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Pathologies in Lovelock AdS Black Branes and AdS/CFT

Tomohiro Takahashi and Jiro Soda

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

(Dated: March 7, 2012)

Abstract

We study pathologies in AdS black branes in Lovelock theory. More precisely, we examine

the conditions that AdS black branes have a naked singularity, ghost instability and dynamical

instability. From the point of view of the AdS/CFT correspondence, pathologies in AdS black

branes indicate pathologies in the corresponding CFT. Hence, in Lovelock theory, we need to be

careful when we apply AdS/CFT to various phenomena such as the shear viscosity to entropy ratio

in strongly coupled quantum field theory.

PACS numbers: 04.50.-h
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I. INTRODUCTION

It is well known that AdS black branes play a central role in the application of the

AdS/CFT correspondence to various phenomena such as condensed matter physics and

fluid dynamics [1–3]. Remarkably, the AdS/CFT correspondence holds in any dimensions.

In higher dimensions, however, a natural theory of gravity is not general relativity but

Lovelock theory [4, 5]. Thus, it is natural to consider the AdS/CFT correspondence in the

context of Lovelock theory.

The AdS/CFT correspondence in Lovelock theory has been already discussed in the

context of the shear viscosity to entropy ratio. It is conjectured that the shear viscosity to

entropy ratio η/s is larger than 1/4π, which is called the KSS bound [6]. Recently, in the

case that the dual gravitational theory is Lovelock theory, this ratio has been calculated

as η/s = (1 − 2α2)/4π, where α2 is an appropriately normalized second order Lovelock

coefficient [7]. It seems that the KSS bound is violated for a positive α2. However, when we

take into account pathologies in AdS black branes, α2 must be somewhat restricted. Indeed,

there are several works on the causality violation of AdS black branes in conjunction with

the KSS bound [8–10]. Clearly, it is important to clarify pathologies in AdS black branes.

In this paper, we consider pathologies in AdS black brane solutions in Lovelock the-

ory. First, we explain our method using analytically tractable cases in 5-dimensions and

6-dimensions. In other dimensions, we have to resort to numerical analysis. As typical

examples, we numerically study pathologies in AdS black branes in 10-dimensions and 11-

dimensions. In recent work, this issue has been investigated in [11] based on the master

equations derived by us [12]. They used near horizon analysis in the most part of their work

and alluded to the importance of the bulk geometry based on numerical results. However,

they have never given general conditions for the occurrence of pathologies. In this paper,

we explicitly present the conditions for the occurrence of pathologies. Using the conditions,

we will give detailed analysis of pathologies in Lovelock AdS black branes and discuss its

implications in AdS/CFT.

The organization of this paper is as follows. In section II, we review Lovelock theory and

explain a graphical method for constructing black brane solutions. In section III, we clarify

the conditions for avoiding a naked singularity, ghost instability and dynamical instability.

In section IV, we analytically study pathologies in AdS black branes in 5-dimensions and
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6-dimensions. In section V, we numerically examine pathologies in AdS black branes in

10-dimensions and 11-dimensions. In section VI, based on the analytical and numerical

results, we discuss implications of our findings in the AdS/CFT correspondence. The final

section VII is devoted to conclusion.

II. LOVELOCK ADS BLACK BRANES

In this section, we review Lovelock theory and introduce a graphical method for con-

structing AdS black brane solutions.

The most general divergence free symmetric tensor constructed out of a metric and its

first and second derivatives was obtained by Lovelock [4]. The corresponding Lagrangian

can be constructed from m-th order Lovelock terms

Lm =
1

2m
δλ1σ1···λmσm
ρ1κ1···ρmκm

Rλ1σ1

ρ1κ1 · · ·Rλmσm

ρmκm , (1)

where Rλσ
ρκ is the Riemann tensor in D-dimensions and δλ1σ1···λmσm

ρ1κ1···ρmκm
is the generalized totally

antisymmetric Kronecker delta defined by

δµ1µ2···µp
ν1ν2···νp

= det


δµ1
ν1

δµ1
ν2

· · · δµ1
νp

δµ2
ν1

δµ2
ν2

· · · δµ2
νp

...
...

. . .
...

δ
µp
ν1 δ

µp
ν2 · · · δµp

νp

 .

By construction, the Lovelock terms vanish for 2m > D. It is also known that the Lovelock

term with 2m = D is a topological term. Thus, Lovelock Lagrangian in D-dimensions is

defined by

L =
k∑

m=0

cmLm , (2)

where we defined the maximum order k ≡ [(D−1)/2] and cm are arbitrary constants. Here,

[z] represents a maximum integer satisfying [z] ≤ z. Taking variation of the Lagrangian

with respect to the metric, we can derive Lovelock equations

0 =
k∑

m=0

cmδ
νλ1σ1···λmσm
µρ1κ1···ρmκm

Rλ1σ1

ρ1κ1 · · ·Rλmσm

ρmκm . (3)
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Hereafter, we set c0 = (D − 1)(D − 2)λ (λ > 0), c1 = 1 and cm =

αm/
{
mλm−1

∏2m−2
p=1 (D − 2 − p)

}
(m ≥ 2) for convenience. Note that the coefficients αm

are dimensionless.

It is well known that there exist static exact solutions of the Lovelock equations (3) [13–

15]. Let us consider the following metric

ds2 = r2ψ(r)dt2 +
dr2

−r2ψ(r)
+ r2δijdx

idxj . (4)

We assume that ψ(r) is negative outside of the horizon. Substituting this metric ansatz into

Eq.(3), we can obtain an algebraic equation for ψ(r):

W [ψ] ≡
k∑

m=2

(αm
m
ψm

)
+ ψ + 1 =

µ

rD−1
, (5)

where µ is a constant of integration which is related to the ADM mass and we assume it is

positive. Note that we fixed the scale by setting λ = 1 in Eq.(5).

Now, we explain how to construct solutions using a graphical method [16, 17]. Apparently,

W must be positive. In general, there are many branches. In Fig.1, we depicted y = W [ψ]

and y = µ/rD−1 with r fixed in ψ − y plane. The intersection of the curve and the line

determines ψ once r is given. By varying r, we obtain the solution of Eq.(5). Taking a

look at the metric (4), we see that the horizon corresponds to ψ = 0. Hence, a black brane

corresponds to the branch containing ψ = 0. Next, consider the asymptotic infinity r → ∞

or y = µ/rD−1 → 0, the function ψ(r) in Fig.1 approaches ψa which is the largest negative

root of W [ψ] = 0. Thus, the curve between ψ = ψa and ψ = 0 defines a black brane solution.

III. PATHOLOGIES

In this section, we list up pathologies in Lovelock AdS black branes. In particular, we

reveal the conditions for the occurrence of pathologies.

A. Naked Singularity

In the graphical method, it is easy to find singularities. Let us recall the Kretschmann

invariant which is calculated as

RµνρλR
µνρλ = (∂2

r (r
2ψ))2 + 2(D − 2)

(∂r(r
2ψ))2

r2
+ 2(D − 2)(D − 3)ψ2 . (6)
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FIG. 1: A curve y = W [ψ] and a line y = µ/rD−1 are depicted in ψ − y plane. Note that r should

be regarded as a constant when we draw this figure. The intersection of the curve and the line

determines a solution of Eq.(5). Here, ψa is defined as the largest negative root of W [ψ] = 0.

If this invariant diverges, there exist singularities. This occurs at r = 0 and the point

where ∂rψ diverges. In fact, ∂rψ diverges when W [ψ] becomes extremal value because of a

relation ∂rψ = −(D − 1)W [ψ]/(r∂ψW ) obtained from (5). Since ∂ψW |ψ=0 = 1 > 0, if W [ψ]

is a monotonically increasing function in the region [ψa, 0], there is no naked singularity.

Fig.2-(a) corresponds to this case. However, like in Fig.2-(b), if W [ψ] has an extremal point

between ψa and 0, there exists a naked singularity. Note that the shape of W [ψ] depends

only on Lovelock coefficients αm, so whether a branch has a naked singularity or not is

determined by these constants. Since we want to avoid the naked singularity, we have to

exclude the solutions which have extrema between ψ = ψa and ψ = 0. Note that there

maybe exotic cases for which ψa does not exist. These solutions should be excluded because

they necessarily have the naked singularity.

FIG. 2: (a) Apparently, W [ψ] has no extremal point in the region [ψa, 0]. Hence, there is no naked

singularity in this case. (b) There is an extremal point. Thus, there exists a naked singularity.
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B. Ghost Instability

In Lovelock theory, the sign in front of the kinetic term in the action could be negative,

namely the ghost instability could occur. In the previous paper [12], we have shown that

there exists the ghost instability when

K[ψ] ≡ (D − 3)(∂ψW )2 − (D − 1)W∂2
ψW (7)

becomes negative. Hence, we need to check the sign of K[ψ] to check if a black brane has

the ghost instability or not.

C. Dynamical Instability

As we have shown in [12], the function W (ψ) determines if the dynamical instability of

Lovelock black branes occurs. Using the symmetry of the planar part of the metric, we can

classify metric perturbations into the scalar, vector, tensor sectors. In the absence of the

ghost instability, we can prove that there is no dynamical instability in the vector sector [12].

There exist the dynamical instability for tensor sector when

L[ψ] ≡ (D − 3)(D − 4) (∂ψW )4 − (D − 1)(D − 6)W (∂ψW )2 ∂2
ψW

+(D − 1)2W 2
{
∂ψW∂3

ψW − (∂2
ψW )2

}
, (8)

is negative [12, 16]. Similarly, there exist the dynamical instability for scalar sector, when

M [ψ] ≡ (D − 2)(D − 3)(∂ψW )4 − 3(D − 2)(D − 1)W∂2
ψW (∂ψW )2

+(D − 1)2W 2
{
3(∂2

ψW )2 − ∂ψW∂3
ψW

}
. (9)

is negative [12]. In both cases, the square of the effective speed of sound becomes negative.

This kind of instability is found in the cosmological context for the first time [18].

In order to find the dynamical instability, what we have to check is the sign of L[ψ] and

M [ψ] in the region ψa < ψ < 0. Note that these functions and ψa is independent of µ, hence

whether the dynamical instability exist or not depends only on Lovelock coefficients αm.
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IV. PATHOLOGY INSPECTION: ANALYTIC RESULTS

In this section, we analytically investigate pathologies in 5-dimensions and 6-dimensions

for which we have k = 2. In these cases, W is given by

W [ψ] =
α2

2
ψ2 + ψ + 1 , α2 6= 0 . (10)

This can be written as

W =
α2

2

(
ψ +

1

α2

)2

+ 1 − 1

2α2

(11)

from which we see that there is no solution for W = 0 if α2 > 1/2. Since there is an

extremum in the region ψ < 0, we have a naked singularity in these cases. Thus, only the

range α2 ≤ 1/2 is allowed.

For α2 ≤ 1/2, there are solutions for W = 0

ψW =
−1 ±

√
1 − 2α2

α2

. (12)

We have defined ψa as the largest negative root. In the cases 0 < α2 ≤ 1/2, the largest

negative root should be

ψa =
−1 +

√
1 − 2α2

α2

. (13)

In the cases α2 < 0, that becomes

ψa =
−1 +

√
1 − 2α2

α2

=
1 −

√
1 + 2|α2|
|α2|

. (14)

In any case, the plus sign in (12) corresponds to ψa. Thus, we do not have any naked

singularity as long as α2 ≤ 1/2.

Next, let us see if we have ghosts. To this aim, we need to look at the sign of K[ψ]. In

5-dimensions or 6-dimensions, we obtain

K =

 2(1 − 2α2) (for D = 5)

(α2ψ + 1)2/2 + 5(1 − 2α2)/2 (for D = 6)
(15)

Apparently, the condition for no naked singularity α2 ≤ 1/2 guarantees K ≥ 0. Hence,

we do not have ghosts as long as we do not have naked singularities in 6-dimensions. In

5-dimensions, for α2 = 1/2, K vanishes, which is singular. Hence, we have the condition

α2 < 1/2 in 5-dimensions.
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From now on, we check the stability of black branes in tensor and scalar sectors. The

analysis depends on the dimensions. Hence, we discuss the stability in 5 and 6 dimensions,

separately.

A. 5-dimensions

First, we discuss the stability in the tensor sector by looking at the sign of L. From the

definition (8), L can be calculated as

L = 2(1 − 2α2)
{
3α2

2ψ
2 + 6α2ψ + (1 + 4α2)

}
. (16)

We see that there exist instability for α2 < −1/4 because L[0] < 0 in this range. Then, we

consider the remaining range −1/4 ≤ α2 < 1/2. In this case, L = 0 has solutions

ψL± =
−1 ±

√
2/3

√
1 − 2α2

α2

. (17)

Comparing these solutions with ψa, we see ψa > ψL± in the range 0 < α2 < 1/2 and

ψa < 0 < ψL± in the range −1/4 ≤ α2 < 0. Thus, in the range [ψ0, 0], we always have L > 0

for 0 < α2 < 1/2 and −1/4 ≤ α2 < 0.

Next, we study the stability in the scalar sector. From the definition (9), M [ψ] is given

by

M [ψ] = 6(1 − 2α2)
(
−α2

2ψ
2 − 2α2ψ + (1 − 4α2)

)
. (18)

For 1/4 < α2 < 1/2, we have M [0] < 0 and then there is the instability. Thus, we need to

check the range α2 ≤ 1/4 in the following. It is easy to see that M = 0 have solutions

ψM± =
−1 ±

√
2
√

1 − 2α2

α2

. (19)

Comparing these solutions with ψa, we find ψ− < ψa < 0 < ψ+ for 0 < α2 ≤ 1/4, and

ψ+ < ψa < 0 < ψ− for α2 < 0. Therefore, in the range [ψa, 0], we conclude M ≥ 0 for

0 < α2 ≤ 1/4 and α2 < 0.

Combining the above results, we found that black branes in 5-dimensions have no pathol-

ogy for the range −1/4 ≤ α2 ≤ 1/4, where the trivial case α2 = 0 is included.
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B. 6-dimensions

Now, we investigate pathologies in AdS black branes in 6-dimensions. First, we check the

stability in the tensor sector. In 6-dimensions, L[ψ] becomes

L[ψ] = −α
4
2

4
ψ4 − α3

2ψ
3 + (11 − 25α2)α

2
2ψ

2 + 24α2ψ − 50α2
2ψ + (6 − 25α2

2) (20)

From this expression, we can conclude L[0] < 0 for α2 < −
√

6
5
,

√
6

5
< α2 ≤ 1

2
. Hence, in

order not to have the instability in the tensor sector, we have to choose a parameter in the

range −
√

6/5 ≤ α2 ≤
√

6/5, where α2 = 0 is a trivial case. Notice that the equation L = 0

have four solutions

ψL±± = − 1

α2

±
√

1 − 2α2

α2

(√
15 ±

√
10

)
. (21)

Here, ψL±± distinguish four possible solutions. Comparing these solutions with ψa, we find

that

ψL−+ < ψL−− < ψL+− < ψa < 0 < ψL++ (22)

for 0 < α2 <
√

6/5, and we have

ψL++ < ψa < 0 < ψL+− < ψL−− < ψL−+ (23)

for −
√

6/5 < α2 < 0. Thus, we see L > 0 in the range [ψa, 0].

Remarkably, M [ψ] can be written as

M [ψ] =
3

4

(
−4 + 10α2 + 2α2ψ + α2

2ψ
2
)2

(24)

Hence, there exists no instability in the scalar sector.

To conclude, there exists no pathology in AdS black branes in 6-dimensions as long as

we take a parameter in the range −
√

6/5 ≤ α2 ≤
√

6/5.

V. PATHOLOGY INSPECTION: NUMERICAL APPROACH

Now, we are in a position to examine the pathologies in AdS black branes numerically.

In this paper, we consider 10-dimensions and 11-dimensions because the analysis and the

results in other dimensions are similar. Our strategy is very simple. For each coefficients αm,

we search for ψa and check the sign of ∂ψW , K[ψ], L[ψ] and M [ψ] in the region ψa < ψ < 0.

The mesh size of this calculation is ∆αm = 0.05. We have checked our numerical method

can reproduce the analytical results in 5-dimensions and 6-dimensions.
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A. 10-dimensions

In 10-dimensions, the Lovelock black holes can be characterized by the functional

W [ψ] =
α4

4
ψ4 +

α3

3
ψ3 +

α2

2
ψ2 + ψ + 1 . (25)

Substituting this expression into ∂ψW [ψ], (7), (8), and (9), we can find forbidden region

in 3-dimensional parameter space {α2, α3, α4}. In Fig.3, we plot forbidden regions due to

various reasons in α2 −α3 plane with α4 = −1.5, 0, 0.5, respectively. Interestingly, there is

a region where both scalar and tensor sector instability exist. The shaded region represents

an allowed region.

In Fig.3, when α4 = 0, the border between the allowed region and the unstable region

due to the scalar sector instability can be obtained from the condition M [0] = 0 as

α3 =
3

2
α2

2 −
3(D − 2)

2(D − 1)
α2 +

(D − 2)(D − 3)

2(D − 1)2
(26)

Similarly, the border between the allowed region and the unstable region due to the tensor

sector instability can be determined by the condition L[0] = 0 as

α3 =
α2

2

2
+

D − 6

2(D − 1)
α2 −

(D − 3)(D − 4)

2(D − 1)2
. (27)

These analytical results are in good agreement with our numerical results. Thus, we see

that these dynamical instabilities occur near the horizon because ψ = 0 corresponds to the

horizon. These results are consistent with those obtained in [11]. Note that M [0] and L[0]

are determined by α2 and α3 and so these borders are independent of α4 if instabilities occur

near the horizon. However, comparing three figures in Fig.3, the region where black holes are

unstable under scalar perturbations for α4 = −1.5 is very different from that for α4 = 0, 0.5.

This suggests that these instabilities occur away from the horizon. Therefore, α4 affects the

behavior of M [ψ] and change the allowed region in α2 − α3 plane. Indeed, this fact can be

understood more easily from Fig.4. In Fig.4, we plot forbidden regions in α2−α4 plane with

α3 = −0.2, 0, 0.5, respectively. In these figures, we see vertical stripes for negative α4. For

example, in Fig.4 with α3 = 0, there are three vertical lines: α2 ' −1, α2 ' 0.5, α2 ' 0.75.

These lines can be obtained from L[0] = 0 as

α2 = − D − 6

2(D − 1)
±

√
2α3 +

5D2 − 40D + 84

4(D − 1)2
(28)
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and from K[0] = 0 as

α2 =
D − 3

D − 1
. (29)

This agreement between the analytical and numerical results is remarkable. However, when

α4 becomes large, the stripe structure collapses. This suggests instabilities are not originated

from the near horizon geometry. It turned out that α4 is a relevant parameter for AdS black

branes.

B. 11-dimensions

In 11-dimensions, the key functional is given by

W [ψ] =
α5

5
ψ5 +

α4

4
ψ4 +

α3

3
ψ3 +

α2

2
ψ2 + ψ + 1 . (30)

Again, substituting this expression into ∂ψW [ψ], (7), (8), and (9), we can find forbidden

region in 4-dimensional parameter space {α2, α3, α4, α5}. Of course, it is a formidable task

to visualize such a higher dimensional space. Hence, we look at several sections in the

parameter space. In Fig. 5, we plot forbidden regions in α2−α5 plane with (α3, α4) = (0, 0),

α3 −α5 plane with (α2, α4) = (0, 0) and α4 −α5 plane with (α2, α3) = (0, 0), respectively.

From these figures, we see that α5 affects the allowed ranges of α2, α3 and α4. In

particular, in the case of α3−α5 and α4−α5 planes, the allowed region is finite. It indicates

that AdS black branes in Lovelock theory are pathological in most cases.

VI. IMPLICATIONS IN ADS/CFT

Let us discuss implications of our results in the AdS/CFT correspondence.

With the master equation in [16], the shear viscosity to entropy ratio η/s has been

calculated as

η

s
=

1

4π

(
1 − D − 1

D − 3
α2

)
through AdS/CFT correspondence [7]. Note that this depends only on α2. Hence, it seems

that α3, α4 and α5 do not affect this value. However, as our numerical calculations have

11



shown, α3, α4 and α5 affect the allowed region of α2. This fact was also noticed in [11]. In 5-

dimensions and 6-dimensions, the KSS bounds are lowered to η/s = 1/8π and η/s ' 0.59/4π,

respectively. Interestingly, in 10-dimensions , we see from Fig.3 that a positive α2 is not

allowed for any α3 if α4 = −1.5. This means that the bound of η/s must be larger than

1/4π if α4 = −1.5. As another example, we can take α4 = 0 and α3 = 0.5, then the maximal

value of α2 is about −0.1. While if we take α4 = 0.5, the maximal α2 becomes 0.15 at which

α3 = 0.2. Thus, it turned out that the KSS like bound is sensitive to Lovelock coefficients.

It is also possible to apply our results to holographic superconductors [19]. There, the

universality for the ratio between the frequency dependent conductivity and the critical

temperature is found [20]. In Gauss-Bonnet theory, it is pointed out that this universality

in holographic superconductors is violated for a large α2 [21]. However, it is probable that

this violation is due to the pathologies discussed in this paper. It would be interesting to

extend holographic superconductors to Lovelock theory to clarify this point.

VII. CONCLUSION

We have discussed the pathologies in AdS black branes in Lovelock theory, analytically in

5-dimensions and 6-dimensions, and numerically in 10-dimensions and 11-dimensions. We

obtained the general conditions for Lovelock coefficients αm that these black branes have the

naked singularity, the ghost instability, and the dynamical instability. It turned out that the

dynamical instability could occur away from the horizon in contrast to a naive expectation.

Thus, α4 and α5 also control the allowed region of α2, and consequently changes the lower

limit of η/s. We have also pointed out that the pathologies we have found could affect the

interpretation of higher dimensional holographic superconductors.

In this paper, we did not consider the causality violation discussed in [8–11]. It is easy to

take into account the causality violation based on the master equations [12]. Then, we could

further restrict the allowed region for α2. It is also straightforward to extend our analysis

to other dimensions using the master equations [12].
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FIG. 3: We plot allowed and forbidden regions in α2−α3 plane with α4 = −1.5, 0, 0.5 respectively.

The shaded region represents an allowed region.
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The shaded region represents an allowed region.
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