordinates vm, and finally uab is the two-dimensional
metric which depends only on the two-dimensional coor-
dinates za.
We also assume that the scalar field � and the gauge

field strength Hð3Þ are given by

e� ¼ ðhNS �hNSÞ1=2; (190a)

Hð3Þ ¼ e�� � d½h�1
NSðx; y; zÞ�ðXÞ ^�ðY2Þ

þ �h�1
NSðzÞ�ðXÞ ^�ðY1Þ�; (190b)

where�ðXÞ,�ðY1Þ and�ðY2Þ denote the volume 4-form,
4-form and 4-form, respectively

�ðXÞ ¼ ffiffiffiffiffiffiffi�q
p

dx0 ^ dx1 ^ dx2 ^ dx3; (191a)

�ðY1Þ ¼ ffiffiffiffi
�

p
dy1 ^ dy2; (191b)

�ðY2Þ ¼
ffiffiffiffi
w

p
dv1 ^ dv2: (191c)

Here, q, � and w are the determinants of the metrics q��,

�ij, and wmn, respectively.

In terms of ansatz for fields (189) and (190), the field
equations lead to
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R��ðXÞ ¼ 0; RijðY1Þ ¼ 0;

RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; (192a)

hNS ¼ h0ðxÞ þ h1ðy; zÞ; (192b)

D�D�h0 ¼ 0; �hNS 4Y h1 þ4Zh1 ¼ 0; 4Z
�hNS ¼ 0;

(192c)

where D� is the covariant derivative constructed by the

metric q��, and 4Y, 4Z are the Laplace operators on Y, Z

space, and R��ðXÞ, RmnðYÞ, RabðZÞ are the Ricci tensors

associated with the metrics q��ðXÞ, �ijðYÞ, uabðZÞ, respec-
tively. As a special example, we consider the case

q�� ¼ 
��; �ij ¼ �ij; uab ¼ �ab; (193)

where 
�� is the four-dimensional Minkowski metric and

�ij, �mn, �ab are the two-, two-, two-dimensional

Euclidean metrics, respectively. The solution for hNS and
�hNS can be obtained explicitly as

hNSðx; y; zÞ ¼ c�x
� þ ~cþX

‘

M‘

jy� y‘j2 þMjz� z0j2
;

(194a)

�hNSðzÞ ¼ ln½Mjz� z0j�; (194b)

where c�, ~c,M‘ andM are constant parameters, and y‘ and

z0 are constant vectors representing the positions of the
branes.

3. The intersection involving plane wave and NS5-brane

We present the NS5-brane with the plane wave propa-
gating along its longitudinal direction. We assume that the
ten-dimensional metric takes the form

ds2 ¼ h�1=4
NS ðzÞ½�dt2 þ dx2 þ fhwðt; y; zÞ � 1gðdt� dxÞ2

þ �ijðYÞdyidyj þ hNSðzÞuabðZÞdzadzb�; (195)

where �ij is the four-dimensional metric which depends

only on the four-dimensional coordinates yi, and finally
uab is the four-dimensional metric which depends only on
the four-dimensional coordinates za.

We set the scalar field� and the gauge field strengthHð3Þ
as follows:

e� ¼ h1=2NS ; (196a)

Hð3Þ ¼ e�� � d½h�1
NSðzÞ ^ dt ^ dx ^�ðYÞ�; (196b)

where �ðYÞ denotes the volume 4-form

�ðYÞ ¼ ffiffiffiffi
�

p
dy1 ^ dy2 ^ dy3 ^ dy4: (197)

Here, � is the determinant of the metric �ij.

In terms of ansatz for fields (195) and (196), the field
equations lead to

RijðYÞ ¼ 0; RabðZÞ ¼ 0; (198a)

hw ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

hk 4Y h1 þ4Zh1 ¼ 0; 4ZhNS ¼ 0; (198b)

where4Y,4Z are the Laplace operators on Y, Z space, and
RijðYÞ, RabðZÞ are the Ricci tensors associated with the

metrics �ijðYÞ, uabðZÞ, respectively. As a special example,

we set the metric and the function hNS

�ij ¼ �ij; uab ¼ �ab; (199)

where �ij, �ab are the four-dimensional Euclidean metrics,

respectively. The solution for hNS and hw can be obtained
explicitly as

hwðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘ ln½jy� y‘j2 � 4Mjz� z0j�;

(200a)

hNSðzÞ ¼ M

jz� z0j2
; (200b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes.

H. The plane wave in the KK-monopole background

We consider the plane wave propagating in the back-
ground of the KK-monopole. The solution of ten-
dimensional metric is given by

ds2 ¼ �dt2 þ dx2 þ ½hwðt; y; zÞ � 1�ðdt� dxÞ2
þ �ijðYÞdyidyj þ hkðzÞuabðZÞdzadzb
þ h�1

k ðzÞðdvþ Aadz
aÞ2; (201)

where �ij is the four-dimensional metric which depends

only on the four-dimensional coordinates yi, and finally
uab is the three-dimensional metric which depends only on
the three-dimensional coordinates za.
The ten-dimensional metric and the function hk obey

RijðYÞ ¼ 0; RabðZÞ ¼ 0; (202a)

hw ¼ h0ðtÞ þ h1ðy; zÞ; @2t h0 ¼ 0;

hk 4Y h1 þ4Zh1 ¼ 0; 4Zhk ¼ 0; (202b)

dhk ¼ �ZdA; (202c)

where �Z is the Hodge operator in the Z space, and4Y,4Z

are the Laplace operators on Y, Z space, and RijðYÞ, RabðZÞ
are the Ricci tensors associated with the metrics �ijðYÞ,
uabðZÞ, respectively. Now we consider the case

�ij ¼ �ij; uab ¼ �ab; (203)

where �ij, �ab are the four-, three-dimensional Euclidean

metrics, respectively. The solution for h and hk can be
obtained explicitly as
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hðt; y; zÞ ¼ �ctþ ~cþX
‘

M‘

½jy� y‘j2 þ 4Mjz� z0j�3
;

(204a)

hkðzÞ ¼ M

jz� z0j ; (204b)

where �c, ~c, M‘ and M are constant parameters, and y‘ and
z0 are constant vectors representing the positions of the
branes.

There is a classification of the multiple intersecting
branes solutions by [27,28]. The dynamical delocalized
branes in ten-dimensional theory are also classified in
[4]. We again show the intersection rule for the branes
with M-wave and KK-monopoles in Table IV. In the Table,
circles indicate where the brane world-volumes enter, v
represents the coordinate of the KK-monopole, and the
time-dependent branes are indicated by

p
for different

solutions.

V. COSMOLOGY

In this section, we apply the above solutions to study the
four-dimensional cosmology. We assume an isotropic and
homogeneous three-space in the four-dimensional space-
time known as Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) universe after compactification. In what follows,
we concentrate on the (pþ 1)-dimensional Minkowski
spacetime with q��ðXÞ ¼ 
��ðXÞ, and drop the coordinate
dependence on X space except for the time. We discuss just
the cases involving p-brane and KK-monopole because our

Universe does not expand when the wave is time-
dependent. Hence, we have no interesting case for wave
solution.

A. The intersection of Dpr � Dps brane system

Let us first discuss how these solutions are applied to our
physical world in the case of Dpr � Dps brane system.
Suppose that our Universe is a part of branes. Since our
Universe is isotropic and homogeneous, same branes must
contain this whole three dimensions. The D-dimensional
metric (5) can be expressed as

ds2 ¼ �hdt2 þ ds2ð~XÞ þ ds2ðY1Þ þ ds2ðY2Þ þ ds2ðZÞ;
(205)

where we have defined

ds2ð~XÞ � h�PQð~XÞdPdQ; (206a)

ds2ðY1Þ � hbrr ðt; y; zÞhass ðt; v; zÞ�ijðY1Þdyidyj; (206b)

ds2ðY2Þ � harr ðt; y; zÞhbss ðt; v; zÞwmnðY2Þdvmdvn; (206c)

ds2ðZÞ � hbrr ðt; y; zÞhbss ðt; v; zÞuabðZÞdzadzb; (206d)

h � harr ðt; y; zÞhass ðt; v; zÞ: (206e)

Here, �PQð~XÞ is the p-dimensional Euclidean metric, and

P denotes the coordinate of the p-dimensional Euclid

space ~X.
In the following, we assume hs ¼ hsðzÞ and set hr ¼

Atþ h1ðy; zÞ. The D-dimensional metric (206) can be
written as

ds2 ¼ h
as
s

�
1þ

�
�

�0

��2=ðarþ2Þ
h1

�
ar
�
�d�2 þ

�
�

�0

�
2ar=ðarþ2Þ

�PQð~XÞdPdQ

þ
�
1þ

�
�

�0

��2=ðarþ2Þ
h1

��
�

�0

�
2br=ðarþ2Þ

�ijðY1Þdyidyj þ hs

�
�

�0

�
2ar=ðarþ2Þ

wmnðY2Þdvmdvn

þ hs

�
1þ

�
�

�0

��2=ðarþ2Þ
h1

��
�

�0

�
2br=ðarþ2Þ

uabðZÞdzadzb
�
; (207)

where we have introduced the cosmic time � defined by

�

�0
¼ ðAtÞðarþ2Þ=2; �0 ¼ 2

ðar þ 2ÞA : (208)

On the other hand, for hr ¼ hrðzÞ and hs ¼ Atþ k1ðv; zÞ,
the metric (206) is given by replacing ar and h1ðy; zÞ with
as and k1ðv; zÞ.

Now we apply these solutions to lower-dimensional
effective theory. We compactify dð� d1 þ d2 þ d3 þ d4Þ
dimensions to fit our Universe, where d1, d2, d3, and d4
denote the compactified dimensions with respect to the ~X,
Y1,Y2, and Z spaces. The metric (205) is then described by

ds2 ¼ ds2ðMÞ þ ds2ðNÞ; (209)

where ds2ðMÞ is the (D� d)-dimensional metric and
ds2ðNÞ is the metric of compactified dimensions.
By the conformal transformation

ds2ðMÞ ¼ hBr h
C
s ds

2ð �MÞ; (210)

we can rewrite the (D� d)-dimensional metric in the
Einstein frame. Here B and C are

B ¼ �ðar þ 1Þdþ d1 þ d3
D� d� 2

;

C ¼ �ðas þ 1Þdþ d2 þ d4
D� d� 2

:

(211)

Hence, the (D� d)-dimensional metric in the Einstein
frame is
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ds2ð �MÞ ¼ hB
0

r h
C0
s ½�dt2 þ �P0Q0 ð~X0ÞdP0

dQ
0

þ hr�k0l0 ðY0
1Þdyk0dyl0

þ hswm0n0 ðY0
2Þdvm0

dvn0

þ hrhsua0b0 ðZ0Þdza0dzb0 �; (212)

where B0 and C0 are defined by B0 ¼ �Bþ ar and C0 ¼
�Cþ as, and ~X0, Y0

1, Y
0
2, and Z0 denote the ðp� d1Þ-,

ðps � p� d2Þ-, ðpr � p� d3Þ-, and ðDþ p� pr � ps �
d4Þ-dimensional spaces, respectively.
For hr ¼ Atþ h1, the metric (212) is thus rewritten as

ds2ð �MÞ ¼ hC
0

s

�
1þ

�
�

�0

��2=ðB0þ2Þ
h1

�
B0�

�d�2 þ
�
�

�0

�
2B0=ðB0þ2Þ

�P0Q0 ð~X0ÞdP0
dQ

0

þ
�
1þ

�
�

�0

��2=ðB0þ2Þ
h1

��
�

�0

�
2ðB0þ1Þ=ðB0þ2Þ

�k0l0 ðY0
1Þdyk0dyl0 þ hs

�
�

�0

�
2B0=ðB0þ2Þ

wm0n0 ðY0
2Þdvm0

dvn0

þ hs

�
1þ

�
�

�0

��2=ðB0þ2Þ
h1

��
�

�0

�
2ðB0þ1Þ=ðB0þ2Þ

ua0b0 ðZ0Þdza0dzb0
�
; (213)

where the cosmic time � is defined by

�

�0
¼ ðAtÞðB0þ2Þ=2; �0 ¼ 2

ðB0 þ 2ÞA : (214)

For hs ¼ Atþ k1 and @�hr ¼ 0, we can also get results
similar to (207) and (213).

Therefore, we cannot find the solution which exhibits an
accelerating expansion of our Universe.

The power exponents of the scale factor of possible
four-dimensional cosmological models are given by

að ~MÞ / ��ð ~MÞ, where � is the cosmic time, and að ~MÞ and
aEð ~MÞ denote the scale factors of the space ~M in Jordan
and Einstein frames with the exponents carrying the same

suffices, respectively. Here ~M denotes the spatial part of the
spacetime M.

Since the time dependence in the metric comes from
only one brane in the intersections, the obtained expansion
law is simple. In order to find an expanding universe, one
may have to compactify the vacuum bulk space as well as
the brane world volume. Unfortunately we find that the
fastest expanding case in the Jordan frame has the power

�ð ~MÞ< 1=2, which is too small to give a realistic expan-

sion law like that in the matter-dominated era (a / �2=3) or

that in the radiation-dominated era (a / �1=2).
When we compactify the extra dimensions and go to the

four-dimensional Einstein frame, the power exponents are
differently depending on how we compactify the extra
dimensions even within one solution. For M-brane in the
11-dimensional theory, we give the power exponent of
the fastest expansion of our four-dimensional Universe in
the Einstein frame. We again see that the expansion is too
small. Hence, we have to conclude that in order to find a

realistic expansion of the Universe in this type of models,
one has to include additional ‘‘matter’’ fields on the brane.
These are the same results as the case of the delocalized

intersecting brane solutions. For the solutions (213) involv-
ing two intersecting brane in the 10- or 11-dimensional
theories which are related to the supergravity, we can see
the power exponents of the scale factor of possible four-
dimensional FLRW cosmological models in the Tables
in [4].

B. The intersection of brane and KK-monopole system

Next we apply the dynamical intersecting brane solu-
tions including KK-monopoles. We should look for
whether there is a solution with an isotropic and homoge-
neous three space. The D-dimensional metric (40) can be
expressed as

ds2 ¼ �haðt; y; zÞdt2 þ ds2ð~XÞ þ ds2ðYÞ þ ds2ðZÞ
þ hbðt; y; zÞh�1

k ðzÞðdvþ Aadz
aÞ2; (215)

where we have defined

ds2ð~XÞ � haðt; y; zÞ�PQð~XÞdPdQ; (216a)

ds2ðYÞ � hbðt; y; zÞ�ijðYÞdyidyj; (216b)

ds2ðZÞ � hbðt; y; zÞhkðzÞuabðZÞdzadzb: (216c)

Here, a, b are given by (41), and �PQð~XÞ is the

p-dimensional Euclidean metric, and P denotes the coor-

dinate of the p-dimensional Euclid space ~X.
In the following, we set h ¼ Atþ h1ðy; zÞ. The

D-dimensional metric (215) can be written as

ds2 ¼
�
1þ

�
�

�0

��2=ðaþ2Þ
h1

�
a
�
�d�2 þ

�
�

�0

�
2a=ðaþ2Þ

�PQð~XÞdPdQ

þ
�
1þ

�
�

�0

��2=ðaþ2Þ
h1

��
�

�0

�
2b=ðaþ2Þf�ijðYÞdyidyj þ hkuabðZÞdzadzb þ h�1

k ðdvþ Aadz
aÞ2g

�
; (217)
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where we have introduced the cosmic time � defined by

�

�0
¼ ðAtÞðaþ2Þ=2; �0 ¼ 2

ðaþ 2ÞA : (218)

Now we again apply these solutions to lower-
dimensional effective theory. We compactify dð�
d1 þ d2 þ d3Þ dimensions to fit our Universe, where d1,
d2, and d3 denote the compactified dimensions with respect

to the ~X, Y, and Z spaces. The metric (215) is then
described by

ds2 ¼ ds2ðMÞ þ ds2ðNÞ; (219)

where ds2ðMÞ is the (D� d)-dimensional metric and
ds2ðNÞ is the metric of compactified dimensions.

By the conformal transformation

ds2ðMÞ ¼ hBhCk ds
2ð �MÞ; (220)

we can rewrite the (D� d)-dimensional metric in the
Einstein frame. Here B and C are

B¼�ad1þbðd2þd3Þ
D�d�2

; C¼� 2d3
D�d�2

: (221)

Hence, the (D� d)-dimensional metric in the Einstein
frame is

ds2ð �MÞ ¼ hB
0
h�C
k ½�dt2 þ �P0Q0 ð~X0ÞdP0

dQ
0

þ h4=Nf�k0l0 ðY0Þdyk0dyl0 þ hkua0b0 ðZ0Þdza0dzb0

þ h�1
k ðdvþ Aa0dz

a0 Þ2g�; (222)

where B0 is defined by B0 ¼ �Bþ a, and ~X0, Y0,
and Z0 denote the ðp� d1Þ-, ðD� 5� p� d2Þ-, and
ð3� d3Þ-dimensional spaces, respectively.
For h ¼ Atþ h1ðy; zÞ, the metric (222) is thus rewritten

as

ds2ð �MÞ ¼ hC
0

s

�
1þ

�
�

�0

��2=ðB0þ2Þ
h1

�
B0�

�d�2 þ
�
�

�0

�
2B0=ðB0þ2Þ

�P0Q0 ð~X0ÞdP0
dQ

0 þ
�
1þ

�
�

�0

��2=ðB0þ2Þ
h1

�

�
�
�

�0

�
2ðB0þ1Þ=ðB0þ2Þf�k0l0 ðY0Þdyk0dyl0 þ hkua0b0 ðZ0Þdza0dzb0 þ h�1

k ðdvþ Aa0dz
a0 Þ2g

�
; (223)

where the cosmic time � is defined by

�

�0
¼ ðAtÞðB0þ2Þ=2; �0 ¼ 2

ðB0 þ 2ÞA : (224)

The (D� d)-dimensional metric (223) shows that there
is no solution which exhibits an accelerating expansion of
our Universe.
We list the FLRW cosmological solutions with an isotro-

pic and homogeneous three-space for the solutions (223) in
Table IV for M-branes, Table V for D-branes, and Table VI

TABLE V. Pair intersections between Dpðp � 4Þ-brane and KK-monopole in D ¼ 10 with dependence on overall transverse
coordinates.

Branes 0 1 2 3 4 5 6 7 8 9 ~M �ð ~MÞ �Eð ~MÞ
D0 � p

�ðYÞ ¼ 1=9 �EðY1Þ ¼ 1
9�d2�d3

D0-KK KK � � � � � � A1 A2 A3 Y & v & Z �ðvÞ ¼ 1=9 �EðvÞ ¼ 1
9�d2�d3

xN t y1 y2 y3 y4 y5 v z1 z2 z3 �ðZÞ ¼ 1=9 �EðZÞ ¼ 1
9�d2�d3

D1 � � p
�ðYÞ ¼ 1=5 �EðYÞ ¼ 2�d1

10�2d1�d2�d3
‘

D1-KK KK � � � � � � A1 A2 A3 Y & v & Z �ðvÞ ¼ 1=5 �EðvÞ ¼ 2�d1
10�2d1�d2�d3

xN t x y1 y2 y3 y4 v z1 z2 z3 �ðZÞ ¼ 1=5 �EðZÞ ¼ 2�d1
10�2d1�d2�d3

r
D2 � � � p

�ðYÞ ¼ 3=11 �EðYÞ ¼ 3�d1
11�2d1�d2�d3

D2-KK KK � � � � � � A1 A2 A3 Y & v & Z �ðvÞ ¼ 3=11 �EðvÞ ¼ 3�d1
11�2d1�d2�d3

xN t x1 x2 y1 y2 y3 v z1 z2 z3 �ðZÞ ¼ 3=11 �EðZÞ ¼ 3�d1
11�2d1�d2�d3

D3 � � � � p ~X �ð~XÞ ¼ �1=3 �Eð~XÞ ¼ d2þd3þd4�4
12�2d1�d2�d3

D3-KK KK � � � � � � A1 A2 A3 Y & v & Z �ðYÞ ¼ 1=3 �EðYÞ ¼ 4�d1
12�2d1�d2�d3

0
xN t x1 x2 x3 y1 y2 v z1 z2 z3 �ðvÞ ¼ �ðZÞ ¼ 1=3 �EðvÞ ¼ �EðZÞ ¼ 4�d1

12�2d1�d2�d3
�m

D4 � � � � � p
�ð~XÞ ¼ �3=13 �Eð~XÞ ¼ d2þd3þd4�3

13�2d1�d2�d3

D4-KK KK � � � � � � A1 A2 A3 Y & v & Z �ðYÞ ¼ 3=11 �EðYÞ ¼ 5�d1
13�2d1�d2�d3

xN t x1 x2 x3 x4 y v z1 z2 z3 �ðvÞ ¼ �ðZÞ ¼ 5=13 �EðvÞ ¼ �EðZÞ ¼ 5�d1
13�2d1�d2�d3
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for F1 and NS5-branes. We find the power exponents of the
scale factor of possible four-dimensional cosmological

models as að ~MÞ / ��ð ~MÞ, where að ~MÞ and aEð ~MÞ denote
the scale factors of our Universe ~M in Jordan and Einstein
frames with the exponents carrying the same suffices,

respectively. Here ~M denotes the spatial part of the space-
time M.

In the KK-monopole solution, the expansion law is
easily obtained because the time dependence in the metric
comes from only p-brane in the intersections. We can find
an expanding universe even if one may compactify the
vacuum bulk space as well as the brane world volume.
However, it is impossible to obtain the cosmological model

whose scale factor has the power �ð ~MÞ> 1=2 in the Jordan
frame. Then they cannot give a realistic expansion law like

that in the matter-dominated era (a / �2=3) or that in the

radiation-dominated era (a / �1=2).
The power exponents in the four-dimensional Einstein

frame after compactifing the extra dimensions are different
depending on how we compactify the extra dimensions
even within one solution. For M-brane and D-brane in the

10- or 11-dimensional theory, we give the power exponent
of the fastest expansion of our four-dimensional Universe
in the Einstein frame in Table VII. However, the expansion
is too small to find a realistic expansion of the Universe in
the KK-monopole background. Then it is necessary to add
some corrections in the background to obtain a realistic
cosmological solution.

VI. DISCUSSIONS

In this paper, we have studied dynamical solutions of
p-brane. In the case of partially localized static intersecting
brane solutions, even the metric ansatz in terms of har-
monic functions which would generalize such restricted
metric ansatz for the delocalized brane case is known, we
could mention the explicit expressions for harmonic func-
tions. We have applied simple coordinate transformations
to the differential equations satisfied by the harmonic
functions in order to bring them to the forms of partial
differential equations which have known explicit solutions.
The Einstein equations give the intersection rules which
the dynamical brane have to obey. Because of the simplic-
ity of the intersection rule, it is easy to work out obtaining
the explicit analytical form of the solution for the field
equations in the D-dimensional projective. The intersec-
tion rules have led to the results that harmonic functions
can be written by linear combinations of terms depending
on both coordinates of world volume and transverse space.
Moreover, in the case of 10- or 11-dimensional theories,
the form of the harmonic function implies that the dynami-
cal solution becomes the supersymmetric one if we drop
the time dependence. We also find that the field strengths
vanish if we take a limit where the coordinate dependence
with respect to transverse space becomes much smaller.
This turned out to be vacuum solutions if the scalar field is
trivial because in this limit the scalar and gauge fields do
not contribute the energy momentum tensor, which pre-
sumably does not affect the model. We can understand this
as a Kasner-type metric. This feature is expected to be seen
in a wide class of supersymmetric solutions beyond the
examples considered in the present paper.
The dynamical solutions include the dilaton coupling

parameter N in which appears the exact forms of the field
strengths. We observed that obtaining the explicit analyti-
cal form of dynamical solutions is almost impossible with
N � 4, since harmonic functions that specify branes now

TABLE VI. Pair intersections between fundamental string and KK-monopole in D ¼ 10 with dependence on overall transverse
coordinates.

Branes 0 1 2 3 4 5 6 7 8 9 ~M �ð ~MÞ �Eð ~MÞ
F1 � � p

�ðYÞ ¼ 1=5 �EðYÞ ¼ 2�d1
10�2d1�d2�d3

F1-KK KK � � � � � � A1 A2 A3 Y & v & Z �ðvÞ ¼ 1=5 �EðvÞ ¼ 2�d1
10�2d1�d2�d3

xN t x y1 y2 y3 y4 v z1 z2 z3 �ðZÞ ¼ 1=5 �EðZÞ ¼ 2�d1
10�2d1�d2�d3

TABLE VII. The power exponent of the fastest expansion in
the Einstein frame for M-brane, D-brane, fundamental string in
KK-monopole background. ‘‘TD’’ in the table shows which
brane is time dependent.

Branes TD dimðMÞ �M ðd1; d2; d3Þ �Eð �MÞ
M2-KK M2 8 Y & v & Z (0, 1, 2) 1=3

M2 8 Y & Z (0, 3, 0) 1=3
M5-KK M5 7 ~X & Y& v & Z (2, 0, 2) �1=9

M5 9 ~X & Y& v & Z (0, 0, 2) 6=13
D0-KK D0 6 Y& v & Z (0, 2, 2) 1=5

D0 5 Y& v & Z (0, 3, 2) 1=4
D1-KK D1 7 Y& v & Z (0, 1, 2) 2=7

D1 5 Y& v & Z (0, 3, 2) 2=5
D2-KK D2 8 Y& v & Z (0, 0, 2) 1=3

D2 6 Y& v & Z (0, 2, 2) 3=7
D3-KK D3 7 ~X & Y & v & Z (0, 1, 2) �1=9

D3 7 ~X & Y& v & Z (0, 1, 2) 4=9
D4-KK D4 8 ~X & Y & v & Z (0, 0, 2) �1=11

D4 8 ~X & Y& v & Z (0, 0, 2) 5=11
F1-KK F1 7 Y& v & Z (0, 1, 2) 2=7

F1 5 Y& v & Z (0, 3, 2) 2=5
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satisfy coupled partial differential equations. If we set
N ¼ 4, these are apparently related to the classical solu-
tions of string theory and certainly have a lot of attractive
properties. Firstly, these solutions were obtained by replac-
ing the time-independent warp factor of the static solution
with the time-dependent function. Secondly, our solutions
can contain only one function depending on both time as
well as overall or relative transverse space coordinates
because the Einstein equations tell us that either (i) two
branes depend only on the coordinates along the relative
and overall transverse directions or (ii) while one brane is
completely dynamical the other brane has to depend only
on the coordinates along the relative and overall transverse
directions. A new class of solutions where all harmonic
functions depend on time is more challenging.

We have shown that each solution gives a FLRWuniverse
if we regard the homogeneous and isotropic part of the
brane world-volume or transverse space as our spacetime.
However, the power of the scale factor is so small that the
solutions of field equations cannot give a realistic expansion
law. This means that we have to consider additional matter
on the brane in order to get a realistic expanding universe.
The solutions implies that as the number p increases, the
power of the scale factor becomes large.We have found that
the intersection with D6-brane in ten-dimensional theory
gives the fastest expansion of our Universe because the
three-dimensional spatial space of our Universe stays in
the transverse space to the D6-brane. Though the power of
the scale factor for the transverse space in solutions with the
D7- or D8-branes is larger than thosewith the D6-brane, the
number of the transverse space to these branes is less than
three. Hence, these solutions cannot provide the isotropic
universe if we assume that the transverse space to the brane
is the part of ourUniverse. These are same results as the case
of delocalized brane solutions [4,5].

The method described here can of course be applied
in this model to all other intersecting brane systems in-
volving more than three branes. The same equations, given
by (18c) will lead to the coordinate dependence of the
metric because of the ansatz for the fields. Hence, only
one of branes will appear exhibit time dependence, as we
have already discussed in Secs. III and IV through II. A
serious problem is the difficulty of constructing realistic
cosmological models such as inflationary universe scenario
of the early universe or the accelerating expansion of the
present universe. This problem is of course avoided in
delocalized brane solutions with particular coupling be-
tween scalar field and gauge field strength, which does not
apparently relate to the classical solutions of string theory.

Then, beyond the model discussed here, obtaining the
accelerating expansion of our Universe in a string theory,
there is more realistic problem of setting the field ansatz,
coupling constant and internal space in a theory of coupled
scalar, gauge and gravitational fields. This is more com-
plicated, because even in the case of using the same field
ansatz as the supersymmetric solutions there are coupled
partial differential equations which in general do not have
simple form. Hence, that alone should not prevent the
method described here from being applicable to realistic
theories, at least forDpr � Dps branes, since a lot of terms
in the field equations cannot be eliminated by including
enough fields. If the coupling constant that involve fields
have a single parameter N attached to matter fields, then
we can introduce a parameter for the fields by coupling
scalar field with the harmonic functions to the gauge field
strengths. But it is not clear how to deal with the relation
between the string theory and containing parameters to
which are attached two or more field strengths. This raises
the question whether the dynamical brane solution is really
related to the supersymmetric solutions because the value
of the coupling constant in these solutions are in general
severely restricted. It is difficult to obtain the de Sitter
compactification model which is consistent with the string
theory [29–31]. There is something mysterious about this.
The actual calculations in this paper were done for a fixed
field ansatz. Dynamical delocalized brane solutions would
have been done in the same way, which had never give an
accelerating expansion of universe in the string theory.
The lower-dimensional effective theory for the intersec-

tion of two branes and branes on KK-monopole or wave
could almost have been discussed with same calculation as
in the case of dynamical delocalized branes. The moduli
potential in the lower-dimensional effective theories after
compactifications gives the flat direction. Hence, the solu-
tions we have obtained may give some moduli instabilities.
It would be necessary to introduce some corrections in the
effective theory to fix the volume and shape moduli of the
internal space. Otherwise, the moduli instabilities will
grow unless the global or local minimum of the potential.
Such an effective theory was briefly mentioned in [4], and
proposed and developed in some detail by [2,24].
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