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The authors model the emergence processes of road obstacles, such as fallen objects on roads, the deformation and destruction of
pavements, and the damage and destruction of road facilities, as counting processes. Especially, in order to take into account the
heterogeneity of the emergence risk of a variety of road obstacles, the authors model a mixture Poisson process in which the arrival
rate of road obstacles is subject to a probability distribution. In detail, the authors formulate a Poisson-Gamma model expressing
the heterogeneity of the arrival rate as a Gamma distribution and formulate the management indicator of the emergence risk of
road obstacles. Then, a methodology is developed in order to design a road patrol policy that can minimize the road obstacle risk
with a limited amount of budget. Furthermore, the authors empirically verify that it is possible to design road patrol policy based
on the emergence risk of actual road obstacles with the proposed methodology, by studying the cases of the application of the
methodology to general national roads.

1. Introduction

Road administrators must make efforts to keep roads in a
sound condition. Particularly, fallen objects on roads and
the deformation or destruction of pavements have the risk
of inducing a vehicle-damaging accident. Accordingly, road
administrators are required to patrol roads constantly and
remove fallen objects on roads and repair the deformation of
pavements. On the other hand, amid the retrenched finance
due to the dwindling birthrate and aging society, it is impera-
tive to streamline administrative tasks also in the field of the
maintenance and repair of road facilities. In the road admini-
stration costs, the proportion of road patrol costs is not low,
and so it is necessary to discuss road patrol methods while
considering efficiency as well as safety.

In general, road patrol is carried out at certain intervals.
Therefore, the costs for road patrol are fixed, no matter
whether or not there are fallen objects or damages on roads.
On the other hand, the probability of discovering a fal-
len object or damage on roads in a unit period varies signi-
ficantly according to road sections. As the frequency of road
patrol is increased, it is possible to respond more swiftly to
the emergence of an event that would degrade the safety

and traffic flow on roads, and the risk of leaving a road
obstacle on a road for a long time. Meanwhile, frequent road
patrol results in the increase in patrol expenditures and the
augmentation of social costs. Like this, there is a trade-off
relation between the obstacle emergence risk and the road
patrol costs, and so road administrators need to set up a goal
for controlling the obstacle emergence risk and then design
road patrol policies so as to minimize the road patrol costs.

The emergence processes of road obstacles can be
modeled as counting processes in which each event occurs
randomly. In general, the emergence of fallen objects and the
deformation and damage of pavements can be modeled as
Poisson processes. However, Poisson processes are restricted
by the assumption that the mean value is equal to its variance
[1]. The actual emergence processes of road obstacles do
not always have such a characteristic, and so more flexible
modeling is necessary. In this circumstance, this paper pro-
poses mixture Poisson processes in which it is possible
to take into account the heterogeneity of the arrival rates
of road obstacles [2]. In this proposal, arrival rates are
expressed by a Poisson model, and the emergence risk of
road obstacles is expressed by using the Poisson Gamma
model in which the heterogeneity of the arrival rates is
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described by the Gamma distribution, and then risk control
indicators are formulated. Furthermore, this paper proposes
a methodology for designing a road patrol policy that can
minimize the road obstacle risk with a limited amount
of budget. Here, as the indicator for controlling the road
obstacle risk, the authors focus on the number of road
obstacles discovered during patrol (hereinafter called the
number of road obstacles). In addition, as factors in the
design of road patrol policy, this paper discusses the target
road section for a single patrol (basic management section),
the patrol frequency in each basic management section,
and the road section where intensive patrol is conducted
(intensive management section). However, the number of
possible patrol policy designed by combing these factors
is enormous, and many of them are not feasible. In this
circumstance, this paper introduces a practical methodology
for selecting road patrol policy that can reduce the road
obstacle risk with a limited amount of budget among those
suggested by road administrators.

2. Basic Ideas of This Study

2.1. Overview of Conventional Study. Road patrol is carried
out with the purpose of removing obstacles left on roads
and swiftly responding to the damage or destruction of road
facilities and so forth. The emergence processes of such
road obstacles are random phenomena, and such emergence
processes can be modeled as probabilistic processes. Also in
the field of civil engineering, there have been many researches
that modeled random arrival events using Poisson processes
[2]. In Poisson processes, the arrival rate of the analysis-
target event is expressed by a deterministic constant, and
so there is an advantage that its mathematical handling is
easy. However, there are a variety of road obstacles, and it
is not true that all events occur with the same arrival rate. In
addition, Poisson processes are restricted by the assumption
that the expectation of the number of road obstacles during
a cycle period is equal to its variance. Especially, when the
expectation of road obstacles is very small, the variance is
also very small, and then the event of the emergence of a road
obstacle becomes a rare phenomenon. Namely, there emerges
an overdispersion problem that the variance of the number
of road obstacles is larger than its expectation. In order to
solve such an overdispersion problem, it is necessary to use
the mixture Poisson processes that allow the heterogeneity of
the arrival rate of road obstacles.

The research into mixture Poisson processes were pio-
neered by Fisher [3], and then various modifications were
attempted [4, 5]. Poisson processes have been applied to the
evaluation of operational risk and accident risk. In general,
the model structure for a mixture Poisson process becomes
extremely complicated, because an event probability distri-
bution and an event interval probability distribution are
combined. However, the Poisson-Gamma model used in
this study has the simplest model structure among mixture
Poisson process models and has the advantage that it can
express a model theoretically. Another advantage is that it is
possible to readily obtain indicators for controlling the road

Length of the 1st cycle: z
(Cycle length)

2nd cycle: z

Emergence of road
obstacle

Removal

n(τB) = n

τA τ1 τ2 τn τB

Figure 1: Emergence process of road obstacles.

obstacle risk. For these reasons, the Poisson-Gamma model is
employed in this study, to describe the emergence processes
of road obstacles.

The road patrol frequency is closely related to the obstacle
emergence risk. By decreasing the road patrol frequency, it
is possible to reduce the patrol costs. On the other hand,
when road obstacles are ignored for a long time, the obstacle
emergence risk augments, causing traffic accidents. Like this,
there exists a trade-off relation between the patrol costs and
the obstacle emergence risk, via the road patrol frequency. In
this circumstance, this paper models the emergence processes
of road obstacles as mixture Poisson processes and proposes
a methodology for designing road patrol policy with the
purpose of curtailing the patrol costs effectively. As far as the
authors know, there have been no researches that discussed
rational road patrol policy based on empirical measurements
of road obstacles, except this study. In addition, the Poisson-
Gamma model used in this study is the same as that proposed
by previous studies [6, 7], although minor modifications are
made. However, with regard to the risk control indicators
proposed in this study, there have been no researches, as far
as the authors know.

2.2. Road Patrol Scheme. Let us model the emergence pro-
cesses of road obstacles. Firstly, a target road is divided into
several road sections. Then, suppose that the time-series
data about the frequency of the road obstacle emergence in
each road section is available. As shown in Figure 1, road
patrol is carried out in each road section at the same intervals
along the time axis. Time τ represents actual time on a
calendar. Hereinafter, actual time is called “time.” At the
times τA, τB, . . . in the figure, road patrol is started. The
period from a certain patrol time to the next patrol time is
called “cycle.” The time interval between the contiguous
patrol times is called “cycle length.” The cycle length in the
figure is z. When road patrol is conducted and a road obstacle
is discovered, the obstacle is removed immediately. On the
other hand, a road obstacle emerges at each of the times
τ1, τ2, . . .. However, road administrators cannot observe the
time at which a road obstacle emerged. By conducting road
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patrol at time τB, it is possible to observe the road obstacles
that emerged during the cycle length [τA, τB), as shown in
Figure 1.

Here, suppose that a road obstacle follows the Poisson
arrival with a certain arrival rate λ. In Figure 1, the number
of road obstacles that emerged on a certain road section
during the period from time τA to time t is expressed by a
counting process n(t). Obviously, n(τA) = 0 at the initial
time τA. There emerged n road obstacles by time τB, and the
n + 1th obstacle did not emerge. From time τB, the second
cycle starts with the initial time being τB. In the case where
a road obstacle follows the Poisson arrival, the time of the
emergence of the first road obstacle in the second cycle does
not depend on the time of the emergence of the last road
obstacle in the first cycle. Namely, the emergence of a road
obstacle is not dependent on the history of road obstacle
emergence.

3. Poisson Gamma Model

3.1. Mixture Poisson Process. In Poisson processes, it is as-
sumed that one kind of event occurs repeatedly with the same
arrival rate. However, road obstacles include various kinds of
fallen objects, road deformation, and damage and destruc-
tion of road facilities, and it is hard to believe that all of
these obstacles emerge with the same arrival rate. It is rather
appropriate to consider a phenomenon in which a variety of
road obstacles emerge randomly. Suppose that many types
of road obstacles emerge with different arrival rates and the
arrival rate in a certain period is subject to a probability
distribution. Namely, suppose that the arrival rates of road
obstacles are subject to a probability distribution for each
target road section. At the same time, suppose that road
obstacles emerge in accordance with Poisson processes for
each road section. The Poisson process in which arrival rates
are subject to a probability distribution is called a “mixture
Poisson process.” By utilizing mixture Poisson processes, it is
possible to remove the constraint condition that expectation
is equal to variance in Poisson processes. Accordingly, it
is possible to model a more flexible counting process.
With such a mixture Poisson process, the heterogeneity of
arrival rates is expressed by a Gamma distribution, and
the event emergence is described by a Poisson process
model. The Poisson-Gamma model has the simplest model
structure among mixture Poisson models, and this model
can be expressed theoretically. Furthermore, this model has
a characteristic that the number of road obstacles emerging
in a certain period of observation can be expressed by a
negative binomial distribution. Therefore, it is possible to
derive readily the indicator for controlling the road obstacle
risk.

In the Poisson-Gamma model, the number of road ob-
stacles observed in a certain unit period is expressed by a
probability distribution. However, in the data obtained after
road patrol, observation period varies according to road
sections. Moreover, in order to discuss road patrol frequency,
it is necessary to model the effects of patrol cycle on the
obstacle emergence risk. In this circumstance, the authors

propose a Poisson-Gamma model that explicitly considers
patrol cycle (observation period). In addition, in order to
secure the operability of the risk control indicators, the arri-
val rate distribution is expressed by a Gamma distribution
with mean 1.

3.2. Formulation of the Model. Assume that the arrival rate
of a road obstacle in a road section i (i = 1, . . . ,N) is subject
to a probability distribution function F(εi), and suppose that
the arrival rate λi > 0 is one actual value. The arrival rate λi is
modeled as follows:

λi = μiεi = exp
(
xiβ

′)εi, (1)

where μi = exp(xiβ′) is the average arrival rate of road obs-
tacles in road section i and is expressed by using the chara-
cteristic xi of road section i. In addition, εi is the probability
error term being subject to a Gamma distribution with mean
1 and variance φ−1. The Gamma distribution is defined in
the range [0,∞), and an exponential function regarding the
weighted sum of explanatory variables is used in the right-
hand side, and so it is guaranteed that with regard to arbi-
trary explanatory variables and the probability error term,
the right-hand side of (1) is positive. Since the mean of the
probability error term εi is 1, the expected arrival rate E[λi]
can be expressed by the following equation:

E[λi] = exp
(
xiβ

)
. (2)

In general, the probability density function f (εi : α,β) of the
Gamma distribution G(α,β) can be defined as follows:

f
(
εi : α,β

) = 1
βαΓ(α)

εα−1
i

(

− εi
β

)

. (3)

The mean of the Gamma distribution G(α,β) is μ = αβ, and
the variance is σ2 = αβ2. Therefore, the probability density
function f (εi : φ,φ−1) of the Gamma distribution with mean
1 and variance 1/φ can be expressed as follows:

f
(
εi : φ,φ−1) = φφ

Γ
(
φ
) ε

φ−1
i exp

(−φεi
)
. (4)

Here, assume that road obstacles emerge with the arrival rate
λi. At this time, when road patrol is carried out with cycle
zi, the conditional probability of the discovery of ni road
obstacles in road section i can be expressed by the following
Poisson distribution:

Po(n(zi) = ni | λi) = (λizi)
ni

ni!
exp(−λizi). (5)

Furthermore, when the arrival rate λi follows the Gamma
distribution (4), the marginal probability of the discovery
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of ni road obstacles in road section i with cycle zi can be
expressed by the following equation:

P(n(zi) = ni)

=
∫∞

0
Po(n(zi) = ni | λi) f

(
εi : φ,φ−1)dεi

=
∫∞

0

φφ

Γ
(
φ
)

(λizi)
ni

ni!
exp(−λizi)εφ−1

i exp
(−φεi

)
dεi

= φφ

ni!Γ
(
φ
)
∫∞

0

(
μizi

)ni εni+φ−1 exp
{−(μizi + φ

)
εi
}
dεi.

(6)

Here, when ui = (μizi + φ)εi is substituted into the equation
and the variable of the probability density function is chang-
ed, the following expression can be obtained:

∫∞

0

(
μizi

)ni ε
ni+φ−1
i exp

{−(μizi + φ
)
εi
}
dεi

=
∫∞

0

(
μizi

)ni
(
μizi + φ

)ni+φ u
φ+ni−1
i exp(−ui)dui

= Γ
(
φ + ni

)(
μizi

)ni
(
μizi + φ

)ni+φ .

(7)

Therefore, the marginal probability of the discovery of ni
(ni = 0, 1, 2, . . .) road obstacles in road section i with cycle
zi can be expressed by the following equation:

P(ni(zi) = ni) =
(

φ

μizi + φ

)φ(
μizi

μizi + φ

)ni Γ
(
φ + ni

)

ni!Γ
(
φ
) . (8)

Hereinafter, the probability distribution model (8) is called
the Poisson-Gamma model. In addition, when pi = φ/(μizi +
φ) is substituted, (8) becomes as follows:

P(ni(zi) = ni) = p
φ
i

(
1− pi

)ni Γ
(
φ + ni

)

ni!Γ
(
φ
)

=
⎛

⎝
φ + ni − 1

ni

⎞

⎠p
φ
i

(
1− pi

)ni ,

(9)

where Γ(φ + ni) = (φ + ni − 1) · · ·φΓ(φ), and it can be ex-
pressed as follows:

⎛

⎝
φ + ni − 1

ni

⎞

⎠ =
(
φ + ni − 1

)(
φ + ni − 2

) · · ·φ
ni!

. (10)

In addition,

P(ni(zi) = 0) = p
φ
i . (11)

Namely, the Poisson-Gamma model (9) can be expressed
as a negative binomial distribution with probability pi. In
addition, the mean number of road obstacles E[ni | zi] and
the variance V[ni | zi] with cycle zi can be expressed by the
following equations:

E[ni | zi] = μizi, (12a)

V[ni | zi] = μizi
(
μizi + φ

)

φ
. (12b)

3.3. Estimation Method of the Model. By conducting road
patrol, it is possible to obtain the information on road ob-
stacles. Suppose that a total of K patrol data samples have
been obtained after road patrol. The information e j of the
patrol sample j ( j = 1, . . . ,K) is represented by

el =
(
n j , z j , xi( j)

)
, (13)

where i( j) denotes the code number of the target road section
i of the data of the patrol sample j. In addition, n j , z j , and
xi( j) represent the number of observed road obstacles, the
cycle of road patrol, and the characteristic vector of the road
section i( j), respectively.

In the Poisson-Gamma model (9), unknown parameters
are β and the dispersion parameter is φ. At this time, assume
that the actual measurement information e = {e j ( j = 1,
. . . ,K)} of the patrol sample j ( j = 1, . . . ,K) has been ob-
tained. The log likelihood function of the Poisson-Gamma
model can be expressed by the following equation:

ln
{
L
(
β,φ

)
: e
}

=
K∑

j=1

⎧
⎨

⎩ln

⎡

⎣
Γ
(
φ + n j

)

Γ
(
φ
)

⎤

⎦ + n j ln
(
μi( j)z

j
)

−
(
n j + φ

)
ln
(
μi( j)z

j + φ
)

+ φ lnφ − lnn j !

⎫
⎬

⎭.

(14)

Here, there is the following relation regarding the gamma
function:

ln

⎧
⎨

⎩

Γ
(
φ + n j

)

Γ
(
φ
)

⎫
⎬

⎭ =
n j−1∑

k=0

ln
(
φ + k

)
. (15)

Therefore, the log likelihood function can be converted as
follows:

ln
{
L
(
β,φ

)
: e
}

=
K∑

j=1

⎧
⎨

⎩

n j−1∑

k=0

ln
(
φ + k

)
+ n j ln

(
μi( j)z

j
)

−
(
n j + φ

)
ln
(
μi( j)z

j + φ
)

+ φ lnφ − lnn j !

⎫
⎬

⎭,

(16)

where

μi( j) = exp
(
xi( j)β

′
)
. (17)

By using the log likelihood function (16), it is possible to
obtain the maximum likelihood estimates of the parameters
β and φ of the Poisson-Gamma model by means of the
maximum-likelihood method. That is, the maximum likeli-
hood estimate of the parameter β that maximizes the log
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likelihood function (16) is calculated as the parameter β̂ =
(β̂1, . . . , β̂M) that satisfies the following condition:

∂ ln
{
L
(
β̂ : e

)}

∂βm
= 0 (m = 1, . . . ,M). (18)

The optimization condition is Mth degree simultaneous
nonlinear equations, which can be solved by using the seq-
uential iteration method based on the Newton method. Fur-
thermore, the estimator Σ̂(β̂) of the asymptotic covariance
matrix of the parameter can be expressed by the following
equation:

Σ̂
(
β̂
)
=
⎡

⎣
∂2 ln

{
L
(
β̂ : e

)}

∂β∂β′

⎤

⎦

−1

, (19)

where the right-hand side of (19) is the inverse matrix of the
M ×M Fisher information matrix whose (l,m)th element is
∂2 ln{L(β̂ : e)}/∂βl∂βm.

4. Model for Controlling the Risk of
Obstacle Emergence

4.1. Purpose in Risk Management. As the indicator for risk
management, the authors propose the number of road
obstacles. The risk management indicator can be defined for
each road section or each route. Here, the risk management
indicators are defined for each road section i (i = 1, . . . , I).
Next section defines the distribution of the number of road
obstacles discovered during road patrol, while defining the
expectation of the number of discovered road obstacles and
the VaR index. If the emergence of road obstacles follows
a probabilistic process, the number of road obstacles dis-
covered during road patrol is subject to a probability distri-
bution. In the case where risk management about the num-
ber of discovered road obstacles is conducted under a cer-
tain confidence level, it is necessary to introduce the VaR
index that takes into account the variance of the number
of discovered road obstacles. The above can be discussed
with a statistic method using the mixture Poisson process
model. However, some road sections have outstanding risk of
road obstacle emergence due to the local road condition or
environmental condition, compared with the statistical risk
level. For coping with such road sections, it is necessary to
conduct intensive risk management, such as the installation
of monitoring cameras. For controlling the risk of road
obstacle emergence, it is also important to extract such road
sections that need intensive risk management. This issue is
also discussed in this chapter.

4.2. Number of Road Obstacles. Suppose that patrol is con-
ducted on the road section i (i = 1, . . . , I) at the zi intervals.
At this time, the probability of the discovery of ni (ni = 0,
1, . . .) road obstacles can be expressed by the following nega-
tive binomial distribution, based on (9). The expected num-
ber E[ni | zi] (12a) is an intuitively understandable index.
However, the expected number is defined as the expectation

of the number of road obstacles observed during repeated
patrol, and this number does not mean the number of actu-
ally observed road obstacles. It is probable that the number of
road obstacles observed in each patrol cycle will exceed E[ni |
zi]. In order to control the road obstacle risk, it is desirable to
use a management indicator that can explicitly consider the
probability distribution of the number of road obstacles.
Accordingly, let us formulate the VaR (Value at Risk) index
as an indicator for controlling the risk of road obstacle emer-
gence. Letting zi represent the patrol cycle length, the prob-
ability that the number of road obstacles observed during
patrol will exceed an allowable level (hereinafter called
risk management limit) Ui can be expressed by the following
equation:

P
(
ni ≥ Ui | zi

)
=

∞∑

ni=[Ui]
NB(ni : zi), (20)

where [Ui] represents the smallest integer among the integers
larger than Ui. Figure 2 shows the probability distribution of
the number of road obstacles, the expected number of road
obstacles, and the risk management limit. The number of
obstacles, which is the random variable of this case, is dis-
crete, and so the sum ω of the length of line segments (pro-
babilities) in the region of ni ≥ α in the figure (dashed lines)
means the probability that the number of road obstacles ob-
served during patrol exceeds the specified risk management
limit: Ui = α. Since there is uncertainty in the process of the
emergence of road obstacles, the number of road obstacles
observed during patrol does not always meet a specified
management limit. The probability ω is the index indicating
the risk of obstacle emergence and called the obstacle emer-
gence confidence level. Here, let the following equation de-
fine the VaR index regarding the number of road obstacles:

VaRα
ω(zi) = arg max

Ui

{Ui | P(ni ≥ Ui | zi) ≤ ω}, (21)

where ω is the obstacle emergence confidence level, zi is the
patrol cycle, and arg is the symbol for specifying Ui that max-
imizes the right-hand side of (21). In addition, the super-
script α indicates the VaR index regarding the number of
road obstacles. Here, the set Ωω(Ui) is defined as follows:

Ωω

(
Ui

)
=
{
zi | VaRα

ω(zi) ≤ Ui

}
. (22)

The set Ωω(Ui) represents “the set of patrol cycle with which
it is possible to keep the number of road obstacles below
the risk management limit Ui with the obstacle emergence
confidence level ω.” Like this, the risk of road obstacle
emergence can be expressed by using the two parameters: the
confidence level ω and the risk management limit Ui. The
confidence level corresponds to the significance level in
statistics, and ω = 0.05 or 0.01 is adopted in general. For the
risk management limit, unacceptable specific quantity (the
number of obstacles in this case) is specified. Needless to
say, lowering the confidence level or risk management limit
means adopting a stricter road patrol policy. Actually, road
administrators can determine the optimum patrol cycle with
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VaR0.05
α(10)

E[ni|zi] = 1.5369

0 1 2 3 4 5 6 · · ·

0.3401

0.2672

0.1703

0.1
0.0564

0.0309

Number of road obstacles: ni

Expected number of road obstacles:

α

Figure 2: Distribution of road obstacle emergence.

the above equation, by specifying the confidence level and
risk management limit. The expected number E[ni | zi] is
identical to the VaR value VaRα

0.5(zi) whose confidence level
is equal to 0.5. According to the definition of the VaR index,
when ω < 0.5, E[ni | zi] < VaRα

ω(zi).

4.3. Extraction of Intensive Management Sections. Suppose
that road patrol is carried out Li times with the cycle zi, for
the road section i (i = 1, . . . , I). Let nlii represent the number
of road obstacles discovered during the lith road patrol
(li = 1, . . . ,Li). In addition, let ni = (n1

i , . . . ,nLii ) denote
the observation sample vector regarding the number of road
obstacles discovered in the Li-time patrol. At this time, there
is a possibility that the number of road obstacles will be
larger than the average number of road obstacles estimated
by the Poisson-Gamma model. In a road section where
such an abnormal value is obtained, the road environment
condition unique to said road section may influence the risk
of obstacle emergence. For such road sections, it is necessary
to conduct not only daily road patrol but also intensive road
obstacle management. In this study, a road section where the
arrival rate of road obstacles is abnormally high is called an
intensive management section. In order to extract intensive
management sections, it is necessary to check whether the
arrival rate of road obstacles in the population of the target
road sections is significantly different from the arrival rate in
the extracted road section. The discussion on the difference
between a specific sample and the reference population in
probability characteristics has been well developed as the
credibility theory in the field of non-life-insurance theory.
This study evaluates the necessity of the intensive manage-
ment of road sections, with a statistical method based on the
credibility theory.

As mentioned above, in the road section having the
characteristic xi with the patrol cycle zi, the expected number
of road obstacles E[ni | zi] can be expressed by the following
equation:

E[ni | zi] = exp
(
xiβ

′)zi. (23)

On the other hand, the sample meanXi∗ is defined as follows,

using the number of road obstacles n
li∗
i∗ (li∗ = 1, . . . ,Li∗)

measured in the Li-time patrols in the target road section i∗:

Xi∗ =
∑Li∗

li∗=1n
li∗
i∗

Li∗
. (24)

At this time, there is the following relation with regard to the
sample mean Xi∗ :

E
[
Xi∗

]
= L−1

i∗

Li∗∑

li∗=1

E
[
n
li∗
i∗ | zi∗

]
= E[ni∗ | zi∗]. (25)

Therefore, it can be understood that the sample mean Xi∗

is identical to the unbiased estimator of E[ni∗ | zi∗]. The
sample variance also can be expressed as follows, using the
variance V[ni | zi] of the negative binomial distribution in
the same way:

V
[
Xi∗

]
= L−2

i∗

Li∗∑

li∗=1

V
[
n
li∗
i∗ | zi∗

]
= L−1

i∗ V[ni∗ | zi∗]. (26)

These two equations indicate that as the number of times of
patrol Li∗ becomes somewhat large, the variance of the sam-
ple mean Xi∗ approaches 0 and Xi∗ converges to E[ni∗ | zi∗],
making stochastic convergence. Therefore, it is possible to
statistically judge whether or not road obstacles emerge while
following the Poisson-Gamma model, that is, whether or not
road obstacles emerge in a normal manner, by specifying a
probability distribution of the sample mean and evaluating
whether the predetermined risk level p (e.g., p = 0.9) satisfies
the following relation:

Pr
(∣∣
∣Xi∗ − E[ni∗ | zi∗]

∣∣
∣ ≤ y(i∗)

)
≥ p. (27)

Here, the central limit theorem guarantees that the probabil-
ity distribution of the sample mean Xi∗ becomes a normal
distribution as a whole when the number of times of patrol
is large. Furthermore, when the normalization constant Z is
defined as follows:

Z = Xi∗ − E[ni∗ | zi∗]
(√

Li∗
)−1

V[ni∗ | zi∗]
, (28)

the normalization constant Z is subject to the standard nor-
mal distribution N(0, 1). Therefore, (27) can be expressed as
follows:

Pr

(

|Z| ≤ y(i∗)

(Li∗)−1V[ni∗ | zi∗]

)

= Pr
(
|Z| ≤ yp(i∗)

)
≥ p.

(29)

The cumulative distribution function of the standard normal
distribution is available in the form of a table of figures in
a lot of literatures, and so it is possible to uniquely specify
yp(i∗) in the above equation. When the following condition
is not satisfied with a given risk level p,

|Z| ≤ yp(i∗), (30)

it can be concluded that the road section concerned has
outstanding characteristic regarding the emergence of road
obstacles compared with other road sections.
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Table 1: Route data.

Route A1 and A2 B1 and B2 C1 and C2

Route length [km] 82.6 88.3 93.6

Number of sample 3,820 3,296 4,140

Number of fallen objects 3,501 3,079 3,817

Number of average fallen objects 8.48 6.97 8.16

5. Empirical Study

5.1. Outline of the Application Cases. In this study, the
authors analyze the database of road patrol conducted
on general national road, Route A (target section length:
82.6 km), Route B (88.3 km), and Route C (93.6 km). This
database has accumulated the data of daily and night-time
patrols from April 1, 2009 to March 31, 2010. The daily
logs of road patrol record not only the type and number of
road obstacles but also the routes and road sections where
road obstacles were discovered and the patrol times. As
tabulated in Table 1, the three routes, which are the targets
of the empirical analysis, are composed of 413, 442, and
468 unit sections, respectively. Here, the length of one road
section is 200 m. In addition, as concrete road obstacles,
fallen objects and pavement abnormalities are focused on.
The road obstacles that emerged on the three national routes
during the analysis-target period include 3,501, 3,079, and
3,817 samples on each route.

5.2. Estimation of the Poisson-Gamma Model. In order to
model the emergence processes of road obstacles, the Poi-
sson-Gamma model was estimated. For this estimation,
11,256 sample data of normal patrol were available. As ex-
planatory variables, the following parameters were adopted.
Namely, the estimation equation can be expressed as follows:

λi = exp
(
β1 + β2x

2
i + β3x

3
i + β4x

4
i + βix

5
i

)
εi, (31)

where β1, β2, β3, β4, β5 represent parameters, x2
i represents

large-size automobile traffic volume in the day time, x3
i

denotes travel speed, x4
i represents the average amount of

rutting depth, and x5
i represents roadside classification. β1

is a constant term. In this case, the arrival rate λi of the
emergence of road obstacles is composed of the common
characteristic β1 in all road sections, the common character-
istic β2x

2
i + β3x

3
i + β4x

4
i + βix

5
i in the same environmen-

tal condition, and the heterogeneous characteristic εj of
each road section. The first-order optimization condition
of (18) regarding the Poisson-Gamma model is given
as simultaneous nonlinear equations, and the maximum
likelihood estimator of unknown parameters was calculated
with the Newton-Raphson method. The estimation results
and t-value are shown in Table 2. This table tabulates the
estimation results.

Let us obtain the cumulative discovery probability of
road obstacles in target area of Routes A, B, and C, using
the above-estimated Poisson-Gamma model. By analyzing
the relation between the cumulative discovery probability
and the patrol cycle, it is possible to analyze how the
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Figure 3: Cumulative discovery probability in the Poisson-Gamma
model.

probability of the discovery of road obstacles in the route
or road section concerned changes due to the patrol cycle.
The cumulative discovery probability can be obtained by
calculating the probability of the discovery of one or more
road obstacles under a given patrol cycle. This is equivalent to
the subtraction of the probability that road obstacles do not
emerge from the total probability 1. Namely, the cumulative
probability of the discovery of road obstacles can be defined
as follows:

P(ni(zi) ≥ 1) = 1−
I∏

i=1

P(ni(zi) = 0). (32)

The distribution of the number of road obstacles based
on the Poisson-Gamma model can be expressed by (8).
Therefore, the cumulative emergence probability of road
obstacles under the Poisson-Gamma model can be expressed
by the following equation:

PNB(ni(zi) ≥ 1) = 1−
I∏

i=1

(
φ

μizi + φ

)φ

. (33)

Figure 3 shows the results of the analysis of the relation
between patrol cycle and the cumulative discovery prob-
ability of road obstacles based on the estimated Poisson-
Gamma model. Each characteristic parameter is adopted
median value. As for travel speed, its median values are
shown in the figure. The advantage in adopting the Poisson-
Gamma model is that it is possible to estimate the risk of road
obstacle emergence explicitly, using the variance parameter φ
by taking into account the variance of arrival rate.

5.3. Analytical Results. In order to determine the optimum
patrol cycle of the target route for road patrol, the risk
management indicator for the patrol cycle mentioned and
the optimum patrol cycle for the risk management limit are
calculated for all road sections.
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Table 2: Estimation results of the Poisson-Gamma model.

Poisson-Gamma model

β1 β2 β3 β4 β5 φ

Maximum likelihood estimate −4.82 8.51× 10−5 1.57× 10−2 9.49× 10−3 0.11 3.20

(t-value) (−15.51) (14.56) (17.25) (4.22) (3.99) (20.22)

Log likelihood −18,325

AIC 36,663
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Figure 4: Risk management limit (number of road obstacles) and
the minimum patrol cycle (confidence level ω = 0.01).

Firstly, the VaR index regarding the number of road
obstacles VaRα

ω(zi) (refer to (21)) was obtained, based on
the Poisson-Gamma model. The VaR index can be calculated
for all road sections, but the volume of the results becomes
enormous, and so the authors target the case of a certain road
section, where the number of road obstacles is relatively large
in each section.

Figures 4 and 5 show the relation between the risk man-
agement limit Ui◦ regarding the number of road obstacles
and the minimum patrol cycle defined as the minimum value
of the set Ωω(Ui◦) (refer to (22)). Figure 4 is focused on that.
In route B2, if the confidence level is set as ω = 0.01 and the
risk management limit is set to be 1, though overlap lines in
the graph, the minimum patrol cycle becomes 2 days. Next,
Figure 5 is focused on that. In route B2, if the confidence level
is set as ω = 0.05 and the risk management limit is set to be 1,
though overlap lines in the graph, the minimum patrol cycle
becomes 5 days.

The above passages discussed the minimum patrol cycle
that satisfies the risk management limit for each road
section, for the proposed risk management indicator. It can
be inferred that which is adopted as a risk management
indicator depends on the situation of the roads managed by
the road administrator concerned, but it can be considered
that the proposed indicator is practical for gauging the risk
management limit for road obstacles. In addition, even if
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Figure 5: Risk management limit (number of road obstacles) and
the minimum patrol cycle (confidence level ω = 0.05).

another indicator is adopted, the risk management limit can
be defined by adopting the same idea.

6. Conclusion

In this study, the authors have proposed a method for eval-
uating the risk of emergence of road obstacles, including
fallen objects, road surface deformation, damages to road-
attached facilities, and also a methodology for designing a
road patrol policy that can curtail the patrol costs effectively.
Through this study, the authors also proposed a method
of expressing the risk of emergence of road obstacles based
on the Poisson-Gamma model. In addition, for the risk
management of road obstacles, the authors pointed out
that the proposed indicator is important. Furthermore, the
authors studied the case of application to national routes and
empirically clarified that it is effective to adopt a mixture
Poisson process model that takes into account the hetero-
geneity in the arrival rates of road obstacles, in order to
describe the emergence processes of actual road obstacles. In
addition, the authors designed a patrol policy that can appro-
priately control the obstacle emergence risk with a limit-
ed amount of budget, using the obstacle emergence risk man-
agement model proposed in this study.

The methodology proposed in this study is highly prac-
tical, but there still remain the following problems to be
solved. The first problem is that the analysis target in this
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study was limited to specific national routes. In order to study
a variety of road characteristic variables, it is essential to col-
lect patrol data of a broad range of routes and accumulate the
cases of application of the proposed methodology. The
second problem is that this study assumed that the length
of patrol cycle does not influence the probability distribution
of arrival rates. There is a possibility that the emergence risk
of road obstacles will depend on road patrol policy according
to patrol cycle and road characteristics. One possible method
for coping with such problems is to estimate the variance
parameter φ of the Poisson-Gamma model while defining a
road patrol measure or road characteristic as an explanatory
variable. Lastly, it is necessary to discuss the method for
specifying the risk management limit. For instance, it is
necessary to glean information for specifying a desirable risk
confidence level, by analyzing the relation between the road
obstacle risk and the number of defective accidents, com-
plaints from residents and users, and so forth. In addition,
the method proposed in this study is applicable to the design-
ing of patrol policy for not only road facilities but also other
transportation facilities. In this case, the primary discussion
theme would be the setting of a risk management limit in
accordance with the characteristics of each transportation
facility.
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