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Abstract 

Solar ultraviolet-B (UVB) radiation has deleterious effects on plant-dwelling mites. We assessed the biological effects of 

UVB radiation on the eggs of the twospotted spider mite Tetranychus urticae Koch, under both near ambient (UV+) and 

UV-attenuated (UV−) conditions from spring to autumn and compared them to the effects of temperature and humidity. 

The ambient daily UVB irradiance increased from January to August and then decreased rapidly until December, whereas 

egg hatchability under UV+ was lowest in April (10.7%) and increased almost linearly until October (74.9–92.3%). In 

contrast, hatchability under UV− was consistently high (96.2–99.8%) through all seasons. For UV+, the stepwise 
multiple linear regression analysis supported the negative correlation of hatchability with cumulative UVB irradiance 

during egg periods (cumulative dose), but did not support that with the mean daily UVB irradiance (dose rate), 

suggesting that UVB-induced mortality in T. urticae eggs is cumulative dose dependent rather than dose rate dependent. 

The high mortality in April may have reflected the slower development caused by the relatively lower temperature and 

higher UVB radiation, increasing the cumulative dose, while the low mortality in October may have reflected the faster 

development caused by the relatively higher temperature and lower UVB radiation, decreasing the cumulative dose. 

Keywords — Mite community, Habitat determination, UV-damage, Ambient UVB toxicity 

 

Introduction 

 
Solar ultraviolet radiation (UVR) has direct and indirect effects on terrestrial plant-dwelling arthropods (McCloud and 

Berenbaum 1999, Rousseaux et al. 2004, Ballaré et al. 2011). The small body sizes of plant-dwelling mites may be 

disadvantageous for protecting them against UVR damage. Such damage may alter their behavior and niche exploitation 

(Onzo et al. 2010, Sudo and Osakabe 2011), and in turn, their population dynamics and the composition of foliar 

communities. 

The vulnerability of the herbivorous twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) to UVR 

has been documented: UVR increases egg mortality, delays juvenile development, and reduces egg production (Ohtsuka 

and Osakabe 2009, Sakai and Osakabe 2010). Laboratory experiments using UV lamps have suggested that the major 

component of solar UVR that damages the mite is UVB (280–315 nm wavelength), rather than UVA (315–400 nm 

wavelength; Barcelo 1981, Ohtsuka and Osakabe 2009, Suzuki et al. 2009, Sakai and Osakabe 2010). This might explain 
why their distribution is largely restricted to the lower leaf surfaces (Foott 1963, Osakabe et al. 2006; but see Li and 

Margolies 1991). 

The intensity of solar UVB radiation fluctuates with season. The daily irradiance (dose rate) peaks in summer (July 

and August), and reaches a minimum in winter (December and January) in Japan, which is located in the mid-latitudes of 

northern hemisphere. This suggests that, in Japan, UVB radiation should have the greatest impact in summer (Barcelo 

1981). However, UV-lamp studies of aquatic zooplankton (Copepoda; Kouwenberg et al. 1999b, Lacuna and Uye 2001), 

shrimp zoea (Wübben 2000), and the eggs of fish (Kouwenberg et al. 1999a) have suggested that UVB-induced mortality 

is not dependent on dose rate but rather depends on cumulative irradiance during developmental periods (cumulative 

dose), whereas the developmental rates of poikilothermic arthropods are accelerated in direct proportion to temperature 

increases within a comfortable range. Therefore, the cumulative dose is obviously a function of both the dose rate and 

temperature. 

                                                
1 Corresponding author: Masahiro (Mh.) Osakabe 
E-mail: mhosaka@kais.kyoto-u.ac.jp 
Tel & Fax: 075-753-2267 
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The combined actions of UVB intensity and temperature may also influence the activity of the two types of general 

cellular repair systems, photoenzymatic repair and nucleotide excision repair, removing the lethal lesions produced by 

UVB (Connelly et al. 2009, Bullock and Jeffrey 2010, Matallana-Surget et al. 2010). Although no one has attempted to 

measure enzymatic photoreactions, Santos (2005) reported the photoreactivation of UVB damage in T. urticae and the 

mold mite Tyrophagus putrescentiae (Schrank) (Acari: Acaridae). Moreover, several literatures indicated the effects of 

humidity and/or interactive effects of the humidity and temperature on survival of Tetranychus mites (Boudreaux 1958, 
Ferro and Chapman 1979, Perring et al. 1984). Therefore, the impact of solar UVR on mites may not simply synchronize 

with the seasonal fluctuation in the intensity of solar UVB radiation. 

The interactions among solar UVR and other environmental factors may be essential for determining the seasonal 

impact of solar UVR, and may affect the evolutionary scenario of UV adaptation. However, no empirical study has 

examined seasonal fluctuation in the effects of solar UVR on terrestrial arthropods. Tetranychus urticae is a cosmopolitan 

and economically important herbivorous mite species found in many agricultural crops. The embryogenesis of this mite 

has been well established, making it a candidate as a chelicerate model organism (Grbić et al. 2007). In this study we 

investigated the seasonal changes in the effects of solar UVR on the eggs of T. urticae, under both near ambient (UV+) 

and UV-attenuated (UV−) conditions. 

 

Materials and methods 

 
Mites 

 

The T. urticae population used in this study was cultured in the laboratory on potted kidney bean plants at 25–28°C for at 

least 6 years. The plants were illuminated continuously by fluorescent lights. Several T. urticae populations collected 

from different sites have, over time, been added to this culture population. 

Embryogenesis of T. urticae starts immediately after egg laying (Dearden et al. 2002), and larvae hatch 3–4 days and 

2–3 days after oviposition at 25°C and at 27–30°C, respectively (Shih et al. 1976, Bounfour and Tanigoshi 2001). 

 
Experimental design 

 

Two shelves surrounded by a frame were set up on the roof of a 

four-story building at Kyoto University, Kyoto, Japan (35°02'N, 

135°47'E), following Ohtsuka and Osakabe (2009). The top (roof), 

westward, and southward surfaces of each shelf were covered with 

either UV-transparent film (UV+: near ambient condition) or 

UV-opaque film (UV−: UV-attenuated condition). The 20-µm-thick 

polyethylene UV-transparent film (Kohnan Shoji, Osaka, Japan) 

transmitted about 80% of the ambient UVB (280–315 nm 

wavelength), UVA (315–400 nm wavelength), and visible light (VIS; 

400–800 nm wavelength; Fig. 1). The 25-µm-thick HB3 polyester 
UV-opaque film (Teijin DuPont Films, Tokyo, Japan) filtered out 

>90% of the ambient UV at wavelengths of <380 nm (e.g., 

transmission was 1.6% and 0.2% at 370 nm and 360 nm, 

respectively), and transmitted about 80% of the VIS (Fig. 1). 

Sixteen kidney bean leaf disks (2 × 2 cm) were prepared on 

water-soaked cotton in Petri dishes (9 cm in diameter; four leaf disks 

per dish). Five adult T. urticae females were introduced onto 

each leaf disk between 0900 and 1000 h. The Petri dishes were 

placed in a laboratory at 25°C, 16-h L: 8-h D light cycles. In the 

laboratory, fluorescent light were turn on at 0700 h and off at 

2300 h. The next morning (0830–0900 h), the adult females were 
removed, and eggs that were laid on the leaf disks were counted. 

Eight leaf disks (two Petri dishes), including a total of 298–461 

eggs (Table 1), were placed on a shelf under UV-transparent film. 

The remaining eight leaf disks (two Petri dishes) with similar 

numbers of eggs (278–446) were placed on a shelf under 

UV-opaque film (Table 1). Then the eggs on the leaf disks were 

exposed to solar radiation through the UV-transparent or 

UV-opaque film from 0900 to 1500 h every day, except on rainy 

days (or during periods of rain). The proportion of cumulative 

UVB radiation for the exposing time (0900-1500 h) to that for all 

Table 1 Number of eggs set under UV-transparent 

(UV+) and UV-opaque (UV−) film 

Experiment datea UV+b UV−b 

23-28 May 2009 374 425 

7-12 Aug 2009 298 278 

18-23 Aug 2009 300 318 

27 Oct-1 Nov 2009 461 427 

14-19 Apr 2010 448 423 

7-12 Oct 2010 413 395 

22-27 Oct 2010 445 446 
a Dates on which the eggs were exposed to solar 

radiation 
b Pooled number of eggs for the eight leaf disks 
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Fig. 1 Transmission spectrum of light passing 

through the UV-transparent film (broken line: 

UV+) and the UV opaque film (solid line: UV−).
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day long were 77.4% (23-28 May 2009) at the minimum and 88.3% (27 Oct.-1 Nov. 2009) at the maximum (in this 

calculation the data of rainy days: 28 May, 9, 10 and 22 Aug. and 1 Nov. in 2009, and 16 Apr. and 9 and 25 Oct. in 2010, 

were excluded). The air temperature and relative humidity (RH) under each film were recorded every hour with data 

loggers (Hygrochron; KN Laboratories, Osaka, Japan). The data loggers were set at side of the Petri dishes with leaf 

disks on the shelf and shaded with corrugated paper to avoid direct irradiation by sunlight. After the exposure, the 

hatched and unhatched eggs were counted and the Petri dishes were returned to laboratory conditions (25°C, 16-h L: 8-h 
D light cycles). This process (sunlight irradiation and hatch count) was repeated every day for 6 days. In the first 

experiment in May 2009 we continued that process until after 8 days, but no individuals hatched on the 7th and 8th days. 

The experiments were begun (introduction of adult females onto the leaf disks) on 22 May, 6 and 17 August, and 26 

October, 2009, and on 13 April and 6 and 21 October, 2010 (Table 1). 

The ambient temperature and RH at the experimental site (Kyoto, Japan) in 2009 and 2010 were obtained from data 

measured by the Japan Meteorological Agency in Kyoto (35°01'N, 135°44'E; http://www.jma.go.jp/jma/index.html), and 

ambient daily UVB irradiance was taken from the data set monitored by the Solar Radiation and Weather Monitoring 

Project at Kyoto Women’s University (34°59'N, 135°47'E; http://www.cs.kyoto-wu.ac.jp/~konami/climate/index.shtml). 

The cumulative UVB irradiance during egg periods (Itotal; cumulative dose) was calculated using the formula:  

 
UVhatchdaytotal DII , 

where Iday is the mean daily UVB irradiance (dose-rate) determined by integrating of the ambient UVB irradiance for 

0900–1500 h during the experimental periods, and Dhatch(UV−) represents the mean days until hatching calculated from the 

number of eggs that hatched daily under UV− conditions. The daily UVB irradiance on the rainy days (zero kJ m
-2

) was 
included with the calculation of Iday. Since it was impossible to know when unhatched eggs had died and most eggs died 

in the several experiments under UV+ conditions, we expediently used Iday and Dhatch(UV−) to estimate Itotal. 

The developmental rate per day (Vday) was calculated using the formula: 

hatch

day
D

V
1

 ,  

where Dhatch represents the mean days until hatching 

calculated from the number of eggs that hatched daily under 

UV+ or UV− conditions. 

 

Statistical analyses 

 
Differences in the temperature and RH between the UV+ and 

UV− treatments were analyzed using a one-way analysis of 

variance (ANOVA). The mean temperature and mean RH 

during the periods in which the eggs were exposed to solar 

UVR (0900–1500 h) were calculated for the 6 days of each 

experiment and the data were used as variables. The effects of 

the UV treatments at the different dates on Vday and on the 

arcsine-transformed mortality were analyzed using a two-way 

ANOVA. The effects of UVB (Itotal or Iday), temperature, and 

RH on the hatchability or Vday under UV+ conditions, and the 

effects of air temperature and RH under UV− conditions were 
evaluated using stepwise multiple linear regression analyses. 

All statistical analyses were performed using JMP ver. 7.0.2 

(SAS Institute Inc., Cary, NC, USA). 

 

Results and discussion 

 
The mean temperature and RH on the shelves exposed to 

UV+ and UV− during the experimental time exposing to solar 

UVR (0900–1500 h) varied seasonally, with values of 21.1–
37.3°C and 30–49%, respectively, but differences between 

UV+ and UV− were not significant (one-way ANOVA, 

temperature: F[1, 12] = 0.001, P = 0.9734; RH: F[1, 12] = 0.0003, 

P = 0.9862). On the shelves, the temperature was higher and 

the RH lower than the respective ambient mean values for the 

exposing times (12.2–33.2°C and 32.7–65.7%) and also for all 

day long (Fig. 2). 

The hatchability of T. urticae eggs differed significantly 
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Fig. 2 Seasonal changes in the hatchability of T.

urticae eggs exposed to solar radiation under UV-

transparent [UV+: solid circles (2009) and solid

triangles (2010)] and UV-opaque [UV−: open circles

(2009) and open triangles (2010)] films and in

ambient environmental factors at the experimental

site in 2009 (broken line) and 2010 (solid line). The

relative humidity (RH) and temperature are shown as

daily means, including the values during the night.

UVB is shown as the daily cumulative irradiance.

Vertical lines in the plots show 95% confidence

intervals.
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between the UV+ and UV− treatments and among the experimental dates (Table 2). The ambient daily UVB irradiance 

increased from January to August, and then decreased rapidly until December (Fig. 2). As shown in Figure 2, egg 

hatchability under the UV+ condition was lowest in April (10.7%) and increased almost linearly until October (74.9–

92.3%), except in early August, whereas hatchability under the UV− condition was consistently high (96.2–99.8%). Vday 

also differed significantly between the UV+ (Vday: 0.191–0.219) and UV− (Vday: 0.189–0.240) treatments and 

experimental dates (Table 2). Moreover, significant interactions between treatments and experimental dates were also 
seen for both hatchability and Vday. This indicates that the hatchability and Vday of T. urticae eggs are affected by the 

presence/absence of solar UVR, but the deleterious effects of solar UVR vary with the seasonal changes in other 

environmental factors. 

 

Table 2 Analysis of variance for egg hatchability and developmental rate (Vday) 

 Source of variance df MS F p 

Hatchability     

 UV treatment 1 11.669 818.604 < 0.0001 

 Experimental date 6 0.555 38.900 < 0.0001 

 UV treatment × Date 6 0.467 32.781 < 0.0001 

 Error 98 0.014   

Vday     

 UV treatment 1 0.008 65.820 < 0.0001 

 Experimental date 6 0.002 13.230 < 0.0001 
 UV treatment × Date 6 0.001 9.178 < 0.0001 

 Error 98 0.0001   

 

The ambient daily UVB irradiance was weaker in April than in August (Fig. 2). Consequently, Iday was smaller in April 

(11.96 kJ m-2 per day: 14-19 April 2010) and May (11.48 kJ m-2 per day: 23-28 May 2009) than in August (13.83 and 

15.52 kJ m-2 per day: 7-12 and 18-23 August 2009) in the UV+ treatments. However, Itotal in April (63.3 kJ m-2) was 

equivalent to that in August (61.9 and 64.8 kJ m-2), while it was less in May (50.5 kJ m-2). This may reflect the slower 

development caused by the relatively lower temperature and higher UVB radiation in April (Vday in UV−: 0.189; Fig. 2), 

and the faster development in August (Vday in UV−: 0.223–0.240). Conversely, Itotal was the smallest in October (35.6–

37.2 kJ m-2) because the ambient UVB irradiance and resulting Iday (7.60–8.30 kJ m-2 per day) were lower, while Vday was 

relatively faster (Vday in UV−: 0.213–0.228). 

 
Table 3 Parameters in the stepwise linear regression analyses of hatchability and developmental rate under 

UV+ and UV− conditions during the egg period using the cumulative UVB irradiance during egg periods 

(Itotal), temperature, and relative humidity (RH) 

St

ep 

Parameter Action P value Sequential 

SS 

R2 Mallow

s’ Cp 

UV+ condition      

Hatchability      

1 Itotal Add 0.0287 0.486386 0.6491 0.7369 

2 RH Add 0.3777 0.051854 0.7183 2 

3 Temperature Add 0.9968 1.354×10−6 0.7183 4 

4 Temperature Remove 0.9968 1.354×10−6 0.7183 2 

5 RH Remove 0.3777 0.051854 0.6491 0.7369 

UV− condition      
Hatchability      

1 Temperature Add 0.5704 0.001168 0.0686 7.5917 

2 RH Add 0.0621 0.009864 0.6483 3 

3 Temperature Remove 0.9534 5.793×10−6 0.6479 1.0039 

Vday      

1 Temperature Add 0.0678 0.000795 0.5190 2.4912 

2 RH Add 0.2891 0.0002 0.6496 3 

3 RH Remove 0.2891 0.0002 0.5190 2.4912 

 

For the stepwise multiple linear regression analyses, Itotal or Iday with the mean temperature and RH during the 

experimental periods were used as explanatory variables in UV+. The stepwise multiple linear regression analysis of egg 

hatchability under UV+ conditions supported a negative correlation with Itotal (y = 1.8458298 – 0.020901x; Table 3, Fig. 

3a), but not with temperature and RH. In contrast, the analysis using Iday, instead of Itotal, supported no regressions 
between the hatchability and explanatory variables under the UV+ condition (the results of the stepwise multiple linear 

regression analysis are not shown). Vday was not affected by those factors under UV+ conditions (Fig. 3b; the results of 
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the stepwise multiple linear regression analysis are not shown).  

Under UV− conditions, a positive correlation was supported between egg hatchability and RH (y = 1.1427437 + 

0.0071868x; Table 3, Fig. 3a), and between Vday and temperature (y = 0.1690935 + 0.0018155x; Table 3, Fig. 3b). The 

effects of temperature on Vday under UV− conditions suggest that the range of temperature (including both daytime 

outside and nighttime in the laboratory) did not injure the eggs. Regarding the effects of humidity, although Ferro and 

Chapman (1979) reported that the hatchability of T. urticae eggs was higher under conditions of higher rather than lower 
humidity including both RH and vapor pressure deficit, other published studies have reported only minimal effects of 

such humidity on the performance of Tetranychus species, except when the humidity is low and the temperature is high 
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was supported by the stepwise multiple linear regression analysis in Table 3.
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(Boudreaux 1958, Perring et al. 1984). The correlation of RH with the hatchability of T. urticae eggs was also supported 

under UV− conditions in this study. However, the hatchability was >90% over all experimental periods under UV− 

conditions, and the correlation between RH and the developmental rate was not supported. Overall, we consider humidity 

did not affect the results in our experimental conditions that the eggs were put in the laboratory every night. 

Neither hatchability nor Vday was correlated with temperature or RH under UV+ conditions. Instead, an obvious 

negative correlation of egg hatchability with Itotal was observed, suggesting that direct adverse effects of temperature and 
humidity were excluded in this study. The result that the correlation of Iday with hatchability was not supported 

statistically suggests that the UVB-induced mortality is cumulative dose-dependent, rather than dose rate-dependent as in 

aquatic organisms (Kouwenberg et al. 1999a,b; Wübben 2000, Lacuna and Uye 2001). Although temperature did not 

affect the egg mortality directly, but it affected the developmental rate and thus altered egg periods that, with dose rate, 

determined the cumulative dose of UVB radiation. Consequently, temperature indirectly influenced the egg mortality via 

alteration of UVB cumulative dose. This may be a mechanism that the extent of UV damage to T. urticae eggs did not 

parallel the seasonal fluctuation in the intensity of ambient UVB radiation contrary to a general prospect (Barcelo 1981).  

On the other hand, although little is known about UV damage-mediated general repair systems (Santos 2005), but 

these might contribute to the survival of eggs in later seasons. Our experiments revealed correlation of egg mortality with 

solar UVB radiation. However, the egg mortality under UV+ conditions was larger in April than that in August in spite of 

the cumulative UVB radiation was equivalent to each other. Likewise, despite the smaller cumulative UVB radiation the 

egg mortality in May was larger than or equivalent to that in August. Additional elaborately designed studies, such as 
laboratory experiments using UV lamp, are required to elucidate the effects of UV damage-mediated repair systems and 

may also the relationship between UV damage and temperature. 

Sakai and Osakabe (2010) found that the distribution of T. urticae females was different between upper and lower leaf 

surfaces as a result of UV-avoidance behavior. The deleterious effects of solar UVR may be significant factors restricting 

plant-dwelling mites, including predacious mites, to the lower leaf surfaces or inside domatia (Ohtsuka and Osakabe 

2009, Onzo et al. 2010, Sudo and Osakabe 2011). These species might occupy habitat in which they encounter predators 

or competitors less frequently or gain nutritional advantage through increased fecundity on the upper leaf surfaces versus 

the lower leaf surfaces. In fact, a part of herbivorous mites exploit not only the lower but also the upper leaf surfaces of 

host plants (Foott 1963, Jones and Parrella 1984, Sudo and Osakabe 2011). Of those species, the European red mite 

Panonychus ulmi (Koch) (Acari: Tetranychidae) moves from the lower to the upper leaf surfaces as a response to 

increasing density of a superior competitor T. urticae on the lower leaf surfaces (Osakabe et al. 2006). Such species may 
acquire any protection mechanism against solar UVR. 

On the other hand, adult females of T. urticae are induced diapause with photoperiodic response in autumn and spend 

several months during winter after leaves fallen. Suzuki et al. (2009) revealed that the diapausing females were more 

tolerant to UVB radiation than non-diapausing females but avoided UVB radiation more sensitively than non-diapausing 

females. Body color of the diapausing females turn to orange with accumulation of carotenoids (Veerman 1974) that may 

function as antioxidant agents, suggesting an adaptation to solar UVB radiation in winter (Suzuki et al. 2009).  

Our results show the enormous impact of solar UVR on the mites and the reduction in the deleterious effects in 

autumn. Simultaneously, it suggests that high dose rate (intensity) of UVB radiation with high temperature such as that in 

summer does not necessarily mean the greater impacts on mites. In contrast, even the intensity of UVB radiation is low 

the cumulative dose possibly reaches an effective range to confer lethal damage on mites after long exposure. Such 

seasonal, environmental condition dependent changes in the impact of solar UVR likely affect the dynamics and 

evolution of plant-dwelling mite communities via habitat determination and species success.   
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