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PREFACE 

 

The projects in genome science try to understand the mechanism of the life phenomenon 

by analyzing genomes, which are often called the genetic blueprints for life. After the complete 

nucleotide sequence of the human genome was released in April 2003, research in life science has 

reached a new stage so called “Post-genome Era”. Supporting by the enormous genome information 

including various organisms, analyses of gene functions and structures and functions of proteins 

have been extensively carrying out during this period. For example, although there are estimated 

about 25,000 human protein-coding genes, several tens of thousands of different proteins would be 

produced in human cells. There are two main mechanisms to a huge variety of protein: a single gene 

can generate different protein isoforms through the alternative splicing; most proteins after its 

synthesis undergo chemical modifications called post-translational modifications. Many scientists 

are very interested in the protein functions, because the life phenomenon has been controlled by the 

enormous network system among diverse proteins.  

This thesis containing collected papers and discussion of my studies at Field of 

Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City 

University during April 2003–March 2005 and at Department of Molecular Engineering, Graduate 

School of Engineering, Kyoto University and Yokohama City University during April 2005–March 

2008 and at Kyoto University and Division of Structural Biology, Graduate School of Medicine, 

Kobe University during September 2008–September 2011. The aim of this thesis is to elucidate the 

molecular mechanism of microtubule-severing by katanin p60 in terms of structural biology. PART 

I provides introductions of above theme. PART II provides the studies about katanin p60 from the 

process of determining the novel structure to the novel hypothesis of microtubule-severing 

mechanism. Finally, the summaries and conclusions of this thesis are described in PART III. 
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 2 

Structural biology and the aim of this thesis 

The life is understood by the three-dimensional structure of protein 

The protein, which exists everywhere in the cell, is the most important material supporting 

the life activity. Although proteins are chemical synthetic polymer compounds that consist of 20 

different amino acids, each protein has a unique structure and biological function due to the variety 

of amino acid sequences among proteins. The various proteins exhibit their functions by interacting 

with ions and electrons, as well as with molecules such as other proteins, nucleic acids, and sugars. 

In the cells, these interactions are organized into exquisite, highly complex networks, which are 

governed by the three-dimensional (3D) structures of proteins. Therefore, it is important that we 

clarify the 3D structure and function of each protein to understand the life phenomena in the cells. 

Research into the 3D structure and function of protein is called “Structural Biology”. 

 

The methods of protein structure determination 

In structural biology, there are three major approaches, X-ray crystallography, nuclear 

magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy to determine the 3D 

structures of proteins. Each method has advantages and disadvantages, and can be used according to 

sizes and characters of molecules. For X-ray crystallography, proteins are crystallized and analyzed 

their X-ray diffraction patterns to determine the distributions of electrons. While X-ray 

crystallography is an excellent method for determining the structures of rigid proteins that form 

ordered crystals, flexible proteins are difficult to observe in this method, because crystallography 

relies on having molecules aligned in the same orientation. For NMR spectroscopy, proteins are 

placed in a strong magnetic field and analyzed the resonance signals of their atomic nuclei such as 

1
H, 

13
C, and 

15
N to determine the distances between atoms. NMR samples are limited to small or 

medium proteins, because large proteins present problems with overlapping peaks in the NMR 

spectra. On the other hand, a major advantage of NMR spectroscopy is that provides information on 
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proteins in solution, as opposed to those locked in a crystal or bound to a microscopy grid. Thus, 

NMR spectroscopy is the premier method for studying the atomic structures of flexible proteins, the 

protein–protein interactions, and the protein dynamics. For cryo-electron microscopy, proteins are 

bound to a microscopy grid at liquid nitrogen temperatures and analyzed their electron microscopy 

images to determine the overall shapes of molecules. Although one of the disadvantages of cryo-

electron microscopy is that the resolution obtained is low, this method can determine structures of 

large macromolecular complexes with no symmetry, as opposed to both X-ray crystallography and 

NMR spectroscopy. 

The enormous data of protein structures has been accumulated now. According to the 

database such as Protein Data Bank (PDB) (http://www.pdb.org/pdb/home/home.do), one can 

compare and classify them. For example, it is possible to predict systematically the structure and 

function of unknown protein, by using the structural data and amino acid sequences. 

 

Multidomain protein 

The protein domain is a unit of the structure. A majority of proteins in higher eukaryotes 

consist of multiple domains and are called multidomain proteins. Advanced research has been 

demonstrated that each domain exhibits a unique function and contributes to diverse biological 

processes in cooperation with each other. Although each domain has been determined the structure 

and correlated with the function in structural biology approaches, we would need to assemble 

interactive networks among multidomain proteins for our understanding of the various life 

phenomena. 

 

The Protein is responsible for the diseases as well as the fundamental life phenomena 

The protein plays a key role in understanding and overcoming diseases, because diseases 

would result from aberrant networks among proteins in the cells. Many therapeutic drugs target 

http://www.pdb.org/pdb/


 
PART I 

 4 

proteins (e.g. receptor and channel proteins). In recent years, structural biology has become 

indispensable not only in the understanding of fundamental life phenomena but also in the 

elucidation of disease mechanisms. Thus, the 3D structure-based investigations such as in silico 

screening and drug design are expected to develop drugs. For example, the structures of G protein 

coupled receptor (GPCR), one of the membrane proteins, are applied to the discovery and the 

development of drugs
1
. A cytoskeleton protein, microtubule related to the cell division is also paid 

attention as one of targets of the anticancer drug
2
. Additionally, since the proteins that interact with 

microtubule might cause critical diseases such as Alzheimer‟s disease, these proteins can be 

targeted for the drug development
3
. 

Interactions between microtubules and its associated proteins are organized into complex 

networks and involved in the various life phenomena including diseases. The mechanisms of how 

microtubule-associated proteins regulate microtubules remain poorly understood because of the lack 

of detailed 3D structural information. Therefore, in this thesis I performed analyses of the 3D 

structure and function of katanin, one of microtubule-associated proteins, in terms of structural 

biology to understand a part of the phenomena induced by the interactions between microtubules 

and microtubule-associated proteins. 

 

 

Microtubule, one of cytoskeleton 

Cytoskeleton 

The cell is the basic structural and functional unit of life. The cytoskeleton is the most 

fundamental part of the cell. The cytoskeleton acts to organize and maintain the cell shape and is 

also responsible for strength and motility of the cell. The concept for cytoskeleton as an organized 

network of protein molecules extending throughout the cell was proposed by Peters in 1930. In 

1931, the term “cytoskeleton” (cytosquelette, in French) was first introduced by Wintrebert
4
. Then, 
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electron microscopy has been instrumental in visualizing the cytoskeleton for the first time, and also 

in investigating its structural organization in different cells and conditions. The initial progress in 

the cytoskeletal studies closely paralleled the development of electron microscopy techniques. 

The cytoskeleton is a 3D meshwork of crosslinked biopolymers that fills the cytoplasm in 

every cell. It was for a long time believed to be a characteristic feature of cells with a nucleus 

(eukaryotic cells) as both unicellular organisms such as yeast and amebas and multicellular 

organisms such as fungi, plants, and animals. Recently it became clear that even cells without a 

nucleus (prokaryotic cells) such as bacteria have homologous proteins that form a cytoskeleton
5
. 

Eukaryotic cells contain three major cytoskeletal filaments: actin filaments (also called 

microfilaments), microtubules, and intermediate filaments. On the other hand, prokaryotic cells 

contain MreB, FtsZ, and CreS, respectively, as homologues for major cytoskeletal filaments in 

eukaryotic cells. Each cytoskeleton exhibits diverse functions according to their species and cell 

types, because they drastically differ in their own stiffness and flexibility. One may think of a 

skeleton as a rigid framework. However, the structures of cytoskeletons act as muscle as well as 

skeleton, for movement and stability. In fact, they are very dynamic and involved in active cellular 

processes including cell movement, strength, adhesion, and polarity as well as intracellular transport. 

Therefore, structural information about cytoskeleton organization is critical for understanding its 

functions and mechanisms. 

 

The structure of microtubule 

Microtubules (MTs) are major dynamic structural components in eukaryotic cells. They 

play important roles in a variety of cellular processes. During cell division, MTs form mitotic 

spindles and organize the spatial distribution of chromosomes
6
. They can serve as the principal 

structural element of cilia and flagella which are involved in swimming of cells
7
. They further serve 

as a rail on which motor proteins, such as kinesin and dynein proteins, convey their cargoes such as 
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organelles in intracellular transport
8
. In the same fashion, MTs within the axon in the neuron are 

used to transport substances to different parts of the cell
9
. MTs are also involved in granule transport 

in pigment cells
10

. 

MTs
11,12

 are polymers of tubulin, which is a heterodimer composed of two different 

globular protein subunits, - and -tubulin. These heterodimers stack head to tail at 8 nm intervals 

to compose long liner chains so called protofilaments, where always a -tubulin is followed by a -

tubulin. Within the most MT, thirteen protofilaments associate laterally to form a hollow cylindrical 

structure that measures 25 nm in diameter. (Fig. 1) This polymer structure of MT was first observed 

using electron microscopy in 1950s. The robust multifilament bundles are stabilized as compared to 

a single filament, while both termini of filaments are dynamic, in common with three cytoskeletons. 

Since all heterodimers are arranged in the same direction, MTs have a polar structure. The cellular 

functions of MTs critically depend on their polarity. For example, this polarity is central to the 

ability of motor proteins to move unidirectionally on the polymer lattice. MT polarity is also 

reflected in the distinct dynamic properties of the two polymer ends (see the following paragraph). 

On one end, the slower polymerizing end, in which -tubulin is exposed, was termed the „minus‟ 

end. On the opposite end, the faster polymerizing end, in which -tubulin is exposed, was termed 

the „plus‟ end. 

 

 

 

 

 

FIGURE 1. MT structure. Head-to-tail interactions of  dimers form liner 

protofilaments. 13 protofilaments associate laterally to form hollow cylindrical 

polymers. 
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In 1998, the 3D structure of tubulin heterodimer was determined by electoron 

crystallography to 3.7 Å resolutions (Fig. 2)
13

. The next year, a model of the MTs has been obtained 

by docking the 3D structure of tubulin into a 20 Å reconstruction of the MTs according to cryo-

electron microscopy
14

. - and -tubulin are highly related proteins, ~50% identical at the amino 

acid sequence
15

. The structural analysis demonstrates that the 3D structure of - and -tubulin are 

basically identical as expected, while dimer is asymmetric because each monomer arrays in the 

same direction. This has been emphasized that the MTs have a polar structure and a particular 

dynamic property. The 3D structure information of tubulin was great success to provide impetus to 

the MT research afterwards. 

 

 

 

 

 

FIGURE 2. Ribbon diagram of the tubulin dimmer showing -tubulin 

(bottom), and -tubulin (top). (PDB code: 1tub). 

 

 

 

 

Dynamic instability of microtubule 

MTs are highly dynamic because of the constant transition between polymerizing 

(growing) and depolymerizing (shrinking) phases. This dynamics is described in terms of “dynamic 

instability”
16

. When first discovered, this unique behavior of MT dynamic instability was surprising 

to many researchers. The energy to drive the dynamic instability comes from guanosine 

triphosphate (GTP) hydrolysis. Tubulin is a GTPase whose activity is stimulated by polymerization. 
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When a new tubulin heterodimer is incorporated into the MT, the GTP bound to -tubulin is 

hydrolyzed, and the resulting guanosine diphosphate (GDP) does not exchange in the polymer 

lattice. In contrast, the GTP bound to -tubulin faces -tubulin of heterodimer and is not 

hydrolyzed. The kinetics of GDP-tubulin is different from those of GTP-tubulin. GDP-tubulin is 

prone to depolymerization. Since tubulin adds onto both ends of the MT only in the GTP-bound 

state, there is generally a cap of GTP-tubulin at the tip of the plus end (-tubulin). The GTP-cap 

protects the MT from disassembly. If hydrolysis catches up to the tip of the MT, growing MT 

suddenly begins a rapid depolymerization so called a „catastrophe‟. On the other hand, shrinking 

MT can often begin a slow polymerization again so called a „rescue‟, by adding GTP-tubulin 

enough to the tip of the MT. Both catastrophe and rescue are also included in dynamic instability 

(Fig. 3)
17

. At the plus ends, the polymerizations of MTs are faster as compared with the minus ends. 

Additionally, the frequency of the catastrophe is higher at the plus ends, while the frequency of the 

rescue is higher at the minus ends. Therefore, MT plus ends show dynamic instability at a higher 

rate than the minus ends. In both test-tube studies (in vitro) and the cell (in vivo), such dynamics of 

MTs can occur spontaneously, while it is tightly regulated by the balance of MT stabilizing and 

destabilizing factors. 

 

 

 

FIGURE 3. MT dynamic instability. Dynamic 

instability is characterized by the coexistence of 

polymerizing and depolymerizing MTs (see the 

text). At polymerizing MT end, the bound GTP is 

hydrolyzed during or soon after polymerization. 

The MT lattice is predominantly composed of 

GDP-tubulin. Polymerizing MTs suddenly transit 

to the depolymerization phase (catastrophe). 

Depolymerizing MTs can transit back to the 

polymerization phase (rescue). 

GTP-tubulin
GTP-cap

growing

GDP-tubulin

shrinking

catastrophe rescue
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Regulators for dynamic instability of microtubule 

MT dynamic instability is regulated by microtubule-associated proteins (MAPs) that 

interact with MT/tubulin (Fig. 4). There are two main types of MAPs which stabilize and 

destabilize MTs. MT stabilizing proteins include MAP1, MAP2, MAP4, and tau termed classical 

MAPs
18,19

. XMAP215, which is identified in Xenopus eggs, has also been characterized as a major 

regulator of MT plus end growth
20

. These proteins stabilize and promote MT polymerization such 

as rescue, or inhibit MT depolymerization such as catastrophe. In addition, since the -tubulin ring 

complex (-TuRC) acts as a scaffold for tubulin to begin polymerization in an initiation point called 

MT nucleation, -TuRC plays the role in promoting MT assembly
21,22

. Recent work has shown that 

most plus-end-biding proteins (+TIPs), including CLIP (cytoplasmic linker protein)-170 and EB1 

(end-binding 1), promote MT plus end growth
23

. On the other hand, MT destabilizing proteins 

include stathmin/oncoprotein 18 (Op18), Kin (kinesin with an internal catalytic domain) I, spastin 

and katanin. Stathmin/Op18 interacts with free tubulin and negatively regulates its assembly in 

MTs
24

. The 3D structure of complex between tubulin and stathmin-like domain was determined by 

X-ray crystallography to 3.5 Å resolutions
25

. Kin I, a kind of kinesin motor protein, promotes MT 

catastrophe
26

. Spastin and katanin are well known as MT-severing factors.  

 

 

 

 

 

 

FIGURE 4. Some examples 

of MT stabilizing factors and 

destabilizing factors. 
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Katanin, MT-severing enzyme 

MT-severing enzymes regulate MT disassembly by breaking the middle point of MTs. 

There are three major MT-severing enzymes, spastin, katanin, and fidgetin, all of which belong to 

AAA (ATPases associated with various cellular activities) ATPases
27,28,29

. AAA ATPases
30,31

 are 

involved in diverse cellular activities, including cell cycle regulation, membrane fusion, protein 

transport, and protein degradation. AAA ATPases contain one (type I) or two (type II) conserved 

AAA domains that defines a large protein superfamily. In many cases, AAA domains assemble into 

hexameric rings that are likely to change their shape during the ATPase cycle. This ATP-dependent 

conformational change may apply tension to bound proteins and thereby allow AAA ATPases to 

unfold polypeptides and dissociate protein–protein interactions. On the other hand, their NH2-

terminal regions are unique sequences and may determine the specificities to their substrates and/or 

adaptors. Above three MT-severing enzymes play key roles in diverse cellular dynamic event of 

MTs, including formation and maintenance of cell, formation of spindle pole, cell division, 

intracellular transport, and neurite outgrowth, through disassembling MTs and regulating lengths of 

polymers at the optimal length in an ATP-dependent manner. 

Katanin was originally purified from sea urchin eggs
32

. Katanin was shown to sever MTs 

and hence was named “katanin” from katana, the Japanese word for samurai sword. Katanin is a 

heterodimer, which is composed of a 60 kDa catalytic MT-severing subunit (kp60) and an 80 kDa 

regulatory subunit (kp80). Both subunits are genetically conserved among many higher eukaryotes, 

but not in yeast and bacteria. In nematodes (C. elegans), MEI-1 and MEI-2 correspond to catalytic 

and regulatory subunits, respectively
33

. Katanin contributes to the organization and transportation of 

MT arrays in the cells including neurons, by severing MTs and generating new sites for MT 

growth
34

. Kp60, a type I AAA ATPase, is known to regulate directly MT-severing in an ATP-

dependent manner. On the other hand, kp80 targets kp60 to centrosomes and regulates the MT-

severing activity of kp60
35

. An active form of kp60 is believed to an oligomer like other AAA 



 
GENERAL INTRODUCTION 

 11 

ATPases
36

. Perhaps, kp60 may disassemble MTs in a hexameric ring suggesting a severing 

mechanism similar to spastin, which uses its pore to tug on the COOH-terminal tail of tubulin and 

leads to breakdown of MTs
37

. However, its severing mechanism is still unproven. Here I have 

focused especially on the mechanism of MT-severing by kp60 and carried out this study through 

structural biology. 

 

 

Bioinformatics––Domain isolation of katanin p60: CHAPTER 1 

The AAA domains of AAA ATPases are well conserved from prokaryotes to human, while 

their NH2-terminal regions are unique and are often known to be the binding sites specific for their 

substrates. Thus, to interpret the molecular mechanisms of specific recognition for MTs in kp60, I 

have started to analyze the 3D structure and the function of the NH2-terminal regions of kp60. I 

have first identified a novel structural domain from the NH2-terminal regions of kp60 by 

bioinformatics techniques. I have further succeeded to optimize the domain boundaries suited for 

structural determination by the combination of bioinformatics, point mutations in proteins, and 

NMR techniques. The bioinformatics techniques include database searches, sequence alignments, 

structural predictions, and so on. These are much variety, highly upgraded, and now essential for 

protein analyses including the 3D structural analyses. 

 

 

Structural biology––Determination of the 3D structure of katanin p60 NH2-terminal 

domain and the interface between katanin p60 and tubulin: CHAPTER 2 

I determined the novel structure of the NH2-terminal domain (NTD) of kp60 using 
13

C/
15

N-

labeled sample in solution by 3D NMR techniques for the first time. It was shown that the structure 

of kp60-NTD has resembled the NH2-terminal domain (MIT domain) of Vps4, another member of 
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type I AAA ATPases. In the next, I found that kp60-NTD binds tubulin and determined its interface 

with tubulin by biochemical assays. The same results were obtained when the assays were carried 

out by use of the full-length kp60 protein. Interestingly, both kp60 and Vps4 have been similar in 

the molecular mechanisms of how the enzymes disassemble their macromolecular substrates. 

Finally, I proposed a model for kp60–MT complex based on the interface between Vps4-MIT and 

its substrate. 

The biochemical techniques used here are the pull-down assays, by which the binding 

partners are searched for using the recombinant proteins (tagged proteins) bound to an affinity 

ligand. The pull-down assays is an in vitro method used to determine a physical interaction between 

two or more proteins. Protein–protein interactions can be visualized by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and associated detection methods, including gel 

staining and Western blotting detection. SDS-PAGE is a technique widely used in biochemistry and 

molecular biology to separate proteins according to their electrophoretic mobility such as molecular 

weight. 

 

 

Biochemistry––Regulatory function of katanin p60: CHAPTER 3 

I identified the minimum structural domain of the COOH-terminal domain (CTD) of kp80. 

My studies suggested that this minimum region of kp80-CTD interacts with the surface of kp60-

NTD at the opposite interface between kp60-NTD and tubulin. Thus, I assumed that kp60-NTD 

may bind both tubulin and kp80-CTD using its distinct interfaces. I also focused on the regulatory 

role of kp60-NTD to the ATPase activity that is energy of ATP hydrolysis. In the result, I found that 

Ca
2+

 ion cancels out the enhancement of ATPase activity of kp60 in the presence of the substrate 

(MT) and/or adaptor (kp80-CTD) and inhibits the MT-severing activity of kp60. Ca
2+

 acts as a 

regulator of many biological processes. The concentration change of Ca
2+

 occurs as a response to 

http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Molecular_biology
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various signals, resulting neural excitement, secretion, muscle contraction, fertilization, cell division, 

and other phenomena. Furthermore, I showed that Ca
2+

 binds kp60-NTD at the edge of domain by 

NMR titration experiments. On the basis of a model of kp60–MT complex in CHAPTER 2, I 

predicted that Ca
2+

 binding site becomes close to the putative interface between kp60-NTD and the 

AAA domain of kp60 in an ATPase activate state. Finally, I hypothesized that Ca
2+

 and a spatial 

rearrangement of the NTD relative to the AAA domain regulate the ATPase activity of kp60 in the 

presence of the substrate and/or adaptor. 

NMR titration experiment is a powerful technique to map the interacting site of a 
15

N-

labeled protein with its binding partner such as other protein and a metal ion. Changes in chemical 

shifts in 
1
H-

15
N HSQC spectra demonstrate exchanges of magnetic environments. These exchanges 

are thought to be due to two phenomena: the interaction between 
15

N-labeled protein and its binding 

partner will change magnetic environments around the interface; the addition of the partner may 

induce structural change or conformational change in the 
15

N-labeled protein. 
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Abstract  

 

Structural determination of individual protein domains isolated from multidomain proteins 

is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated 

from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-

association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 
1
H–

15
N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a 

domain boundary can cause transient hydrophobic selfassociation and monomer–dimer equilibrium 

in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the 

globular core domain using the program COILS. Except for the amino acid sequence, no preexisting 

knowledge concerning the domain is required. A small number of mutant proteins with a minimized 

coiled coil region have been rationally designed and tested. The engineered domains exhibit 

decreased self-association as assessed by 
1
H–

15
N HSQC spectra with improved peak dispersion and 

sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-

ATPases are demonstrated. Our method is useful for the experimental determination of domain 

boundaries suited for structural genomics studies. 
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Introduction 

 

An enormous amount of sequence information has been generated from numerous genome 

sequencing projects
1
 (also see http://www.ncbi.nlm.nih.gov/). The next major challenge is to focus 

on the genome-wide analysis of protein structure/function relationships
2-4

. A sequence comparison 

of proteins from various genome sets has provided information concerning individual domains, 

which constitute an evolutionally conserved stretch of 50–300 amino acids capable of folding 

autonomously. Although many proteins are still annotated as „„function unknown‟‟, an analysis of 

mammalian genomes shows that >70% of proteins are in fact „„multidomain proteins‟‟, which 

harbor more than one protein domains
5
. Genetic dissection of genes encoding large proteins in order 

to obtain individual domains for structural studies is a key methodology in this field. Two major 

technical problems of working with individual domains in isolation from the parent protein have 

emerged: (i) the isolated domain tends to precipitate and is not well expressed in the cytosol of 

bacterial expression systems, and (ii) the isolated domain may form a soluble multimeric aggregate 

by nonspecific self-association. Both problems make the NMR analysis of novel protein domains 

difficult. When using solution NMR techniques, the first criterion of a promising protein domain for 

structure determination is to give a good HSQC spectrum. However, there is currently no rational 

approach to avoid self-association of uncharacterized protein domains. 

In order to minimize self-association, we focused on regions of the target protein likely to 

form a coiled coil structure, which may act as a site for protein-protein interaction. Coiled coil 

structures are widely observed in proteins, and have been classified as one of the common 

supersecondary structures for protein-protein interactions
6,7

. Two to six amphipathic right-handed 

-helices interact and wrap together to form a left-handed twist structure
8-10

. The periodic repeat of 

hydrophobic residues in an -helical context is important for forming a coiled coil structure. 

Because seven amino acid residues form two rounds of each -helix strand, the motif has a  
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representative heptad repeat sequence with the amino acid residues designated a to g according to 

their position. Studies involving artificially designed coiled coils show that the a- and the d-

positions are particularly important for inter-helical interactions and structural uniqueness. For 

example, the coiled coil without the structural uniqueness was found to be an ensemble of sub-

optimal structures, resulting in a broadened NMR spectrum
11

. The arrangement of the packing 

structure in the protein interior is an important de novo design target. According to these concepts, 

many successful designs for the control of the orientation
12

 and the selective assembly of peptide 

fragments of coiled coils have been reported
13-15

. For example, the improved packing of the protein 

structure could lead to an increase in thermal stability
16

. By contrast, substitution of one or more 

hydrophobic residues for small or charged residues can cause instability of a coiled coil structure as 

well as loss of structural uniqueness. This strategy can easily be used to eliminate predicted coiled 

coil regions of proteins, in which mutations are introduced to destabilize such packing. 

Herein, we propose a simple prediction and design method to minimize protein self-

association by destabilizing the putative coiled coil regions in the target protein in order to improve 

the HSQC signal with a minimum of experimental effort. Potential coiled coil regions are simply 

predicted by the program COILS (version 2.1) with the „„–mtidk‟‟ option and weighting of 

hydrophobic residues
17

. The program takes the periodicity of hydrophobic amino acid residues in a 

heptad repeat into account for prediction. Using the „„–mtidk‟‟ option, the program is more sensitive 

to the detection of non-canonical coiled coils. The putative coiled coil region is sometimes hidden 

in one domain region of the target protein. Since the program uses only the amino acid sequence as 

an input, we can virtually design any mutant sequence to avoid forming a coiled coil. Virtual 

mutants with deletion(s) and/or amino acid substitution(s) are first analyzed by COILS. A limited 

number of sequences for further study are then selected by using the COILS score as a guide. Using 

this approach, we have successfully isolated two N-terminal domains derived from the AAA-

ATPases. 
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Experimental procedures 

 

Protein techniques 

Vectors for the heterologous expression of GST fusion proteins of the N-terminal domains 

from both mouse and human katanin p60 (residues 1–90, denoted as kp601–90) and nuclear VCP-like 

protein 2 (residues 1–93, denoted as NVL21–93) were constructed using PRESAT-vector 

methodology, derived from pGEX-4T3 vector (Amersham Biosciences, Piscataway, NJ)
18

. 

Truncated constructs and the L73R mutant of mouse kp601–90 were prepared by site directed 

mutagenesis using Gene-Editor (Promega, La Jolla, CA) according to the manufacturer‟s 

instructions. The solubility of GST-fusion proteins was assayed by the CDNB colorimetric assays 

according to the manufacturer‟s instructions (Amersham Biosciences). The 
15

N-labeled recombinant 

proteins for NMR spectroscopy were generated in E. coli BL21(DE3) from a 1.0 l M9 minimal 

medium culture grown in the presence of 
15

NH4Cl as the sole nitrogen source at 30°C. The cell 

lysate after sonication was cleared by centrifugation and then applied to a DEAE-Sepharose column 

(Amersham Biosciences), and then affinity purified by Glutathione Sepharose (Amersham 

Biosciences) chromatography. The GST tag was removed by thrombin „„on-beads‟‟, and the 

protease was trapped using benzamidine Sepharose (Amersham Biosciences) and then dialyzed. 

 

NMR Spectroscopy 

Samples for NMR spectroscopy contained mouse kp60 N-terminal domains at a 

concentration of approximately 0.1 mM in 5% D2O–95% H2O, 20 mM sodium phosphate buffer 

(pH 7.5) and 1% CHAPS. Samples for NMR spectroscopy contained mouse NVL2 N-terminal 

domains at a concentration of approximately 0.1 mM in 5% D2O–95% H2O and 25 mM sodium 

phosphate buffer (pH 6.4). 
1
H–

15
N HSQC spectra for kp60 N-terminal domains were recorded on a 

500 MHz Bruker DRX NMR spectrometer equipped with a cryogenic probe at 25°C. 
1
H–

15
N HSQC  
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spectra for NVL2 domains were recorded on a 800 MHz Bruker Avance NMR spectrometer 

equipped with a cryogenic probe at 25°C. Data were processed by using NMRPipe
19

. 

 

CD and fluorescence spectroscopy 

CD spectra of mouse kp60 N-terminal domains were measured in 0.1-cm path length 

cuvettes at 25°C using a JASCO J-720W spectropolarimeter (JASCO, Co, Tokyo). 10 µM of each 

protein was dissolved in buffer containing 1 mM EDTA and 50 mM Tris–HCl (pH 7.5). 

Fluorescence spectra of 8-ANS bound to mouse kp60 N-terminal domains and bovine -

lactalbumin were measured in a 1-cm path length cuvette at 25°C using a Shimadzu RF-5300PC 

spectrofluorophotometer (Kyoto, Japan). An excitation wavelength of 370 nm was used and 

emission from 400 to 600 nm measured. Fluorescence enhancement experiments were done by 

measuring the difference spectra of fluorescence emission from various concentrations of 8-ANS 

(0–100 µM) with and without 4 µM of protein in buffer containing 1 mM EDTA and 50 mM Tris–

HCl (pH 7.5), except -lactalbumin (pH 2.0). Because the unit of fluorescence intensity is arbitrary, 

-lactalbumin at pH 2.0 was used as a reference of fluorescence enhancement of a molten globule 

protein. 

 

Analytical ultracentrifugation 

Sedimentation velocity experiments were carried out using an Optima XL-I analytical 

ultracentrifuge (Beckman Coulter, Fullerton, CA) with a Beckman An-50 Ti rotor. For 

sedimentation velocity experiments, cells with a standard Epon two-channel centerpiece and 

sapphire windows were used. Sample (400 µl) and reference buffer (420 µl) were loaded into cells. 

The rotor temperature was equilibrated at 20°C in the vacuum chamber for 1–2 h prior to start-up. 

Absorbance (OD280) scans were collected at 10 min intervals during sedimentation at 50 x 10
3
 rpm. 

The sedimentation velocity experiments for kp60 N-terminal domains were conducted at  
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concentrations of between 0.17 and 0.4 mg/ml. Partial specific volume of the protein, solvent 

density and solvent viscosity were calculated from standard tables using the program SEDNTERP, 

version 1.08
20

. The resulting scans were analyzed using the continuous distribution (c(s)) analysis 

module in the program SEDFIT version 9.3
21

. Sedimentation coefficient increments of 50 or 100 

were used in the appropriate range for each sample, and the frictional coefficient was allowed to 

float during fitting. The weight average sedimentation coefficient was obtained by integrating the 

range of sedimentation coefficients in which peaks were present. 

Sedimentation equilibrium experiments were also carried out in cells with six channel 

centerpiece and quartz windows. The sample concentrations were 0.17, 0.29 and 0.4 mg/ml. The 

absorbance wavelength was set at 280 nm, and data was acquired at 20°C. Data were obtained at 15, 

20, 25, and 30 x 10
3
 rpm. A total equilibration time of 14 h was used for each speed, with a scan 

taken at 12 h to ensure equilibrium had been reached. Data analysis was performed by global 

analysis of data sets obtained at different loading concentrations and rotor speeds using XL-A/XL-I 

Data Analysis Software Version 4.0. 

 

 

 

 

 

 

 

 

 

 

 

 



 
PART II 

 26 

Results 

 

Initial NMR assessment of N-terminal domains from AAA ATPases 

We have analyzed members of the AAA-ATPase family of proteins
22,23

; katanin p60 

(kp60) and nuclear VCP-like protein 2 (NVL2). We anticipated that the N-terminal region of AAA-

ATPases may possess modular domains responsible for specific substrate and/or adaptor binding 

regions. Our recent success in determining the structure of the N-terminal domain(s) from PEX1 

ATPase
24

 encouraged us to apply such an approach to the AAA proteins. Figure 1 shows a sequence 

alignment of the N-terminal 100 amino acid region of kp60 and NVL2. Starting from the full length 

sequence of mammalian proteins of both kp60 and NVL2, orthologous sequences were retrieved 

from the nr (non-redundant) protein sequence database using PSI-BLAST. Although there had been 

no indication of the presence of an isolatable domain at the N-terminus of either protein at the 

starting point of this research, the initial domain boundaries were defined as residues 1–90 and 1–93 

for mouse kp60 and mouse NVL2, respectively, because these positions are less conserved among 

their orthologs (Fig. 1). Note that the newer version of fold recognition servers (e.g. FORTE and 

FUGUE) have been enabled to detect a MIT-domain like region at the N-terminus of kp60, after the 

structures of MIT domain were reported
25-27

. GST-fusion expression vectors for both domains of 

mouse and human orthologs were constructed, and the domains were expressed in Escherichia coli 

BL21(DE3). Preliminary experiments showed that mouse kp601–90 and mouse NVL21–93 were more 

soluble than the human orthologs (data not shown). Thus, the recombinant mouse proteins were 

selected for further investigation. 
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FIGURE 1. Multiple alignment of protein sequences used in this study. (A) Domain architectures of mouse 

katanin p60 (kp60). (B) Domain architectures of mouse nuclear VCP-like protein 2 (NVL2). (C) Multiple 

alignment of the N-terminal region of kp60 orthologs; human (UniProtKB accession no. O75449) and mouse 

(Q9WV86) katanins, human (MGC2599; Q9BW62) and mouse (MGC40859; Q8K0T4) hypothetical proteins, 

Arabidopsis (Q9SEX2), Oryza (Q8S118), Anopheles (Q7PY77, fragment), Drosophila (Q9VN89) and Giardia 

(Q7R5W7) katanin p60. (D) Multiple alignment of the N-terminal region of NVL2 orthologs; human (O15381), 

mouse (Q9DBY8), Xenopus (Q7ZXI4), zebrafish (Q803I9), Drosophila (smallminded; P91638), C. elegans 

CED4IP (Q9U8K0), C. briggsae (CBG20797; Q60SQ4) and Anopheles (ENSANGP00000024422; Q7PID7) 

hypothetical proteins. Residue numbers are in parentheses. The sequence alignments were generated by ClustalX 

 

 

The 
1
H–

15
N HSQC spectrum of mouse kp601–90 is shown in Fig. 2E. We anticipated a total 

of 95 main chain amide signals for kp601–90 (including six additional vector-derived signals), but 

only about 60 signals were obtained. The dispersion of observed signals was similar to that of a 

typical HSQC pattern for a folded molecule, suggesting certain parts of the domain were folded. We 

performed an extensive search of different buffer conditions for NMR measurements of kp601–90 

according to standard practice
28

, by varying pH (5.5–7.5) and ionic strength (0–0.5 M), prior to 

applying the method described below (Fig. 3). Because the quality of HSQC spectra was largely 

independent of salt conditions, self-association appeared to be hydrophobic in nature. Nevertheless, 

more than 30 cross peaks were still missing. Thus, we attempted to improve the spectral quality of 

these protein domains using an alternative approach such as introducing mutations. 
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FIGURE 2. Correlation of coiled coil propensity and 
1
H–

15
N HSQC spectral dispersion for the N-terminal 

regions of katanin p60. (A–D) Coiled coil propensity calculated by the program COILS. A: kp601–90, B: kp601–90 

(L73R), C: kp601–72, D: kp601–68, solid, dotted and dashed lines indicate window sizes of 14, 21 and 28 residues, 

respectively. (E–G) 
1
H–

15
N HSQC spectra. E: kp601–90, F: kp601–90 (L73R), G: kp601–72. (H) Solubility of GST-

tagged katanin p60 Nterminal regions monitored by CDNB colorimetric assays. Filled diamond: kp601–90, filled 

box: kp601–90 (L73R), open triangle: kp601–72, open circle: kp601–68 
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FIGURE 3. Optimization of NMR conditions of kp601-90 according to the standard practice. (A-D) 
1
H-

15
N 

HSQC spectra of kp601-90 in various pH at fixed NaCl concentration of 0 mM. A: pH 4.3, B: pH 5.5, C: pH 6.5, D: 

pH 7.5. (E-H) 
1
H-

15
N HSQC spectra of kp601-90 at various NaCl concentrations at fixed pH 6.5. E: 0 mM, F: 50 

mM, G: 150 mM, H: 250 mM. 

 

 

Fine-tuning of boundaries of mouse kp60 N-terminal domain by destabilizing putative coiled coil 

region 

The sequences of mouse and human kp601–90 were analyzed by the program COILS with 

window sizes of 14, 21 and 28 residues. These are the default values of the size of gliding window 

to calculate the coiled-coil propensity
17

. In all cases, approximately 30 amino acid residues at the C-

terminal region of the putative domain showed a coiled coil propensity of greater than 50% (Fig. 

2A). Thus far, however, the predicted coiled coil region has not been ascribed any biological 

function. The length of the predicted coiled coil region was consistent with the number of missing 

cross peaks in the HSQC spectra (Fig. 2E). We therefore assumed that the missing signals on the 

HSQC spectrum originated from the region of the predicted coiled coil. 

A B C D

E F G H
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We designed several virtual mutants for the putative N-terminal domain of kp60. The 

virtual sequences for the N-terminal domain of kp60 were as follows: kp601–90 (I69R), kp601–90 

(I80R), kp601–90 (L73R), kp601–90 (L78R), kp601–90 (V66R), kp601–75, kp601–72 and kp601–68. It is 

known that increasing the number of heptad repeats dramatically stabilizes the coiled coil in two-, 

three-and four-stranded coiled coils
29

, and vice versa. It is known that partial digestion by 

endogenous trypsin-like protease in E. coli often generates products with Lys or Arg as the C-

terminal residue. Thus, we considered several truncated mutants with Lys or Arg at the C-terminus, 

which may avoid the heterogeneity of the C-terminal residues. The substitution mutants involved 

replacing a hydrophobic residue with an arginine, which was expected to increase solubility. In 

general, hydrophobic residues, such as Ile, Val, Leu, Met, Phe, Tyr and Trp, can be substituted by 

either charged (Arg, Lys, Asp, Glu) or small (Ser, Gly) residues. All the sequences were subjected 

to COILS analysis, and those that gave a substantial reduction of coiled coil propensity (kp601–90 

(L73R), kp601–72, kp601–68) were chosen for further study (Fig. 2B–D). 

The three candidate proteins were engineered for expression and purified. The shortest 

construct kp601–68 tended to precipitate during protein expression and purification. The solubility of 

the kp60 N-terminal domains was semi-quantitatively assessed by CDNB colorimetric assays of 

GST activity (Fig. 2H). Interestingly, the kp601–90 (L73R) mutant exhibited greater solubility than 

intact kp601–90. The kp601–90 (L73R) and kp601–72 mutants were soluble, and were further analyzed 

by 
1
H–

15
N HSQC (Fig. 2F and G, respectively; expansions of these spectra are available in Fig. 4). 

More than 60 NH signals were detected, which were essentially identical among all three constructs. 

However, the intensities in kp601–72 were more uniform than those of kp601–90 and kp601–90 (L73R). 

As a result, kp601–72 was chosen for further NMR structural determination studies. By further 

optimization of the solvent conditions for kp601–72, 98% completeness of the HSQC signal data was 

achieved (Fig. 5). Using this data, we were able to identify the missing signals in the spectra of 

kp601–90. The signals originating from 73 to 90 and additional seven signals (Y22, E62, A63, Q65,  
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V66, K67 and I69) were absent, and six out of the seven missing signals were originating from the 

helical region adjacent to the residues 73–90. These residues are thought to be involved in the self-

association interface, which is consistent with our initial assumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Expanded regions of 
1
H-

15
N HSQC of kp60 

N-terminal domains from Figure 2 (see text). A: kp601- 

90, B: kp601-90 (L73R), C: kp601-72. 
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FIGURE 5. 
1
H-

15
N HSQC of kp601-72 in the optimized buffer condition, containing 1 mM EDTA and 20 mM 

sodium phosphate buffer (pH 6.5). 71 amide proton peaks out of 72 expected were observed and assigned, 

except the six signals from the additional amino acids derived from the expression vector. The sequential 

assignments were achieved by using a combination of the 3D spectra, HNCA, HNCOCA, CBCACONH and 

HNCACB. The signal pairs of Gln and Asn side chain amide protons were indicated by lines. The spectra were 

obtained by 500 MHz Bruker Avance NMR spectrometers equipped with a cryogenic probe at 25 °C. 

 

 

 

 

 

 

 

 

 

 

 

The putative coiled coil region adopts a -helix, but is not sensitive to 8-ANS 

On the basis of the good signal dispersion of the HSQC spectra, it is likely that kp601–72 is 

the core folded domain. Thus, we assessed whether the truncated region, residues 73–90, adopts a 

-helical conformation as predicted. The CD spectra of kp601–90 and kp601–90 (L73R) showed a 

substantial increase of -helicity compared to that of kp601–72 (Fig. 6), suggesting the presence of a 

helix within the putative coiled coil region. The mutant kp601–90 (L73R) exhibited reduced self-

association whilst retaining the helical structure in the residues 73–90. In contrast, the spectra of 

kp601–68 showed a drastic loss of helical content, suggesting that the deletion of only four terminal 

residues introduced disturbance of the proper folding of the core domain. Interestingly, the GST-

fusion form of kp601–68 was less soluble, which may reflect decreased stability. 
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FIGURE 6. Comparison of CD spectra of kp60 N-terminal domains. 

N-terminal domain variants are shown in the panel. Each 10 µM of 

protein were dissolved in buffer containing 1 mM EDTA and 50 mM 

Tris–HCl (pH 7.5) 

 

 

 

It is known that a protein in a molten-globule state often shows broadening or elimination 

of signals in 
1
H–

15
N HSQC spectra, probably because of chemical exchange between 

conformationally heterogeneous sub-optimal species
30

. Since the signals originating from residues 

73–90 were not fully observed, kp601–90 may fit this criterion. Proteins in a molten-globule state are 

known to be sensitive to 8-ANS and increase their fluorescence. Thus, we examined whether the 

observed weak self-association of kp601–90 through the putative coiled coil region is observable in 

the 8-ANS fluorescence enhancement assay (Fig. 7). We measured 8-ANS fluorescence of various 

concentrations (0–100 µM) in the presence of 4 µM kp60 N-terminal domains. The same 

experiment was performed with -lactalbumin instead of kp60 N-terminal domains as a positive 

control for a molten globule protein. Nevertheless, as shown in Fig. 7, only a small fluorescence 

enhancement of kp601–90 as well as kp601–90 (L73R) was observed. This shows that the 

completeness and the signal dispersion of 
1
H–

15
N HSQC spectra of the protein of interest is a better 

diagnostic fingerprint for the degree of transient self-association than hydrophobic fluorescent 

probes. 

 

 

 

 



 
PART II 

 34 

 

 

 

 

 

 

 

 

FIGURE 7. Fluorescence enhancement experiments of 8-ANS bound to kp60 N-terminal domains and -

lactalbumin. The difference spectra of fluorescence emission between ANS with and without the protein are 

shown. (A) 10 µM, (B) 20 µM, (C) 40 µM of ANS were added to 4 µM of protein in buffer containing 1 mM 

EDTA and 50 mM Tris–HCl (pH 7.5), except -lactalbumin (pH 2.0). Lower panel is x 5 magnification of upper 

panel. kp60 N-terminal domain variants are shown in the spectra 

 

 

The putative coiled coil region caused monomer–dimer equilibrium in solution 

Sedimentation velocity provides hydrodynamic information about the sample and 

establishes the size distribution of proteins due to their different rates of migration in the centrifugal 

field. We analyzed the sedimentation velocity of kp601–90, kp601–90 (L73R) and kp601–72 at three 

different protein concentrations (0.17, 0.29 and 0.4 mg/ml) in order to assess whether self-

association was also concentration-dependent. We analyzed continuous distribution c(s) versus 

sedimentation coefficient for each data set by using the program SEDFIT, because c(s) distributions 

provide excellent sensitivity and resolution, enabling a clear distinction between different 

sedimenting species. 

Figure 8 shows the distributions of sedimentation coefficients on kp60 N-terminal domains 

at the concentration of 0.4 mg/ml. First, we confirmed that kp601–72 was a monomer. The c(s) 

distribution of kp601–72 shows the presence of a single species in the solution with a sedimentation  

A B C
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coefficient (s) of 1.2 (± 0.1) S. The c(s) distribution of kp601–72 did not show any significant change 

upon varied protein concentration. The molecular mass of kp601–72 was determined to be 9.7 (± 0.1) 

kDa by the sedimentation equilibrium experiments (Fig. 9), which agreed very well with the 

theoretical value (9.35 kDa) based on the amino acid sequence. 

 

FIGURE 8. Distribution of sedimentation 

coefficients [c(s)] for kp60 N-terminal domains. 

Calculated c(s) is plotted versus sedimentation 

coefficient (s). Open box: kp601–90, open triangle: 

kp601–90 (L73R), open circle: kp601–72. Experiments 

were conducted at an initial protein concentration of 

0.4 mg/ml in 1 mM EDTA, 100 mM NaCl and 20 

mM sodium phosphate buffer (pH 7.5, 20°C) and a 

rotor speed of 50 x 10
3
 rpm, and data was collected 

at time intervals of 10 min. The             

calculated values for the weight-average 

sedimentation coefficient (s) are s = 1.9 S, 1.4 S 

and 1.2 S for kp601–90, kp601–90 (L73R) and kp601–

72, respectively 

 

 

However, the c(s) distribution of kp601–90 and kp601–90 (L73R) showed that they were not 

simple monomeric proteins. kp601–90 gave a single peak, but the shape was much broader and the 

peak position much larger compared to that of kp601–72 (Fig. 8). At increased protein concentration 

(0.17, 0.29 and 0.4 mg/ml), the weight average of the peak increased (1.7, 1.8 and 1.9 S, data not 

shown). These results are consistent with a relatively rapid reversible equilibrium between the 

monomer and oligomer species, which was previously assumed from NMR spectra. To further 

examine the oligomerization status of kp601–90, we performed sedimentation equilibrium 

experiments (Fig. 9). Sedimentation equilibrium is a good indication of a thermodynamic 

equilibrium of the self-association systems and can be used to determine the dissociation  
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constants
31,32

. We applied several models for fitting. A simple monomeric model gave an estimated 

molecular mass of 20.1(± 0.2) kDa, which was greater than the theoretical value of 11.4 kDa. In the 

case of kp601–90 (L73R), c(s) distribution profiles also showed protein concentration-dependent 

peaks at positions between that of kp601–72 and kp601–90. The profile has a main peak relatively 

close to the peak for kp601–72, with a larger S-value component as a shoulder (Fig. 8). Upon 

increasing protein concentration the shoulder became larger. Thus, we conclude that kp601–90 

(L73R) exists as a monomer–dimer (or oligomer) equilibrium, although the level of oligomerization 

was much less than observed for kp601–90. 

                                                           FIGURE 9. Sedimentation 

equilibrium analysis for 

kp60 N-terminal domains. 

Measurements were performed 

at three different protein 

concentrations (0.17, 0.29 and 

0.4 mg/ml) in 1 mM EDTA, 

100 mM NaCl and 20 mM 

sodium phosphate buffer (pH 

7.5, 20°C) and a rotor speed of 

25 x 103 rpm. (A-C): kp601-90. 

A: 0.17, B: 0.29, C: 0.4 mg/ml. 

(D-F): kp601-90 (L73R). D: 

0.17, E: 0.29, F: 0.4 mg/ml. 

(G-I): kp601-72. G: 0.17, H: 

0.29, I: 0.4 mg/ml. The data 

for kp601-90 and kp601-90 

(L73R) were fit to a monomer-

dimer equilibrium model and 

the data for kp601-72 was fit to 

a single ideal species model. 

The residuals for kp601-72 are 

random and centered around 

zero, indicating that kp601-72 

sediments as a single 

homogeneous species. 
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Application of the COILS method for fine-tuning of boundaries of mouse NVL2 N-terminal 

domain 

The successful determination of the domain boundary for kp60 encouraged us to apply the 

same approach to another case, NVL2. 
1
H–

15
N HSQC spectra of mouse NVL21–93 are shown in Fig. 

10E. As with kp60, only about 50 signals were obtained from an expected total of 94 amide signals 

for NVL21–93 (including four additional vector-derived signals). The sequence of NVL21–93 was 

analyzed by the program COILS (Fig. 10A). Improved constructs for the N-terminal domain of 

NVL2 were designed using a similar approach to that described for kp60. The sequences NVL21–82, 

NVL21–77 and NVL21–74 were analyzed by COILS (Fig. 10B–D). In this case we only focused on 

deletion of the predicted coiled coil region, and the three constructs were engineered for expression 

and purified. HSQC data for all these mutant proteins showed a dramatic improvement in terms of 

either the number of observed peaks or the line widths compared to that of NVL21–93 (Fig. 10E–H; 

expansions of these spectra are available in Fig. 11). Interestingly, several weaker and sharper 

signals for NVL21–82 and NVL21–77, within the range of 
1
H chemical shift of 7.6-8.4, were not 

observed in the spectra for NVL21–93 and NVL21–74. These signals were presumably from the C-

terminal region, which exists as a random coil, rather than as a result of self-association. Therefore 

it would appear that removal of residues 83–93 is sufficient to hinder self-association. 
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FIGURE 10. Correlation of coiled coil propensity and 
1
H–

15
N HSQC spectral dispersion for the N-terminal 

regions of nuclear VCP-like protein 2. (A–D) Coiled coil propensity calculated by the program COILS. A: 

NVL21–93, B: NVL21–82, C: NVL21–77, D: NVL21–74, solid, dotted and dashed lines indicate window sizes of 14, 

21 and 28 residues, respectively. (E–H) 
1
H–

15
N HSQC spectra. E: NVL21–93, F: NVL21–82, G: NVL21–77, H: 

NVL21–74 
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FIGURE 11. Expanded regions of 
1
H-

15
N HSQC of NVL2 N-terminal domains from Figure 10 (see text). A: 

NVL21-93, B: NVL21-82, C: NVL21-77, D: NVL21-74. 
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Discussion 

 

We have shown two successful examples of rational fine-tuning of protein domain 

boundaries, kp60 and NVL2, excised from multidomain proteins, in which the initial HSQC 

assessment of the domains was poor. Our methodology circumvents the laborious practice of 

improving the protein characteristics, which usually involves engineering and screening large 

numbers of mutants in order to obtain a promising HSQC signal. This process is simplified by 

identifying residues likely to cause self-association prior to mutant design. We have employed a 

primitive bioinformatics approach to help eliminate the problem of self-association. 

The putative N-terminal domains of kp60 and NVL2 gave 
1
H–

15
N HSQC spectra typical of 

proteins displaying a tendency to self-associate. The disappearance of approximately 30 amide 

proton signals originating from interfacial residues upon oligomerization was attributed to exchange 

broadening at equilibrium. Interestingly, although the signals arising from the interfacial residues 

disappeared, there was no substantial line-broadening of other signals, suggesting that the coiled 

coil segments are connected to the core of the folded domain via a flexible segment. The proteins 

may have been in equilibrium between a monomer and oligomer with an uncertain association 

number. If a monomer–dimer self-association equilibrium model is applied, the dissociation 

constant of the equilibrium can be obtained from the analytical ultracentrifugation data. The 

molecular mass was constrained to the theoretical value and the dissociation constant was allowed 

to float during fitting. The fits were good (Fig. 9) and the dissociation constants were calculated to 

be (10
–5

~10
–6

) M and (10
–3

~10
–4

) M for kp601–90 and kp601–90 (L73R), respectively. This means that 

when the protein concentration is set to 0.1 mM as in an NMR sample, the monomer–dimmer ratio 

of the samples was approximately 1:2~7 and 1:0.1~0.5, respectively. Thus, the dimer species is 

dominant for kp601–90 in the NMR conditions, whereas the monomer is dominant for kp601–90 

(L73R). In both cases, chemical exchange between monomer and dimer spoiled the HSQC spectra.  
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The result obtained from both NMR and analytical ultracentrifugation was consistent with the 

proposed monomer–dimer equilibrium. 

Although analytical ultracentrifugation studies showed the molecular weight average of 

kp601–90 was close to that of a dimer, we do not rule out the potential formation of oligomers. 

Amino acid residues occurring in the (a–/d–) positions of the predicted coiled coil regions are 

different from the ideal amino acids for a homotypic coiled coil formation. Specifically, either 

(Leu/Leu) or (Ile/Leu) in the (a–/d–) positions respectively, form a dimeric coiled coil and the 

combination of (Ile/Ile) or (Leu/Ile) affords trimer or tetramer formation, respectively
29

. Since 

neither the sequences of kp60 and NVL2 met these criteria, the oligomerization through the putative 

coiled coil regions is probably promiscuous. 

Comparison of the HSQC spectra of the putative coiled coil-containing domains with those 

of the pruned domains show that the peak positions of dispersed amide proton signals are 

essentially identical. This supported the conclusion that the putative coiled coil regions are only 

engaged in inter-molecular interactions rather than internal contacts. The putative coiled coil 

regions of kp601–90 (L73R) adopt a -helical conformation (Fig. 6), with decreased selfassociation 

(Fig. 8). The truncated constructs appear to encode the minimal core structural domains, which are 

monomeric in nature and therefore useful for further structure determination. 

Based on the two successful examples of this study, we propose a flow diagram for 

obtaining a protein domain suitable for structural NMR studies (Fig. 12). Firstly, the boundaries of 

putative globular domains are identified by several bioinformatics techniques. The highly conserved 

region among the orthologs is tentatively defined as a domain. In addition, sequences likely to fall 

outside the putative domain are predicted as either disordered regions (e.g., disopred2)
33

or 

„„linker‟‟-like regions (e.g., DomCut)
34

. Alternatively, if the target protein exhibits high or 

substantial similarity to known protein domains, the initial domain boundary is defined according to 

the known example by using the PSI-BLAST
35

, Pfam
36

, SMART
37

 or ProDom
38

 servers. In addition,  
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fold recognition algorithms, such as FORTE
39

 and FUGUE
40

, are equally helpful because they are 

highly sensitive in finding distant homologs. Secondly, the sequence is subjected to the program 

COILS with the „„-mtidk‟‟ option. In most cases, a putative coiled coil region is found at the N- or 

C-termini of the prototype domain. Protein sequences with either deletion or amino acid substitution 

at the coiled coil region are then virtually generated. The virtually generated sequences are analyzed 

by COILS, and coiled coil propensity is calculated. It is better to monitor all the scores from 

window sizes of 14, 21, and 28 residues, because the sensitivities may differ. Thirdly, the 

expression plasmids with the designed domain boundaries are constructed, by using high-

throughput PRESAT-vector methodology
18

. A limited number of candidate target domains are 

cloned in parallel and incorporated into a bacterial expression vector, such as a GST-fusion vector. 

Amino acid substitution may also be introduced. Finally, only the most soluble proteins are 

subjected to 
15

N-labeling studies to obtain 
1
H–

15
N HSQC spectra. In this study, we performed the 

initial HSQC assessment for both the prototypical domains of kp60 and NVL2 according to 

standard practice. However, we propose the COILS analysis could be performed prior to the 

assessment by HSQC spectra (Fig. 12). 

 

 

 

 

 

 

 

FIGURE 12. Flow-chart for optimizing 

domain boundaries by minimizing coiled 

coil propensity. The steps drawn by bold 

lines are skipped if an initial HSQC 

assessment is attempted first 
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Ideally, a protein sample for 3D-structure determination should be stable, highly soluble 

and should not undergo self-association. The development of high-throughput structural genomics 

requires the adoption of novel strategies to obtain suitable protein samples. Examples include 

parallel construction of different fusion proteins
41

, cell-free expression systems using PCR-

amplified DNA fragments
42

, and parallel E. coli protein expression in a 96-well plate format
43

. 

These candidate proteins were isotopically-labeled and subjected to HSQC measurements. Finally, 

a „„go or no-go‟‟ decision of the selected protein as a target for structure determination is made 

based on the quality of the HSQC spectra. Constructs giving the best quality HSQC spectral data 

are ranked for further analysis. Such a strategy is suited to maximize throughput for genome-wide 

structural studies
44

. In contrast, our strategy is a rational method that proposes to improve protein 

behavior in solution using „„negative design‟‟ of potential coiled coils. Additionally, we have 

launched an automatic web-based server for this design method (available at 

http://www.mbs.cbrc.jp/coiled-coil/). Adoption of our strategy might avoid discarding biologically 

important protein samples with less promising HSQC spectra at an early stage. Furthermore, this 

design approach could be useful for preparing protein constructs for X-ray crystallography, because 

the putative coiled coil regions may prevent crystallization. In conclusion, it is useful to examine 

the existence of putative coiled coil regions associated with the target protein domain, when the 

initial HSQC spectrum is poor, or even before measuring the initial HSQC. Furthermore, our 

method is widely applicable because it does not require any preexisting knowledge of a „„not-yet-

characterized‟‟ domain. 
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Abstract  

 

Katanin p60 (kp60), a microtubule severing enzyme, plays a key role in cytoskeletal 

reorganization during various cellular events in an ATP-dependent manner. We show that a single 

domain isolated from the N-terminus of mouse katanin p60 (kp60-NTD) binds to tubulin. The 

solution structure of kp60-NTD was determined by NMR. Although their sequence similarities were 

as low as 20%, the structure of kp60-NTD revealed a striking similarity to those of the microtubule 

interacting and trafficking (MIT) domains, which adopt anti-parallel three-stranded helix bundle. In 

particular, the arrangement of helices 2 and 3 is well conserved between kp60-NTD and the MIT 

domain from Vps4, which is a homologous protein that promotes disassembly of the endosomal 

sorting complexes required for transport (ESCRT)-III membrane skeleton complex. Mutation 

studies revealed that the positively charged surface formed by helices 2 and 3 binds tubulin. This 

binding mode resembles the interaction between the MIT domain of Vps4 and Vps2/CHMP1a, a 

component of ESCRT-III. Our results show that both the molecular architecture and the binding 

modes are conserved between two AAA-ATPases: kp60 and Vps4. A common mechanism is 

evolutionarily conserved between two distinct cellular events, one which drives microtubule 

severing and the other involving membrane skeletal reorganization. 
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Introduction 

 

Microtubules (MTs) are polymers of  and  tubulin heterodimers. MTs exist as networks 

that dynamically and rapidly reorganize during different phases of the cell cycle. Spontaneous 

growth as well as shortening at the ends is indispensable for functional rearrangement. For example, 

they form the mitotic spindle during M phase, which mediates chromosome segregation during cell 

division based on the nature of dynamic rearrangement of MTs
1,2

. Many cellular events involving 

MTs are driven not only by tubulin‟s autonomous polymerization and dissociation, but also by MT-

severing enzymes. These enzymes disassemble the MTs to promote large changes in the 

cytoskeleton in an ATP-dependent manner
3
. 

There are three known MT-severing enzymes, katanin, spastin, and fidgetin, all of which 

belong to type I AAA-ATPases
4-7

. Katanin was first identified from sea urchin cytosol
8
, and consists 

of 2 subunits: a 60 KDa catalytic subunit (kp60) containing a single AAA domain and an 80 KDa 

regulatory subunit (kp80)
9,10

. Both the subunits are genetically conserved among many higher 

eukaryotes. Katanin localizes at the centrosomes in an MT-dependent manner
11

, which is probably 

required for recycling and for the poleward flux of tubulin in the spindle by disassembling MTs at 

their minus ends
12,13

. Kp60 homologs are also found in plants, insects, and nematodes, but not in 

yeasts. 

Kp60 has a common domain organization typical of a type I AAA-ATPase, which consists 

of an N-terminal substrate binding region followed by a single AAA domain at the C-terminus. In 

general, AAA-ATPases are believed to act as protein unfoldases that promote various cellular events, 

including dissociation of protein complexes, MT severing, protein degradation, protein 

translocation across organelle membranes, vesicle fusions, and multivesicular body formation
14,15

. 

Hartman and Vale
13

 demonstrated that the N-terminal half of kp60 contains an MT binding 

region, although the presence of a structural MT binding domain was not proved. The importance of  
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the N-terminal MT binding region of a plant kp60 ortholog has been recently reported
16

. In our 

previous study, we successfully isolated a folded structural domain from the kp60 N-terminal region 

(termed kp60-NTD)
17

. Although standard bioinformatics tools (e.g. PSI-BLAST
18

, Pfam
19,20

, and 

SMART
21

 failed to detect any similarity between kp60-NTD and other known domains, more 

sensitive bioinformatics techniques (e.g. FORTE
22

 and FUGUE
23

 can detect substantial similarities 

between kp60-NTD and MIT domains. MIT domains are small helical domains involved in protein-

protein interactions that are conserved among Vps4, spartin, spastin, and some other proteins
24

. 

In this study, we present the solution structure of kp60-NTD. We show that this structure is 

closely related to that of the MIT domain. In this context, the overall molecular architecture of kp60 

resembles other MIT domain-containing type I AAA-ATPases, such as the MT-severing enzyme 

spastin and the ESCRT-III disassembling enzyme Vps4 (Fig. 1A). Because the isolated kp60-NTD 

solely binds tubulin in vitro, the domain is a novel tubulin binding domain. Finally, the key residues 

of kp60-NTD for binding tubulin were determined. A model for MT binding is further discussed, 

which allows us to propose a model for the mechanism of MT severing by katanin. 
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Experimental procedures 

 

Protein Techniques 

Expression vectors for the recombinant GST-tagged form of kp60-NTDs of human and 

mouse were constructed using PRESAT vector methodology
17,25

. The fusion proteins were 

expressed in Escherichia coli BL21 (DE3), followed by affinity purification on glutathione-

Sepharose (GE Healthcare), and were dialyzed. These fusion proteins were used for tubulin binding 

assays. For NMR spectroscopy, 2 liters of culture was incubated with [
15

N]ammonium chloride and 

[
13

C]glucose as the sole nitrogen and carbon sources, respectively, following a standard 

fermentation protocol at 25 °C. Divalent cation was present as a trace mineral during fermentation. 

Purification of 
15

N- and 
13

C-/
15

N-labeled kp60-NTDs was achieved by glutathione-Sepharose 

affinity chromatography followed by thrombin digestion, benzamidine-Sepharose chromatography, 

cation exchange chromatography using a SP-Sepharose column, and gel filtration using Superdex 

75 column (GE Healthcare). 

 

NMR Spectroscopy 

Samples for NMR spectroscopy contained either 
15

N- or 
13

C-/
15

N-labeled kp60-NTD at 

concentrations of 0.5–0.9 mM in 5% D2O, 95% H2O, 20 mM sodium phosphate, and 1 mM EDTA 

with 50 mM NaCl/without NaCl (pH 6.5). Backbone and side chain assignments were obtained 

from 
15

N-heteronuclear single quantum coherence spectroscopy, 
13

C-heteronuclear single quantum 

coherence spectroscopy, HNCA, HNCO, HNCACB, CBCACONH, HCC(CO)NH, CC(CO)NH, 

and HCCH-total correlation spectroscopy spectra recorded at 25 °C, using Bruker Avance 

spectrometers (500 and 800 MHz, Avance; Bruker Biospin, Germany) equipped with cryomagnetic 

probes
26,27

. Data were processed using NMRPipe
28

 and SPARKY
29

 software. Interproton distances 

were obtained from three-dimensional 
13

C- and 
15

N-edited nuclear Overhauser effect spectroscopy  
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spectra recorded with a 100-ms mixing time. Structures were calculated using a standard seven 

iteration cycle protocol of the program CYANA version 2.0.17
30,31

. All nuclear Overhauser effect 

cross-peaks were selected manually using SPARKY. In total, 1723 meaningful nuclear Overhauser 

effect upper distance restraints were obtained, including 304 long range distances. Dihedral angle 

restraints were calculated on the basis of backbone atom chemical shifts
32

 using the TALOS 

program. The 20 structures with the lowest restraint energies were selected and analyzed using 

MOLMOL
33

 and PROCHECK-NMR software (Table 1)
34

. No distance restraint was violated by 

more than 0.3 Å and no torsional restraint by more than 5.0°. All the figures were prepared using 

MOLMOL and PyMOL. The atomic coordinates of the 20 best kp60-NTD NMR structures have 

been deposited in the Protein Data Bank under accession code 2rpa. Chemical shift assignments 

have been deposited in the BioMagResBank under accession code 11075. 

 

 

TABLE 1. Experimental restraints and statistics for 20 structures of kp60-NTD. 
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Mutation Studies and Tubulin Binding Assays 

Ala-substituted mutants were prepared by PCR amplification of the entire expression 

plasmid for kp60-NTD (residues 1–72) according to a standard PCR mutagenesis method using 

QuikChange sitedirected mutagenesis kit (Stratagene). Two complementary oligonucleotides with 

mutated sequences for each mutant were used as primers (Table 2). The resulting kp60-NTD genes 

were sequenced to confirm the mutations. All proteins were purified with glutathione-Sepharose 

(GE Healthcare) and dialyzed against a buffer containing 50 mM Tris-HCl and 150 mM NaCl (pH 

7.5). For pulldown assay, 80 pmol of GST (negative control) or GST fusion proteins were mixed 

with 10 µl of glutathione-Sepharose 4B (GE Healthcare) in 100 µl of binding buffer containing 80 

mM PIPES-KOH (pH 6.8), 0.5 mM EGTA, and 2 mM MgCl2 for 1 h at 4 °C. After washing the 

beads, 182 pmol (10 µg) of porcine tubulin (Cytoskeleton) was mixed in 200 µl of binding buffer 

for 2 h at 4 °C. The beads were washed three times, and the associated proteins were eluted with 50 

mM Tris-HCl and 10 mM reduced glutathione (pH 7.5). The eluted proteins were resolved by SDS-

PAGE and stained with silver. 
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TABLE 2. Oligonucleotides used as primers for Ala substitution. 
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Model Building 

A molecular model of the complex of kp60-NTD with a tubulin tetramer was constructed 

manually using MOLMOL
33

 on the basis of the complex between Vps4a-MIT and CHMP1a (PDB 

code 2jq9). First, the kp60-NTD structure determined in this study was superimposed onto the 

corresponding position of Vps4a-MIT. Then the tubulin tetramer, taken from PDB code 3du7, was 

superimposed onto the C-terminal helix of CHMP1a with the best one position selected out of the 

eight candidate positions of tubulin. 

 

Production of Full-length kp60 

Expression vector for the recombinant GST-tagged full-length kp60 of mouse was 

constructed by standard protocol using PCR, and ligated into BamHI-SalI sites of pGEX-6P3 (GE 

Healthcare Bioscience). Ala-substituted mutants were engineered with QuikChange site-directed 

mutagenesis kit (Stratagene). The fusion proteins were produced in E. coli JM109. Expression was 

induced with 0.1 mM IPTG, and LB cultures were grown overnight at 20 °C. For pull-down assays, 

GST-tagged proteins were bound to glutathione-Sepharose 4B (GE Healthcare Bioscience) and 

washed with the storage buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM MgCl2, and 0.1 

mM ATP) supplemented with EDTA-free protease inhibitor cocktail (Nacali tesque Inc, Kyoto, 

Japan) on column. GST-kp60s bound to glutathione-Sepharose were eluted with the elution buffer 

(50 mM Tris-HCl, 100 mM NaCl, 40 mM reduced glutathione, pH 8.0, and 5% glycerol). The 

eluents were further used for ATPase assays. 

 

ATPase assays 

ATPase activity was measured using an ATP regenerating system. The reaction mixture 

containing 50 mM Tris-HCl, pH 7.5, 50 mM KCl, 2 mM MgCl2, 2 mM phosphoenolpyruvate, 1 

mM ATP, 50 μg/ml pyruvate kinase, 50 μg/ml lactate dehydrogenase, and 0.2 mM NADH was used.  
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The reactions were initiated by the addition of GST-kp60s (0.5 μM), and the activities were 

measured by monitoring the decrease of NADH absorption at 340 nm at room temperature using 

UV-Vis spectrophotometer, UV mini-1240 (Shimadzu, Tokyo, Japan). The data were normalized 

for further analysis. 

 

Tubulin Binding Assays of full-length kp60 

5 μg of GST-proteins bound to glutathione-Sepharose 4B (20 μl) were incubated with 10 

μg of tubulin in the binding buffer (80 mM PIPES, pH 7.0, 1 mM MgCl2 and 1 mM EGTA) for 30 

min at 4°C. The beads were washed four times in the wash buffer (4.3 mM Na2HPO4, 1.47 mM 

KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.3, and 5% glycerol). The associated proteins were 

eluted in the elution buffer (50 mM Tris-HCl, 100 mM NaCl, 50 mM reduced glutathione, pH 8.0, 

and 5% glycerol). The eluted proteins were analyzed by SDS-PAGE and Western blotting. 

 

Western Blotting 

Proteins were resolved in SDS-PAGE and blotted onto a PVDF membrane. We detected 

tubulin using 1/2000 diluted anti--tubulin antibody (Siguma-Aldrich) followed by HRP-

conjugated anti-mouse IgG secondary antibody (Promega). The proteins were visualized using an 

ECL-Plus kit (GE Healthcare Bioscience) and detected using LAS-1000 detector (Fuji Film, Tokyo, 

Japan). 

 

Model building of full-length kp60 

A molecular model of the complex of kp60-NTD with a tubulin tetramer was constructed 

based on the complex between spastin-MIT and CHMP1b (PDB: 3eab). The kp60-NTD structure 

and the tubulin tetramer (3du7) were superimposed onto the corresponding position of spastin-MIT 

and the C-terminal helix of CHMP1b (174-193), respectively. The best model fully overrided on  
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helices with binding sites was selected considering steric crash and complementary charge 

interactions between structures. A hexameric ring model of AAA ATPase domains of kp60 was 

generated by superimposing the C atoms of kp60 onto those of the hexameric ring structure of 

p97 D1 (PDB: 1s3s) using MODELLER (version 9v6) (http://salilab.org/modeller/). Finally, the 

complex model structure of hexameric full-length kp60 with tubulin oligomer was constructed 

using MOLMOL
33

 by joining the components manually. 
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Results 

 

Structural Prediction and Sequence Analysis of kp60-NTD 

Prior to structural determination, we extensively analyzed residues 1–90 of the N-terminal 

sequences of mouse and human kp60, which represent the sequences preceding the AAA domains, 

by both bioinformatics and biophysical methods
17

. In brief, we found that these regions are 

genetically conserved only within a single subfamily of type I AAA-ATPase, corresponding to kp60 

orthologs (Fig. 1B). Members of this family are found in mammals, other vertebrates, plants, insects, 

urchins, and nematodes, but not in yeasts or bacteria. It should be noted that some archaeal kp60s 

(e.g. gi: 13814089 and 223478990) that lack this N-terminal region are less well related to other 

kp60s, although a strong relationship is found for Vps4 orthologs. Thus, these archaeal kp60s may 

be better annotated as Vps4 homologs
35

. 

Focusing upon the AAA-ATPase domain and analyzing the domain level phylogenetic tree, 

the type I AAA-ATPases, including kp60, spastin, and Vps4, form a single cluster
7,36

. The kp60 

orthologs with a conserved N-terminal region form a small subfamily, which is different from the 

Vps4 subfamily (Fig. 2). In some mammalian genomes (e.g. mouse, rat, and human), kp60-like A1s 

(katanal1s) are also conserved (Fig. 1). Katanal1s are very similar kp60 paralogs (~67% sequence 

identity over the entire chain). Moreover, this region (residues 1–90) can be further divided into two 

parts as follows: a well conserved core region (residues 1–72) and the following less-conserved 

region (~18 residues). The latter was a putative coiled-coil region, and the N-terminal region 

(residues 1–90) may form a dimer
17

, whereas the first 72 residues behaved as an ideal “NMR ready” 

monomer. We call this region (residues 1–72) the core N-terminal domain (denoted kp60-NTD) and 

used it for further analysis. 
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FIGURE 1. Domain architectures and multiple sequence alignment of kp60s and proteins containing MIT 

domains. (A) Domain architectures of mouse kp60, katanal1 and -2, and human Vps4b. The amino acid identities 

of each domain and full-length proteins between kp60 and other proteins are indicated. C.C., coiled-coil; MIT, 

MIT domain; LisH, LIS1 homology domain; AAA, AAA domain. (B) Multiple sequence alignment of kp60-NTDs 

and related proteins with secondary structure elements of kp60-NTD. The secondary structure elements are shown 

at the top of the figure. The -helices (1–3) are represented as thick lines and the C.C. region as a coil. Filled 

and open circles above the alignments indicate well conserved and less conserved core residues, respectively (see 

Fig. 3A). Triangles indicate residues substituted with Ala for examining tubulin binding. (Filled triangle, involved 

in tubulin binding; open triangle, not involved.) Protein names and UniProtKB accession numbers are as follows: 

kp60 human (O75449); kp60 mouse (Q9WV86); kp60 Drosophila (Q9VN89); kp60 Arabidopsis (Q9SEX2); 

katanal1 human (Q9BW62); katanal1 mouse (Q8K0T4); Vps4b human (O75351); Vps4b mouse (P46467); Vps4a 

human (Q9UN37); SNX15a human (Q9NRS6); spartin human (Q8N0X7); and spastin human (Q9UBP0). The 

sequence alignment was generated by ClustalX
62

. 
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FIGURE 2. Phylogenetic tree of the AAA protein superfamily. Red circle, kp60 subfamily; Blue circle, Vps4 

subfamily. The tree data were calculated by ClustalX
62

 and the tree was drawn with TreeView 

(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 

 

 

Structure of kp60-NTD 

kp60-NTD was analyzed by standard solution NMR techniques. All of the backbone and 

96% of the nonexchangeable protons of the side chain signals were assigned. An ensemble of 20 

structures with low CYANA target functions (Fig. 3A) was generated from 1723 experimental 

NMR constraints. These 20 structures satisfy the experimental constraints very well (Table 1). The 

stereochemical quality of the ensemble members is good, with all backbone /ψ angles occupying 

the most favored or additionally allowed regions of the Ramachandran plot (Table 1; Fig. 4). 

Excluding the disordered regions, i.e. the N-terminal region (residues 1–3 plus the preceding extra  
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six residues of the tag) and the C-terminal region (residues 69–72), the r.m.s.d. values were 0.33 Å 

for backbone heavy atoms and 0.83 Å for all heavy atoms. 

 

 

 

FIGURE 3. Solution structure 

of kp60-NTD. (A) Stereo view 

of the best fit superposition of 

the 20 structures with lowest 

target functions. Side chains of 

buried residues with solvent 

accessibility less than 10% are 

shown (cyan). (B) Top, 

electrostatic surface potential 

mapped onto a van der Waals 

surface diagram. The color scale 

ranges between −20 kBT (red) to 

−20 kBT (blue), where kB is 

Boltzmann‟s constant and T is 

temperature. Bottom, sequence 

conservation among the kp60-

NTDs is mapped on the surface. 

Conservative and variable 

residues are colored purple and 

cyan, respectively. The color 

codes were produced by 

ConSurf
63

. Ribbon diagrams of 

the kp60-NTDs are shown in 

the middle. The surface 

composed of helices 2 and 3 is 

shown as the front view (left) 

and the rear view (right). 
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FIGURE 4. Ramachandran plot for the phi-

psi values of the final 20 structures of kp60-

NTD. This figure was produced using 

PROCHECK-NMR
34

. 

 

 

 

As shown in Fig. 3B, kp60-NTD is organized into antiparallel three-helix bundle that 

consists of helix 1 (4–19), helix 2 (23–41), and helix 3 (46–69). The secondary structure is shown in 

Fig. 1B along with its amino acid sequence. Helices 1 and 2 are connected by a very tight three-

residue turn, whereas helices 2 and 3 are connected by a more flexible four-residue loop. Helices 2 

and 3 are longer than helix 1, thereby exposing a large protrusion formed by helix 2 C-terminus and 

helix 3 N-terminus. These three helices are packed against one another nearly in parallel. The 

packing angles between the helices are similar as follows: 19.3° between 1 and 2, 21.1° between 2 

and 3, and 26.1° between 1 and 3. Interhelical contacts mainly include hydrophobic side chain-side 

chain interactions. Core residues employed in these contacts are shown in Fig. 3A as well as in Fig. 

1B. A total of 12 nonpolar contacts between helices 1 and 2, 17 between helices 2 and 3, and 5 

between helices 1 and 3 were observed. The spatial arrangement of these three helices is nearly 

symmetric. The interhelical distances between helices 1 and 2 (5.0 Å) and helices 2 and 3 (5.5 Å) 

were shorter than that between helices 1 and 3 (6.5 Å). We found no obvious crevices or pockets on 

the surface of kp60-NTD. The kp60-NTD surface is highly charged (Fig. 3B). 
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Structural Similarities of kp60-NTD with MIT Domains and Other Tetratricopeptide Repeat 

Proteins 

When the structure of kp60-NTD was subjected to DALI search
37

, several MIT domains 

were first retrieved with Z-scores higher than 7.0, including NRBF-2 (PDB code 2crb, Z-score of 

9.6, and r.m.s.d. of 1.6 Å), Vps4b (PDB code 1wr0, Z-score of 8.9, and r.m.s.d. of 2.7 Å), Vta1 

(PDB code 2rkk, Z-score of 7.4, and r.m.s.d. of 2.4 Å), spastin (PDB code 3eab, Z-score of 7.2, and 

r.m.s.d. of 2.2 Å), and spartin (PDB code 2dl1, Z-score of 7.1, and r.m.s.d. of 2.4 Å). Thus, we first 

compared the structure of kp60-NTD with those of the MIT domains. Fig. 5 shows the structural 

comparisons between kp60-NTD and each of the MIT domains along with their sequence identity 

and structural fitness. Despite a low sequence similarity (10–19%), the kp60-NTD fold resembles 

those of the MIT domains, as shown by backbone r.m.s.d. of 2.2–2.7 A for more than 67 residues 

from the secondary structural regions. Among these, spastin is the product of SPG4, which is 

mutated in the most common form of hereditary spastic paraplegia
4
, and is involved with MT 

maintenance in axons
38,39

. Thus, the MIT domain of spastin is one of the closest homolog of kp60-

NTD with regard to its physiological relevance to MT severing. 

After comparing the structures in detail, all the helices were well superimposed, although 

the loop between helices 2 and 3 was not (Fig. 5E). The structures of the kp60 tubulin-binding site, 

kp60-NTD, and the MIT domain were strikingly similar, although their sequence similarity was 

very low (~19%). Thus, kp60-NTD is classified as a variant MIT domain. Because some of the MIT 

domains (e.g. spastin and spartin) are considered to bind microtubule (and/or tubulin), this structural 

similarity is not surprising. 

One of the most characteristic features of the MIT domain is its unique hydrophobic core 

formed by conserved Ala residues, referred to as the “Ala zipper”
40,41

. These are thus identified as 

the key residues for the MIT domain signature (Ala-Xaa6-Ala-Xaa11-Ala-Xaa6-Ala). These 

conserved Ala residues are present along the buried surfaces of helices 1–3 facing each other,  
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thereby forming a hydrophobic core. In kp60 and its closely related homologs, these key Ala 

residues are only partly conserved. For example, Ile-6 and Val-32 in mouse kp60-NTD correspond 

to the zipper-forming Ala residues (Ala-9 and Ala-35) in the human Vps4a-MIT domain. Although 

the MIT domain signature is not conserved in kp60-NTD, this domain is obviously a close variant 

of the MIT domain. This imperfect conservation of the MIT-domain signature may explain why 

methods such as PSI-BLAST
18

 and HMMER
19

 could not predict the structural similarity between 

kp60-NTD and the MIT domain. In the DALI search, we also found other proteins containing either 

twisted -helical hairpins or tetratricopeptide repeat motifs with Z-scores higher than 5.0. For 

example, partial structures of glycine-tRNA synthetase -chain (PDB code 1j5w, Z-score of 8.7, 

and r.m.s.d. of 2.2 Å), 14-3-3 protein Tau (PDB code 2btp, Z-score of 8.2, and r.m.s.d. of 2.4 Å), 

cyclophilin 40 (PDB code 1ihg, Z-score of 8.1, and r.m.s.d. of 2.7 Å), -E-catenin (PDB code 1l7c, 

Z-score of 7.9, and r.m.s.d. of 2.0 Å), fkbp52 (PDB code 1p5q, Z-score of 7.5, and r.m.s.d. of 3.0 

Å), invertase inhibitor Nt-CIF (PDB code 1rj1, Z-score of 6.3, and r.m.s.d. of 2.1 Å), and Hop 

(PDB code 1elr, Z-score of 5.2, and r.m.s.d. of 3.7 Å) were shown to resemble kp60-NTD (data not 

shown). 
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FIGURE 3. Structural comparisons of kp60-NTD with MIT domains. Ribbon diagrams of the proteins are as 

follows: (A) kp60 (PDB code 2rpa); (B) Vps4b (PDB code 1wr0); (C) spastin (PDB code 3eab); (D) spartin (PDB 

code 2dl1). Identity (top, %) and r.m.s.d. (bottom, Å) between kp60-NTD and the MIT domains are also presented. 

(E) Superposition of kp60-NTD (blue), Vps4b-MIT (magenta), spastin-MIT (pale green), and spartin-MIT 

(orange). 

 

 

Tubulin Binding by kp60-NTDs 

To examine the molecular function of kp60-NTD as an MT binding domain, we performed in vitro 

MT binding assays using polymerized MTs. Contrary to our expectation, we found that the amount 

of kp60-NTD co-sedimented with MTs was very low, at the limit of detectability (Fig. 6) (data not 

shown). However, kp60-NTD co-sedimented with medium size MTs (Fig. 6D). 

These results suggested that kp60-NTD might bind to oligomeric tubulin and/or MT fragments 

rather than enormous polymerized MTs. Thus, we did a pulldown assay using GST-tagged kp60-

NTD with unpolymerized tubulin. In vitro tubulin binding activity of kp60-NTD was observed (Fig. 

7A, lane 5). 
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FIGURE 6. Interactions between kp60-NTD and MTs/tubulin dimer. (A) Schematic diagram of pull-down 

assay using Microtubule binding protein spin down assay kit, BK029 (Cytoskeleton) to assess interactions 

between GST-tagged kp60-NTD and MTs/tubulin in vitro. GST-tagged kp60-NTD was mixed with a reaction 

solution after (upper left) and before (upper right) tubulin polymerization reaction, then ultracentrifuged. Tubulin 

was separated by molecular weight; polymerized MTs were sedimented at the bottom of tubes, non-polymerized 

tubulin migrated to the top of the solution (lower panel). Reaction solutions were divided into four fractions (from 

top to bottom) and each fraction was analyzed by SDS-PAGE. GST-tagged kp60-NTD co-sedimented with non-

polymerized tubulin. (B) The reaction solution after polymerization of only tubulin was ultracentrifuged and 

analyzed as a control. Lanes 1–4 correspond to fractions from top to bottom, indicated in the lower panels of A. 

(C) Pull-down assay for kp60-NTD mixed after tubulin polymerization reaction. kp60-NTD may possibly bind 

with a tubulin dimer rather than MTs. (D) Pull-down assays of the GST-tagged kp60-NTD mixed before tubulin 

polymerization reaction. SDS-PAGEs are Coomassie-stained. 

 

 

This tubulin binding activity varied with the length of the N-terminal domain. kp60-NTD 

(residues 1–72) binds tubulin, whereas kp60-NTD (residues 1–90) does not (Fig. 7A, lane 6). In our 

previous report, we showed that kp60-NTD (residues 1–90) formed a dimer using the coiled-coil 

region (residues 73–90)
17

. Thus, dimer formation may hide the interface of kp60-NTD from tubulin.  
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In addition, we found that the Vps4b-MIT domain (residues 1–77) did not bind tubulin (Fig. 7A, 

lane 17). Thus, the observed tubulin binding activity is specific for kp60-NTD. 

 

Tubulin-binding Site of kp60 NTD 

To determine the interfacial residues on kp60-NTD involved with tubulin recognition, we 

carried out mutagenesis experiments. Prior to these experiments, we attempted to identify the 

tubulin-interacting residues on kp60-NTD by NMR titration experiments and failed. We observed 

unexpected severe signal broadening even at very low tubulin concentration, which made further 

NMR analysis difficult (data not shown). Then, 10 residues from kp60-NTD (Gln-35, Asn-37, Asp-

45, Arg-49, Gln-53, Val-55, Glu-58, Lys-64, Lys-67, and Asp-68) were selected, and each was 

substituted with Ala. These residues were carefully selected from the surface residues located on 

helices 2 and 3. The binding activities of mutants were examined by pulldown experiments (Fig. 7A, 

lanes 7–16). 

The most significant effects were observed in mutations of residues on helix 3 as follows: 

Arg-49, Gln-53, Lys-64, and Lys-67. All of these side chains are hydrophilic and are exposed to the 

surface composed of helices 2 and 3 (Fig. 7, B and C). In addition, three of the four key residues are 

positively charged, suggesting an electrostatic interaction between kp60-NTD and tubulin. These 

residues were not conserved in the Vps4b-MIT domain as well as in the other MIT domains, such as 

spastin and spartin (Fig. 1B). This result is partially consistent with the inability of Vps4b-MIT to 

bind tubulin (Fig. 7A, lane 17). Because spastin and spartin can bind or regulate MTs
42,43

, this 

might indicate that these proteins bind MTs using regions other than the MIT domains. In contrast, 

mutants V55A, E58A, and D68A retained substantial tubulin binding activities (Fig. 7A, lanes 12, 

13, and 16). These residues are also on helix 3, but are exposed to the surface composed of helices 1 

and 3 or outside of helix 3 (Fig. 7, B and C). Similarly, residues in helix 2 (Gln-35 and Asn-37) and 

loop 2 (Asp-45) were not involved in tubulin binding (Fig. 7A, lanes 7–9). 
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FIGURE 4. Interactions of kp60-NTD with tubulin. (A) Pulldown assays of tubulin with GST-tagged kp60-

NTDs of wild type and Ala mutants and Vps4b-MIT in vitro. Tubulin was used as the input. Molecular size is 

shown in lane 2. Only the buffer and the GST tag used as negative controls are shown in lanes 3 and 4. 

Recombinant proteins used for pulldown are indicated at the top of the gel. SDS-PAGE was silver-stained. (B) 

and (C) Side and top views of the ribbon diagram of kp60-NTD, respectively. Side chains of residues that were 

substituted with Ala are shown. In the pulldown assay, residues that were affected and unaffected by Ala 

mutations for tubulin binding are colored red and blue, respectively. (D) Top view of the ribbon diagram of the 

complex between Vps4-MIT and CHMP1a (yellow) (PDB code 2jq9). Side chains of the residues interacting 

between Vps4 and CHMP1a are indicated. 

 

 

 

We further examined whether full-length kp60s with or without mutation in the N-terminal 

domain bind tubulin. We generated GST-tagged full-length kp60 in E. coli. Prior to the binding 

assay, we confirmed that the recombinant full-length kp60s had ATPase activity, according to the 

protocol in the recent paper (Fig. 8A)
16

. We then performed pulldown experiments using mutants 

R49A and K67A of full-length kp60. The full-length kp60 (wild type) bound tubulin, whereas the 

mutants lacked tubulin binding activities, as expected by the results of kp60-NTDs (Fig. 8B; Fig. 

7A). 
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FIGURE 8. ATPase activity of full-length kp60 and interactions of kp60 with tubulin. (A) ATPase activities 

of kp60s (0.5 μM) at 340 nm. Filled diamond (continuous line): wild type, filled box (dotted line): R49A, filled 

triangle (broken line): K67A. (B) Pull-down assays of tubulin with wild type (WT) of GST-kp60 and Ala mutants 

in vitro. Molecular size is shown in the left. Tubulin was used as the input. Only the buffer and the GST-tag mixed 

with tubulin as negative controls are shown in lanes 2 and 3. Recombinant proteins used for pull-down are 

indicated at the top of the gel. Filled and open arrowheads show tubulin and full-length kp60s, respectively. SDS-

PAGE was Coomassie-stained (upper panel). Western blotting analysis of tubulin bound to full-length kp60s was 

visualized by ECL (lower panel). 
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Discussion 

 

Structural and Functional Comparisons with Other Tubulin Binding Domains 

In this study, we have determined the structure of a novel tubulin binding domain derived 

from the conserved region of kp60, which was classified as a variant MIT domain. To our 

knowledge, this is the first experimental evidence for the direct interaction between an isolated MIT 

domain and tubulin. 

To date, structures of many MT and/or tubulin binding domains have been determined 

(Fig. 9)
44–49

. Interestingly, all--helical protein domains are dominant in these with solved 

structures, which might be advantageous for interactions with MT and/or tubulin. In the MT 

structure, the only accessible surface of tubulin includes helices 11 and 12 and the C-terminal tail
49–

51
. Thus, for one of tubulin recognition, helix-helix interactions of tubulin binding domains are 

suggested, although there are many structures of the known MT-interacting proteins left unsolved. 

 

                                                                       FIGURE 9. Comparison 

of structures and tubulin 

binding interfaces with 

other tubulin binding 

domains. Tubulin binding 

interfaces are indicated by 

black and arrows. (A) 

stathmin-like domain 

bound to the tubulin 

(white) (PDB: 1sa1); (B) 

EB1 CH domain (2qjz); 

(C) Msps TOG2 domain 

(2qk2); (D) CAP-Gly 

domain bound to the 

tubulin peptide (white) 

(2e4h), and (E) tubulin-      

specific chaperone 

cofactor A (1h7c). 

A B

C D E

N

C

N
C

N C

N

C

N

C



CHAPTER 2. A Common Substrate Recognition Mode Conserved between Katanin p60 and VPS4 

Governs Microtubule Severing and Membrane Skeleton Reorganization 

 71 

Structural and Functional Similarities to Vps4 

We identified the tubulin-binding interface of kp60-NTD, which is on the surface 

comprising helices 2 and 3 (Fig. 7B). This result is consistent with the studies by Stoppin-Mellet, in 

which a truncation mutant of Arabidopsis kp60 (AtKSS) that lacked the N-terminal 15 residues 

corresponding to helix 1 still retained MT severing activity
16

. Surprisingly, the tubulin binding 

interface is very similar to the substrate (Vps2 and CHMP1a)-binding interfaces of the MIT 

domains of Vps4 (Fig. 7, C and D)
35,52,53

. In other words, the common substrate-binding interfaces 

appear to be preserved between MT severing and membrane skeletal reorganization. 

In studies of Vps4-MIT complexed with C-terminal regions of Vps2 or CHMP1a, the MIT 

domains use helices 2 and 3 as the interface for the -helical peptides
35, 52

. The residues involved 

with kp60-NTD-tubulin interaction are relatively conserved among kp60 orthologs (Fig. 1B), but 

they are not conserved between kp60-NTD and the other MIT domains, thus explaining why Vps4-

MIT did not bind tubulin (Fig. 7A, lane 17). In contrast, another interface of Vps4-MIT for CHMPs 

has been reported, in which Vps4-MIT uses a shallow cleft between helices 1 and 3 for binding a 

proline-rich, CHMP6-derived peptide named MIT-interacting motif 2 (MIM2)
53

. In the structure of 

kp60-NTD, there was no correspondence between helices 1 and 3, as the interhelical distance was 

substantially narrower (6.5 Å) than that of Vps4-MIT. We do not rule out the possibility that the 

interface composed of helices 1–3 serves as the binding site of other factors, such as katanin p80 

and NDEL1
54

, both of which regulate the subcellular localization of kp60. 

 

Conserved Macromolecular Disassembling Mechanisms between Vps4 and Kp60 

Our findings indicate that the molecular architectures of kp60 and Vps4 are very similar in 

the following points: domain organization, structures of the N-terminal domains, and the relative 

locations of the interfaces for target proteins. Here, we propose some common features of the 

molecular mechanisms in different biological processes, MT severing and late endosomal luminal  
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membrane budding, driven by kp60 and Vps4, respectively. 

First, both the enzymes disassemble polymeric macromolecular complexes known as 

cytoskeleton and membrane skeleton. Second, these enzymes release protomers from 

macromolecular complexes (MT and ESCRT-III) in the cytoplasm depending on ATP hydrolysis. 

Finally, their N-terminal domains serve as adaptors to the protomers. The similarities of these 

mechanisms are illustrated in Fig. 10. 

The ESCRT-III complex is composed of self-associating coiled-coil proteins (CHMP1–6), 

which form filamentous circular structures on the membrane surface
55

. When Vps4 interacts with 

ESCRT-III filaments, it pulls out CHMP protomers from the filamentous circular structure. The 

residual filaments of ESCRT-III then reorganize into a smaller circular structure by self-association. 

Vps4 continues to pull protomers away, and the circular structure shrinks into a smaller wheel. 

Finally, this downsizing of the ESCRT-III circle results in membrane budding with concomitant 

alterations of the membrane structure. This model is known as the “concentric circle model”
56

. 

We propose that the early stage of MT severing might have a similar mechanism. kp60 

pulls a tubulin /-dimer away from MT in an ATP-dependent manner. However, contrary to the 

ESCRT-III polymer, polymerization of tubulin dimers is restricted to the plus end of MT as well as 

to the GTP form of tubulin, whereas polymerization at the minus end is extremely slow
1,57

. It is 

expected that once tubulin is pulled away by kp60, it can no longer fill the gap on MT. If two or 

more tubulin dimers are pulled away from this gap, then MT may start severing, resulting in a 

catastrophe. The structural similarities between kp60 and Vps4 revealed in this study encourage us 

to propose a model for the molecular mechanism of MT severing. 
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FIGURE 10. Schematic diagram of architecture and molecular function similarities between kp60 and Vps4. 

kp60 catalyzes the disassembly of MT via N-terminal domain binding, which results in MT severing. Vps4 

catalyzes the release of the ESCRT-III protomer via the MIT domain binding, which results in endosomal 

membrane invagination. For both biological events, the N-terminal domains serve as adaptors for the polymeric 

macromolecules, thereby disassembling either the cytoskeleton or the membrane skeleton in an ATP-dependent 

manner. 

 

 

Model for kp60-NTD Binding to Tubulin Oligomer 

To assess the detailed mechanism of MT severing, we constructed a model for the complex 

between kp60-NTD and a tubulin tetramer (Fig. 11). Our study is confined to the interface of the 

kp60 N-terminal adaptor domain to its tubulin substrate, as we did not identify the kp60-binding 

site on tubulin. Nevertheless, numerous literature resources provide a basis for model construction 

as follows. As discussed previously, the major candidates of the structural elements of tubulin that 

are accessible from outside MT are helices 11 and 12
49–51

. Next, the similarity between the 

interfaces of kp60-NTD with tubulin and that of Vps4-MIT with CHMP1a suggests that a helix on 

tubulin, which is similar to the CHMP1a helix (residues 115–127) bound to Vps4-MIT
52

, may serve 

as the binding site of kp60. Taking all the information into account, we propose a model for the 

tubulin + kp60-NTD complex (Fig. 11). 
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FIGURE 11. Model of -tubulin binding with kp60-NTD. Ribbon diagram of a model complex between kp60-

NTD and a tubulin tetramer (gray) is shown. -Tubulin helix 12, a putative interface of kp60-NTD, is colored 

yellow. 

 

 

 

While constructing the model, the following points were hypothesized: (i) one of the last 

helices (helix 11 or 12) makes contact with kp60-NTD at its helix 2/3 interface; (ii) the relative 

position and orientation between kp60-NTD and one of the tubulin helices mimic those between 

Vps4-MIT and the CHMP1a helix; (iii) steric crash between kp60-NTD and tubulin should be 

avoided; and (iv) charge-charge interactions between kp60-NTD and the tubulin helix should be 

maximized. 

As a result, we found the following four candidate positions on tubulin C-terminal helices 

for kp60-NTD binding: (i) helix 11 (residues 386–396); (ii) helix 11 (residues 390–400); (iii) helix 

12 (residues 420–430); and (iv) helix 12 (residues 423–433). All these positions are present on both 

tubulin- and tubulin-. Finally, by assessing complementarity of charge interactions in the model, 

the final model was selected out of the eight candidate models. Its helix 12 (residues 420–430) of 

tubulin 3 binds with kp60-NTD by occupying the corresponding position of CHMP1a (residues 

115–127) that binds Vps4-MIT (PDB code 2jq9) (Fig. 11; Fig. 12)
52

. 
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FIGURE 12. Model for tubulin helix 12 binding with 

kp60-NTD. An electrostatic surface potential diagram (top), a 

ribbon diagram (middle), and a sequence conservation diagram 

(bottom) for kp60-NTD were shown. Tubulin helix 12 is 

shown as a transparent cylinder (yellow). 

 

 

 

 

Alternatively, we generated the model of kp60-NTD + tubulin tetramer complex based on 

the complex between spastin-MIT with CHMP1b (PDB code 3eab) in which spastin-MIT used 

helices 1 and 3 as the interface to CHMP1b (Fig. 13)
58

. This model is not consistent with our 

mutation studies (Fig. 7). Consequently, we justified the modeling of helices 2 and 3 as the tubulin-

binding site. Because CHMP1b serves as an adaptor of spastin but not a substrate, this alternative 

model suggests that the helix 1/3 surface of kp60-NTD is a putative binding site for kp80, an 

adaptor of kp60 to bound MT and/or tubulin. 
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FIGURE 13. Comparison between model for tubulin binding interfaces of kp60-NTD. (A) Model of kp60-

NTD bound to tubulin at the helix 1/3 interface (see text). Ribbon diagram of the model complex between 

kp60-NTD and tubulin tetramer (grey) was constructed based on the complex between spastin-MIT and 

CHMP1b (PDB: 3eab). tubulin helix 12, a putative interface to kp60-NTD, is colored yellow. (B) and (C) Side 

(top) and top (bottom) views of the ribbon diagram of the complex between kp60-NTD and tubulin using the 

helix 1/3 and helix 2/3 interfaces, respectively. Side chains of key residues for binding tubulin are shown (red). 

(D) Top view of the ribbon diagram of the complex between spastin-MIT and CHMP1b (yellow) (3eab). Side 

chains of the residues interacting between spastin and CHMP1b are indicated. 
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In the model of Fig. 6, the direction of the pore of the hexameric AAA-ATPase domain, 

which follows C-terminal to kp60-NTD, may approach the C-terminal tail of tubulin. We further 

confirmed this idea by using the model structure of full-length hexameric kp60 complexes with 

tubulin (Fig. 14). The location is consistent with the hypothesis that the pore of the AAA domain 

“sucks in” the tubulin C-terminal tail upon ATP hydrolysis (threading model)
59,60

. In fact, the 

literature suggests that kp60 function requires its direct interaction with the C-terminal tail of 

tubulin. This is based on the observation that MT severing activity was abolished when MTs were 

pretreated with subtilisin
8
. Additional evidence regarding the MT-severing mechanism of spastin, 

another related AAAATPase, may support this idea. Spastin also recognizes and pulls the tubulin C-

terminal tail as an initial binding site that is indispensable for its MT severing activity
42,61

. The 

hypotheses derived from our complex model require confirmation by additional experimentation. 

 

In conclusion, the structure and key residues of kp60-NTD provide new insights into the 

molecular mechanisms of how the enzyme severs MT. The similarities of the molecular 

mechanisms as well as of the domain organizations suggest that these are evolutionally conserved 

among type I AAA-ATPases, kp60 and Vps4, whose cellular functions are distinct. 
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FIGURE 14. Proposed model for tubulin binding with full-length kp60. Model complex between tubulin 

origomer (grey) and hexameric full-length kp60, composed of kp60-NTD and AAA ATPase domain (violet) is 

shown. AAA ATPase domains form hexameric ring. Five of the six kp60-NTDs on the hexameric AAA ATPase 

domains were not drawn for clarity. One of the tubulin C-terminal tail is shown in yellow. The tail on the surface 

of MT may bind to the pore of the hexameric AAA ATPase domain of kp60. 
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Abstract  

 

Katanin p60 (p60-katanin) is a microtubule (MT)-severing enzyme and its activity is 

regulated by p80 subunit (adaptor-p80). P60-katanin consists of an N-terminal domain, followed by 

a single AAA domain. We have previously shown that the N-terminal domain serves as the binding 

site for MT, the substrate of p60-katanin. In this study, we show that the same domain shares 

another interface with the C-terminal domain from adaptor-p80. We further show that Ca
2+

 ion 

inhibits the MT-severing activity of p60-katanin, whereas the MT-binding activity is preserved in 

the presence of Ca
2+

. In detail, the basal ATPase activity of p60-katanin is stimulated 2-fold by both 

MTs and the C-terminal domain of adaptor-p80, whereas Ca
2+

 reduces the elevated ATPase activity 

to the basal level. We identify the Ca
2+

-binding site at the end of helix 2 of the N-terminal domain, 

which is different from the MT-binding interface. On the basis of these observations, we propose a 

model in which possible spatial rearrangement of the N-terminal domain relative to the C-terminal 

AAA domain may be important for productive ATP hydrolysis towards MT-severing. Our model 

can explain how Ca
2+

 regulates both its severing and ATP hydrolysis activity, since the Ca
2+

-binding 

site on the N-terminal domain moves close to the AAA domain during MT-severing. 
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Introduction 

 

Katanin, spastin, and fidgetin are major three microtubule (MT)-severing enzymes
1-5

. 

Katanin is a heterodimeric ATPase composed of two subunits, p60 (p60-katanin) and p80 (adaptor-

p80). P60-katanin is the catalytic factor responsible for breaking MTs in an ATP-dependent manner, 

and contains a single AAA domain. Adaptor-p80 is a regulatory factor containing six WD40 repeats, 

and is not essential for severing activity (Fig. 1)
6,7

. The MT-severing function of katanin is specific 

in the cell types and cell cycles. For example, katanin promotes mitosis in proliferating cells, where 

it severs MTs at the mitotic spindle poles and increases the number of minus ends, thereby resulting 

in accumulation of -tubulin at the mitotic centrosomes
8
. On the other hand, katanin exhibits 

severing activity of the metaphase spindles at the spindle poles
9
. 

Recently, MT-severing by katanin in neuronal cells has drawn increased attentions, owing 

to its contribution to neurite outgrowth and implications in neurodegenerative diseases. In nascent 

neurons, it seems critical that the MTs are chopped by katanin at the cell body prior to being 

translocated into axons; subsequently, the chopped MT fragments disassemble into tubulin dimers 

that reassemble into long MTs again
10

. In contrast, excessive MT-severing by exogenous 

overexpression of p60-katanin results in shortening of the total process length of MTs in 

hipocampal neuron
11

. In a model of neurodegenerative disease, MT breakdown by katanin triggers 

the loss of neurite spikes but not apoptosis of neurons, while the MT-associated protein (MAP), tau 

may function as the protectant of MTs against attack by katanin
12

. Thus, the mechanism of p60-

katanin regulation by adaptor-p80 or other factors such as tau in various cells and tissues, and at 

different developmental stages, is an important and unresolved issue.  

We have previously shown that the mechanism of substrate recognition is evolutionarily 

conserved between p60-katanin and its related AAA ATPase Vps4
13,14

. Vps4 is responsible for the 

dissociation of membrane skeleton ESCRT-III fibrils. Note that p60-katanin and Vps4 share a 
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common domain organization typical of type I AAA-ATPases, which consists of an N-terminal 

substrate-binding region, followed by a single AAA domain at the C-terminus. Despite the low 

(~20%) amino acid identity, we have shown that the 3D structure of the N-terminal domain of p60-

katanin is strikingly similar to that of the MIT (microtubule interacting and trafficking) domain of 

Vps4 and other MIT domains. Therefore, we named this domain “variant MIT” (vMIT) domain. 

Helices 2 and 3 of p60-vMIT make up the interface with MTs, which is similar to the interface that 

Vps4-MIT makes with its substrate ESCRT-III
14

. We further predicted that the binding site for p60-

katanin in MTs is located at helix 12 of the -tubulin subunit. Interestingly, this helix was recently 

proposed as the binding site for tau
15

. On the basis of our structural model of the p60-MT complex, 

competition between tau and katanin may occur at this twelfth helix of -tubulin. This unexpected 

coincidence is, however, consistent with the hypothesis proposed by Baas et al., in which the 

physiological role of tau is to protect the MT bundle in axons against the MT-severing activity of 

p60-katanin
12

. Sudo et al. has recently proposed this competition between tau (MT-stabilizing) and 

katanin (MT-severing) as a new therapeutic target for dementia and other neurodegenerative 

diseases
16

. 

In this study, we focused on the role of the vMIT domain in regulating the ATPase activity 

of p60-katanin in detail. It is known that either MT (substrate) alone or MT + p80 (adaptor) 

enhances the ATPase activity of p60-katanin
6,17,18

, although the underlying molecular mechanism 

remains unclear. We therefore hypothesized that substrate/adaptor-dependent ATPase activation 

originates from p60-vMIT by a change in the location of this domain relative to the AAA domain. 

During the course of biochemical studies, we found that Ca
2+

 ions inhibit the MT-severing activity 

of p60-katanin. Furthermore, we found that Ca
2+

 directly affects the vMIT domain and then cancels 

the elevated ATPase activity of p60-katanin that occurs in the presence of either MT or the C-

terminal domain of adaptor-p80 (p80-CTD). Given that Ca
2+

 is a key intracellular signal that 

regulates indirectly MT stability, as well as rearranging the cytoskeleton in vivo, we further discuss 
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the physiological implications of this finding. 

 

 

 

FIGURE 1. Domain architectures and multiple sequence alignment of p60-katanin and adaptor-p80. (A) 

Domain architectures of mouse p60-katanin and adaptor-p80. The regions of interaction between each domain are 

indicated by an arrow. vMIT, variant MIT domain; c.c., coiled-coil; AAA, AAA domain; CTD, C-terminal domain. 

(B) Multiple sequence alignment of p60-vMIT and p80-CTD, which interact with each other. The secondary 

structure elements of p60-vMIT are shown at the top. Filled triangles indicate residues involved in tubulin binding. 

Open circles indicate residues involved in Ca
2+

 binding (see Fig. 9). The protein names and UniProtKB accession 

numbers are as follows: p60 mouse (Q9WV86), p60 human (O75449), katanal1 mouse (Q8K0T4), katanal1 

human (Q9BW62), p60 Strogylocentrotus purpuratus (O61577), p60 Arabidopsis (Q9SEX2), p80 mouse 

(Q8BG40), p80 human (Q9BVA0), p80 Xenopus (Q4V7Y7), p80 Strogylocentrotus purpuratus (O61585), p80 

Drosophila (Q9NHF0), and p80 Arabidopsis (Q8H0T9). The sequence alignment was generated by ClustalX
45

. 

A

B
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Results 

 

P80-CTD interacts with helix 1 of p60-vMIT 

Previous biochemical studies by McNally et al.
7,19

 showed that the N-terminal half of p60-

katanin interacts with the C-terminal half of adaptor-p80, and in our previous study we showed 

from the 3D structure of p60-vMIT that the MT interface of p60-vMIT is located on the surface of 

helix 2/3. Here, therefore, we first examined the amino acid sequence of adaptor-p80 to identify the 

boundary of its C-terminal p60-binding domain. Fig. 1 summarizes the domain organization of p60-

katanin and adaptor-p80, and presents multiple sequence alignments of the two domains (p60-vMIT 

and p80-CTD) that interact with each other. Both subunits are genetically conserved among many 

higher eukaryotes. We identified the minimum structural domain of p80-CTD as residues 480–655 

and succeeded in isolating this domain. 

Next, we determined the interface between p60-vMIT and p80-CTD by 
1
H-

15
N HSQC 

experiments. The binding of p80-CTD induced drastic line broadening of NH signals from 
15

N-

labeled p60-vMIT (Fig. 2A; Fig. 3). Mapping of the broadened signals upon binding to p80-CTD 

suggested that a wide area covering the surface of helices 1/2 and helices 1/3 of p60-vMIT might 

form the binding site for p80-CTD (Fig. 2B; Table 1). We further examined the key residues 

involved in p80-binding by using Ala-substituted mutants of p60-vMIT in an in vitro pull-down 

assay (Fig. 2C). Wild-type p60-vMIT bound to p80-CTD in nearly a 1 to 1 ratio, as judged from the 

density of the bands in SDS-PAGE (Fig. 2C, lanes 3 and 14). All Ala mutants also showed similar 

binding to p80-CTD. Therefore, we assumed that a polar single mutation does not completely 

inhibit the interaction between p60-vMIT and p80-CTD, probably because the interface is 

multivalent and covers a wide area including helix 1. 
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FIGURE 2. Analyses of the interaction between p60-vMIT and p80-CTD. (A) 
1
H-

15
N HSQC spectra of p60-

vMIT in the absence (black) and presence (red) of p80-CTD. (B) Residues whose NH signals of p60-vMIT were 

broadening in the presence of p80-CTD are mapped on the surface in red. Orientations of the surface are shown 

by the ribbon diagram of p60-vMIT (PDB: 2rpa). The residues in helix 1 had mostly eliminated from the 
1
H-

15
N 

HSQC spectra, because those regions are involved in binding to p80-CTD. (C) Pull-down assays of MBP-tagged 

p80-CTD with GST-tagged p60-vMIT (wild-type and Ala mutants) in vitro. MBP-tagged p80-CTD was used as 

the input. Molecular sizes are shown in lanes 1 and 12. MBP was used as a negative control (lane 13). 

Recombinant proteins used for pull-down are indicated at the top of the gel. Filled and open arrowheads show 

MBP-tagged p80-CTD and GST-tagged p60-vMITs, respectively. The SDS-PAGE gel was stained with 

Coomassie blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. 
1
H-

15
N HSQC spectra of p60-vMIT in the absence (black) and presence (red) of p80-CTD. 

Residues whose NH signals of p60-vMIT were broadening in the presence of p80-CTD are shown in red. 
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TABLE 1. The broadened signals of 
15

N-labeled p60-vMIT in the presence of p80-CTD. 

 

loop 1        helix 1        loop 1-2       helix 2       loop 2-3       helix 3 

 

 

S2            M5            G20           D23           S42           T46 

L3            V7                          S24           K44           H47 

                   E8                          Y28                         L48 

                   N9                          G31                         R49 

                   V10                    V32                         Q53 

                   K11                          L33                         E58 

                   L12                          M36                         Q65 

                   A13                          Y39                         V66 

                   R14                          Y41                         K67 

                   E15                                                      D68 

                   Y16 

                   L18 

                   L19 

 

 

 

Binding of either MT or p80-CTD to p60-vMIT stimulates the ATPase activity of p60-katanin 

The ATPase activity of sea urchin and plant p60-katanin is stimulated by MTs alone, or 

both MTs and adaptor-p80
6,17,18

. In addition, the MT-severing activity of p60-katanin is stimulated 

by p80/con80 (412-655), according to a DAPI assay
6,7,18,20

. Here, we performed experiments using 

mammalian full-length p60-katanin and p80-CTD, the domain that we isolated above. We 

investigated the ability of p60-katanin to hydrolyze ATP in the presence of either MTs or p80-CTD 

in vitro (Fig. 4). Under both conditions, the basal ATPase activity of p60-katanin was stimulated by 

MTs or p80-CTD in a concentration-dependent manner. In the presence of MTs, stimulation of the 

ATPase activity of p60-katanin reached almost a maximum at 0.5 µM MTs, corresponding to a 

p60/MTs molar ratio of 0.8. We also found that the ATPase activity of p60-katanin is stimulated by 

the addition of p80-CTD alone. Stimulation of the ATPase activity of p60-katanin reached almost a  
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maximum at 0.4 µM p80-CTD, corresponding to a p60/p80-CTD molar ratio of 1.0. A similar 

extent of stimulation of p60-katanin was observed in the presence of both MTs and p80-CTD (Fig. 

5). These results show that binding of either MTs or p80-CTD to the N-terminal domain of p60-

katanin stimulates the basal ATPase activity of p60-katanin. In other words, p60-vMIT serves as a 

sensory regulator for the ATPase activity of p60-AAA. 
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FIGURE 4. ATPase activity of full-length p60-katanin is stimulated in the presence of MT or p80-CTD. (A) 

ATPase activity of p60-katanin (0.4 µM) was monitored at 340 nm in the absence (black diamond) or presence of 

0.5 µM (black square), 1 µM (gray diamond), and 2 µM (black triangle) of taxol-stabilized MTs (left). Gray circle 

indicates taxol-stabilized MTs (1 µM) without p60-katanin. ATPase activity was further expressed as μmoles of 

ATP hydrolyzed per min per mg of p60-katanin (units/mg) in 0, 0.5, 1, and 2 µM of taxol-stabilized MTs (right). 

(B) ATPase activity of p60-katanin (0.4 µM) was monitored at 340 nm in the absence (black diamond) or presence 

of 0.4 µM (open diamond), 0.6 µM (gray square), and 0.8 µM (open triangle) of p80-CTD (left). Open circle 

indicates p80-CTD (0.4 µM) without p60-katanin. ATPase activity was further expressed as μmoles of ATP 

hydrolyzed per min per mg of p60-katanin (units/mg) in 0, 0.4, 0.6, and 0.8 µM of p80-CTD (right). 
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FIGURE 5. ATPase activity of full-length p60-katanin in the presence of MT, p80-CTD, and increasing 

concentrations of Ca
2+

. (A) ATPase activity of p60-katanin (0.4 µM) was monitored at 340 nm in the absence 

(black diamond) and presence of 1 µM taxol-stabilized MTs (gray diamond), 0.4 µM p80-CTD (open diamond), 

or both (asterisk). (B) The ATPase activity of p60-katanin (0.4 µM) + taxol-stabilized MTs (1 µM) + p80-CTD 

(0.4 µM) was monitored at 340 nm in the presence of increasing Ca
2+

 concentrations: 1 mM (gray triangle), 2 mM 

(black circle), and 5 mM (open square) (left). ATPase activity in presence of MTs and p80-CTD was further 

expressed as μmoles of ATP hydrolyzed per min per mg of p60-katanin (units/mg) in 0, 1, 2, and 5 mM of Ca
2+

 

(right). 

 

 

Ca
2+

 negatively regulates the ATPase activity enhanced by MT or p80-CTD 

Next, we examined the effect of Ca
2+

 on the ATPase activity of p60-katanin. Interestingly, 

we found that Ca
2+

 reduced the increase in ATPase activity induced by MTs or p80-CTD to the 

basal level (Fig. 6). The basal ATPase activity of p60-katanin in the absence of MTs or p80-CTD 

was not affected by Ca
2+

 (Fig. 6A), even in a higher concentration such as 10 mM (data not shown). 

In the presence of MTs, however, the ATPase activity of p60-katanin decreased as the Ca
2+

 

concentration increased, finally dropping to the basal level at 5 mM Ca
2+

 (Fig. 6B). A similar 

tendency was observed in the presence of p80-CTD, where the ATPase activity dropped to the basal 

level at 2 mM Ca
2+

 (Fig. 6C). These results suggest that Ca
2+

 regulates a putative On/Off 

mechanism for the ATPase activity of p60-katanin, which may be associated with either the vMIT 

or AAA domain. 

 

FIGURE 6. Substrate-/adapter-stimulated ATPase activity of full-length p60-katanin is suppressed in the presence 

of Ca
2+

. (A) ATPase activity of p60-katanin (0.4 µM) (black diamond) was monitored at 340 nm with increasing 

Ca
2+

 concentrations: 1 mM (gray triangle), 2 mM (black circle), and 5 mM (open square) (left). ATPase activity 

was further expressed as μmoles of ATP hydrolyzed per min per mg of p60-katanin (units/mg) in 0, 1, 2, and 5 

mM of Ca
2+

 (right). (B, C) ATPase activity of p60-katanin (0.4 µM) + taxol-stabilized MTs (1 µM) (gray 

diamond) (B) or p60-katanin (0.4 µM) + p80-CTD (0.4 µM) (open diamond) (C) was monitored at 340 nm with 

increasing Ca
2+

 concentrations: 1 mM (gray triangle), 2 mM (black circle), and 5 mM (open square) (left). ATPase 

activity in presence of MTs or p80-CTD was further expressed as μmoles of ATP hydrolyzed per min per mg of 

p60-katanin (units/mg) in 0, 1, 2, and 5 mM of Ca
2+

 (right). 
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Ca
2+

 inhibits the MT-severing activity of p60-katanin, but does not inhibit its binding to MTs 

The dynamics of the polymerization–depolymerization of MTs is called “dynamic 

instability”
21

. Growing MTs suddenly start depolymerizing rapidly, known as a “catastrophe.” 

However, shortening MTs often are “rescued” and start polymerizing again
22

. In vitro, higher 

concentrations of Ca
2+

 in the mM range induce destabilization of MTs
23,24

; therefore, Ca
2+

 has been 

used for biochemical experiments to inhibit the polymerization or to induce the depolymerization of 

MTs. Fig. 7A shows the effects of Ca
2+

 on the interaction between full-length p60-katanin and MTs 

by a co-sedimentation assay. We then quantified a normalized amount of the degraded tubulin 

fragments from taxol-stabilized MTs (Fig. 7B, left) and p60-katanin co-sedimented with the 

remaining MT filaments (Fig.7B, right). In the absence of p60-katanin, marked depolymerization of 

MT was observed in a Ca
2+

-dependent manner, probably caused by a catastrophe effect
24

 (Fig. 7A, 

lanes 2–7; Fig. 7B, left). In the presence of wild-type p60-katanin, most of the MTs were severed by 

p60-katanin (Fig. 7A, lanes 8–11; Fig. 7B, left). However, MT-severing by p60-katanin was mostly 

inhibited by the presence of 10 mM Ca
2+

 (Fig. 7A, lanes 12 and 13; Fig. 7B, left). We observed a 

partial inhibition in the presence of 5 mM Ca
2+

 in multiple independent experiments (data not 

shown), thus we concluded that 5 mM of Ca
2+

 is an approximate threshold concentration of 

inhibition of MT-severing. 

 We further examined the MT-binding activity of p60-katanin using a K255A mutant, which 

lacks ATPase activity (data not shown). K255A bound to MTs regardless of Ca
2+

 concentration (Fig. 

7A, lanes 14–19; Fig. 7B, right). Furthermore, K255A might stabilize MTs, because the Ca
2+

-

dependent catastrophe of MTs was suppressed (Fig. 7A, left, lanes 14–19; Fig. 7B, left). Recently, 

McNally et al.
19

 showed that ATPase-deficient katanin promoted the assembly of meiotic spindles. 

Our observation of K255A is partially consistent with their result. Additionally, we examined the 

MT-binding activity of p60-katanin with ADP in the absence of Mg
2+

. P60-katanin with ADP bound 

to MTs regardless of Ca
2+

 concentration without MT-severing (Fig. 7A, right panel). Taken together,  
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we concluded that Ca
2+

 inhibits the MT-severing activity of p60-katanin without affecting its MT-

binding activity. 

 

FIGURE 7. Effects of Ca
2+

 on full-length p60-MT interactions. (A) In vitro MT co-sedimentation assay 

performed with increasing Ca
2+

 concentrations (0–10 mM) using GST-tagged p60-katanin (wild-type and K255A 

mutant) in the presense of ATP (left) or using GST-tagged p60-katanin (wild-type) in the presense of ADP without 

Mg
2+

 (right). Taxol-stabilized MTs and associated p60-katanin were separated from depolymerized tubulin and 

unbound p60-katanin by sedimentation in a glycerol cushion buffer. P and S represent the pellet fraction and the 

supernatant fraction, respectively. Molecular sizes are shown in lane 1. Open and filled arrowheads indicate GST-

tagged p60-katanin and tubulin, respectively. The SDS-PAGE gel was stained with Coomassie blue. (B) 

Quantitative analysis of degraded tubulin fragments from taxol-stabilized MTs (left panel) and p60-katanin 

fragments binding to MT after degradation (right panel). Signals corresponding to the MT/tubulin and p60-katanin 

fragments in (A) were integrated and normalized by their molecular weights, using ImageJ.

A

B
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Ca
2+

 directly binds to p60-vMIT different from the interface with MT 

 With the aim of obtaining information on the possible involvement of metal ions in the 

action mechanism of p60-vMIT, we examined its interaction with Ca
2+

 as well as Ce
3+

 as an ideal 

paramagnetic probe for Ca
2+

 (Fig. 8, Fig. 9A; Fig. 10A)
25,26

. NMR titration analyses of p60-vMIT in 

various Ca
2+

 concentrations are shown in Fig. 8. In the case of Ca
2+

, the residues showing a major 

chemical shift perturbation were V66, I69, and K71. Since these residues are adjacent to the C-

terminus of p60-katanin vMIT domain (residues 1-72), this binding site is assumed as an artifact of 

the use of the engineered domain-only construct. When using paramagnetic Ce
3+

 to enhance the 

chemical shift changes upon metal binding, the residues showing a large change, D23 and S24, 

were additionally found. Then, we succeeded in determination of this Ce
3+

 binding site by an 

analysis of pseudocontact shifts due to Ce
3+

 (Fig. 10B). The metal was chelated close to D23 and 

S24. From these result, we assumed that D23 and S24, which are evolutionarily conserved among 

many higher eukaryotes, form the binding site of Ca
2+

. This Ca
2+

-binding site differs from the 

putative interface between p60-vMIT and tubulin/MT, and so is consistent with our observation that 

Ca
2+

 did not inhibit MT-binding. 

 From the structural model of the p60–MT complex, we hypothesized that the Ca
2+

-binding 

site is close to the putative interface between the vMIT domain and hexameric AAA ATPase 

domains (Fig. 9B and C; Fig. 11), enabling us to propose a model of the regulatory role of the vMIT 

domain in MT-severing (Fig. 12). P60-katanin may form a putative ring-shaped hexamer, as 

indicated by Hartman et al.
17

. We assumed that hexameric p60-katanin possesses flexible linkers 

between the vMIT and the AAA domains, and may move over MTs using them freely. In the 

absence of Ca
2+

, the ATPase activity of p60-katanin is elevated upon binding to an MT through a 

contact between the vMIT domain and the AAA domain. The enhanced activity of p60-katanin may 

lead to MT-severing. After the reaction, p60-katanin is released from the MT and goes back to the 

basal state. In the presence of Ca
2+

, by contrast, p60-katanin does not adopt the activated state 

regardless of MT-binding. 
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FIGURE 8. 
1
H-

15
N HSQC spectra 

of p60-vMIT in the absence (black) 

and presence of 5 mM (magenta), 

10 mM (cyan), 15 mM (yellow), 25 

mM (green) Ca
2+

. Residues with the 

greatest chemical shift perturbations 

are shown. 

 

 

 

 

 

 

 

 

FIGURE 9. Ca
2+

-binding sites of p60-katanin. (A)
 1

H-
15

N HSQC spectra of p60-vMIT in the absence (violet) 

and presence of 1 mM (orange) and 2 mM (pale green) Ce
3+

 as a paramagnetic probe for Ca
2+

. Residues with the 

greatest chemical shift perturbations are shown. (B) Side and top views of the ribbon diagram of p60-vMIT (PDB: 

2rpa). Side chains of residues binding Ca
2+

 are shown in green. Tubulin helix 12, a putative interface of p60-vMIT, 

is colored yellow. (C) Proposed model for tubulin binding with full-length p60-katanin. Model complex between 

tubulin origomer (gray) and hexameric full-length p60-katanin, composed of p60-vMIT (blue), a coiled-coil (light 

blue), a flexible linker (light blue), and AAA ATPase (violet) domains is shown. One of the six p60-vMITs on the 

hexameric AAA ATPase is drawn. One helix 12 on tubulin, the putative interface of p60-katanin, is colored yellow. 

Residues bound to Ca
2+

 on p60-vMIT and residues on hexameric AAA ATPase domains close to the Ca
2+

-binding 

sites on p60-vMIT are shown in green. 
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FIGURE 10. Ce
3+

 titration experiments of p60-vMIT. (A) 
1
H-

15
N HSQC spectra of p60-vMIT in the absence 

(violet) and presence of 1 mM (orange), 2 mM (pale green), 5 mM (red), 10 mM (blue) Ce
3+

 as a paramagnetic 

probe for Ca
2+

. Residues with the greatest chemical shift perturbations are shown. (B) A view of best 5 positions 

of Ce
3+

 ion (orange) in p60-vMIT (PDB: 2rpa). Side chains of residues binding Ce
3+

 are shown in green. The 

position of the coordinating Ce
3+ 

ion was calculated by using the program FANTASIAN 

(http://www.cerm.unifi.it./softwares/software- fantasian) coupled with an inhouse grid-search program with 144 

pseudocontact shift value of NH signals. 
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FIGURE 11. Close-up view of the Ca
2+

 

binding region of p60-katanin in Fig. 9C. 

 

FIGURE 12. Model of the mechanism of MT-severing by p60-katanin in the absence and presence of Ca
2+

. 

Hexameric p60-katanin represents the enzyme in a basal state of ATP-dependent ATPase activity. Four of the six 

p60-vMIT domains, followed by flexible linkers on the side view of the hexameric AAA ring are not drawn for 

clarify. In the absence of Ca
2+

, p60-katanin is in an activated state, whereby its ATPase activity is elevated by 

binding MT through an interaction between the vMIT and AAA domains, resulting in MT-severing. By contrast, 

when p60-katanin binds Ca
2+

, p60-katanin remains in a basal state regardless of MT-binding and does not sever 

MT. 
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Discussion 

 

The function of p80-CTD to capture and release p60-vMIT 

 Our NMR experiment and mutation studies suggested that p80-CTD binds to a wide 

surface of p60-MIT, including helix 1/2 and helix 1/3, which differs from the MT-binding surface, 

helix 2/3 (Fig. 2B)
14

. If so, p80-CTD and MT could simultaneously bind to p60-vMIT, forming a 

ternary complex. However, our ATPase assay showed only a limited additive effect of p80-CTD and 

MT on ATPase activity (Fig. 5A). In addition, p80-CTD was excluded from the p60/MT complex 

(Fig. 13, lanes 9–12). Thus, in our experiments, we did not observe a ternary complex of p80-CTD, 

p60-vMIT and MT. Steric hindrance caused by p80-CTD binding to the helix 1/2 and 1/3 surfaces 

may occur. This unique activity of p80-CTD may explain how adaptor-p80 recruits p60-katanin to 

MTs. That is, using the N-terminal WD40 domain, adaptor-p80 might localize on -TuRC at the 

minus end of an MT
6
, while p80-CTD captures p60-vMIT. P60-katanin would then relocate to the 

MT, while p80-CTD releases p60-vMIT. Note that, the in vivo activity of adaptor-p80 against p60-

katanin also remains controversial, because adaptor-p80 localizes p60-katanin to -TuRC and 

stimulates MT severing
8
, whereas overexpression of adaptor-p80 suppress the MT-severing activity 

of p60-katanin in certain types of cell
11

. 

 

FIGURE 13. MT co-sedimentation assay in the 

presence of p60-katanin and p80-CTD in vitro. The 

assay used a GST-tagged K255A mutant p60 and MBP-

tagged p80-CTD. MTs and associated proteins were 

separated from unbound proteins by sedimentation in a 

glycerol cushion buffer. The proteins used for co-

sedimentation are indicated at the top of the gel. P and S 

represent the pellet fraction and the supernatant fraction, 

respectively. Molecular sizes are shown in lanes 1 and 8. 

Open, gray and filled arrowheads show GST-tagged p60, 

MBP-tagged p80-CTD and MT, respectively. The SDS-

PAGE gel was stained with Coomassie blue. 
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Existence of an MT-/p80-activated state of p60-katanin 

 The phenomenon that MT (substrate) as well as p80 (adaptor) binding to p60-katanin 

increases the ATPase activity of p60-katanin has been reported previously
6,17,18

, although the 

molecular mechanism remains unclear. One explanation might be an equilibrium shift between an 

inactive dimeric state and an active hexameric state that forms upon binding to substrate and/or 

adaptor. For example, the katanin-related type I AAA enzyme Vps4 has been shown to act in a 

dimer–hexamer equilibrium in a nucleotide-dependent manner, although substrate-dependent 

ATPase activation of Vps4 has not been reported so far
27,28

. Since multivalent binding between 

active katanin and MT is expected, MT-binding may promote hexamer formation of p60-katanin. 

We can rule out this possibility, however, because activation of ATP hydrolysis was observed even 

upon p60-katanin binding to p80-CTD, which was monomeric in solution (data not shown). This 

suggests the existence of a unique MT-/p80- activated state of p60-katanin. This activated state of 

p60-katanin is more likely attributed to the intra-molecular spatial rearrangement between the N-

terminal vMIT and the central AAA domains, rather than an equilibrium shift. 

 The regulatory role of p60-vMIT on its own AAA-domain has not been predicted. 

Nevertheless, it is not surprising if the analogy to other AAA-ATPases, including type II rather than 

type I enzymes, is considered. In general, the N-terminal domains preceding the AAA domain of 

type II AAA enzymes may perform three molecular functions: (i) provision of an interface for 

substrates for ATP hydrolyzing energy; (ii) provision of an interface for adaptor proteins that mainly 

contribute to subcellular localization; and (iii) modulation of ATPase activity. We previously 

reported that p60-vMIT serves as an interface for MTs
14

. We also reported that the N-terminal 

domain of both VCP/p97 and NSF serves as the substrate-binding site, as well as the surface for 

organelle membrane binding
29

. On the other hand, it has been reported that binding to substrates or 

membranes regulates the ATPase activity of these proteins
30,31

. In VCP/p97, the residues at the 

contact site between the N-domain and the first AAA domain (D1-domain) were identified in 



CHAPTER 3. Effect of Ca
2+

 on the Microtubule-severing Enzyme P60-katanin: 

Insight into the Substrate-dependent Activation Mechanism 

 107 

conjunction with Paget‟s disease of the bone and front temporal dementia (IBMPFD) (e.g., R155, 

A232, T262, and N387)
30,31

. Conformational change of the N-domain relative to the D1-domain in a 

nucleotide-dependent manner was observed by X-ray crystallography
30,31

. A mutation on A232 

(A232E), one of the key residues, is associated with increased severity of the disease
32

. 

Biochemically, an A232E mutant exhibits elevated ATPase activity
33

. In NSF, a similar mechanism 

in which the contact site between the N-domain and D1 is associated with enhancement of ATPase 

activity has also been identified
34

. Note that, although both the sequences and the structures of the 

N-terminal domains of katanin and VCP/NSF family are rather different, the AAA domains are 

highly conserved. Finally, we illustrate the MT-activated state of p60-katanin in Fig. 9C, under the 

assumption that the edge of p60-vMIT becomes close enough to these interfacial residues on the 

AAA domain with a minimum structural change upon MT-binding. In this model, residues E397 

and G237 of p60-katanin are highlighted, which correspond to the interfacial residue N387 and the 

key residue A232 in VCP, respectively. 

 

Ca
2+

 alters the spatial domain rearrangement of p60-katanin in its MT-/p80-activated state 

 In this study, we showed that Ca
2+

 inhibits the MT-severing activity of katanin, as well as 

reducing its MT-elevated ATPase activity to basal levels. Although the mechanism of this 

modulation seems complicated, studying the effect of Ca
2+

 on p60-katanin may provide clues to the 

working model of MT-severing, which is driven by ATP hydrolyzing energy and catalyzed by 

katanin, as shown in Fig. 9C. First, we showed that Ca
2+

 affects p60-katanin activity by directly 

binding to the vMIT domain (Fig. 9). In contrast, Ca
2+

 does not affect either MT-binding or p80-

binding by the domain (Fig. 7, data not shown). Because the Ca
2+

-binding site on p60-vMIT is 

different from its MT-binding site, these observations are consistent with each other. Next, we found 

that Ca
2+

 does not affect the basal ATPase activity level of p60-katanin in the absence of MT and/or 

adaptor-p80 (Fig. 6A). In contrast, Ca
2+

 has an effect only on the MT- and/or p80-elevated ATPase  
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activity, but not for the basal activity (Fig. 6B and C; Fig. 5B). Because a flexible linker (~114aa) 

connects the N-terminal vMIT domain and the AAA domain, this Ca
2+

 effect is difficult to explain 

unless these two domains move spatially close to each other. As discussed above, we assume the 

existence of the MT-/p80- activated state of p60-katanin in such a domain rearrangement. It is likely 

that Ca
2+

 affects this MT-/p80-activated state, while the relative orientation of the two domains, 

which may be a trigger to elevate ATP hydrolysis, is altered by Ca
2+

. This idea is further assessed by 

visualizing the spatial locations of the vMIT domain, Ca
2+

 ion, and the putative interfacial residues 

on the AAA domain (Fig. 9C; Fig. 11). 

 

Biological implications of the regulatory role of Ca
2+

 in MT-severing by katanin 

 In the present study, Ca
2+

 negatively regulated the MT-severing function of katanin. In 

other words, Ca
2+

 contributed to stabilization of MTs by protecting MTs from attack by katanin. 

The interaction of Ca
2+

 with MTs has been extensively studied since the inhibitory effect of Ca
2+

 on 

the in vitro assembly of MTs was reported by Weisenberg
23

. Ca
2+

 has been shown to destabilize 

polymerization of MTs directly or indirectly. Serrano et al. determined the Ca
2+

-binding sites on 

both - and -tubulin molecules, which are major components of MTs, and demonstrated that 

tubulin deprived of these sites could still polymerize in the presence of high concentrations of Ca
2+ 

35
. Ca

2+
 is also known to affect dynamic instability in the assembly of MTs: it enhances the rate of 

catastrophic degradation of MT
24

. Lefèvre et al. recently elucidated that the Ca
2+

-binding sites of 

tubulin overlapped with the binding sites for MAPs, and thus Ca
2+

 competed with MAPs, resulting 

in the disassembly of MTs
15

. 

Indirect Ca
2+

 effect on MT destabilization via one of MAPs, tau, has drawn increased 

attention
36

. In the pathway, calpain, one of calcium-dependent non-lysosomal cysteine proteases, 

play critical roles. Tau is highly relevant to regulating MT polymerization, or something of that 

nature. Hyperphosphorylation of tau, however, abolishes its ability to bind tubulin and to promote 
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MT assembly. When MTs release hyperphosphorylated tau, the protein aggregates into paired 

helical filaments (PHFs), which are the neuropathological hallmarks of Alzheimer's disease (AD). 

There are at least three protein kinases responsible for the hyperphosphorylation; cyclin-dependent-

kinase 5 (CDK5), glycogen synthase kinase 3 (GSK-3) and dual-specificity tyrosine-

phosphorylation-regulated kinase 1A (DYRK1A)
37-39

. The activity of all the three kinases is 

regulated by calpain, as follows. In the presence of high concentrations of Ca
2+

, GSK-3 is 

truncated by calpain, generating two fragments of approximately 40 and 30 kDa. GSK-3 

truncation augments its kinase activity
40

. CDK5 is also activated by proteolytic cleavage of its 

specific activator p35 by calpain
41

. Recently, DYRK1A was elucidated to be proteolyzed and 

activated by calpain in AD brain
42

. In addition, calpain directly degrades tau, which also causes its 

loss of MT-stabilizing activity
43,44

. 

So far, Ca
2+

 has been thought not to stabilize MTs, but to promote the disassembly of MTs, 

as mentioned above. Our new findings on katanin, however, show that Ca
2+

 can slow down the 

disassembly of MTs, suggesting that the assembly and disassembly of MT is managed by a more 

complicated system than expected. Excess of Ca
2+

 is generally harmful to MTs both directly and 

indirectly. To survive against an accidental increase in Ca
2+

, cells may have developed various fail-

safe mechanisms, one of which might be the Ca
2+

-inhibition of katanin. This mechanism would 

function to avoid the rapid breakdown of MTs for survival of neuronal cells upon a transient Ca
2+

 

flux. 

 

In conclusion, we have shown here that p60-katanin, a type-I AAA ATPase, possesses a 

novel mechanism for regulating its own ATPase activity, probably by a 3D domain rearrangement 

between the N-terminal vMIT domain and the AAA domain. Ca
2+

 binds p60-vMIT at the edge of 

this domain, close to the contact site between vMIT and AAA. This putative arrangement can well 

explain why Ca
2+

 inhibits MT severing without inhibiting either ATPase activity or MT-binding. 
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Experimental procedures 

 

Production of p80-CTD 

 We generated a multiple sequence alignment of the C-terminal sequences of adaptor-p80 

excluding the N-terminal WD40 repeats (residues 1–269) by ClustalX
45

, from which we decided to 

clone the sequences 480–614, 480–630, and 480–655 of human and mouse p80. Expression vectors 

for the recombinant GST-tagged form of the human and mouse p80 fragments were constructed 

using PRESAT vector methodology
46

, as derived from the pGEX-4T3 vector (GE-Healthcare 

Biosciences). Finally, p80 (480–655), termed p80-CTD, was used for further analysis because this 

construct produced a protein with greater solubility than the others. Human p80-CTD, prepared by 

expression in E. coli BL21 (DE3), followed by affinity purification on glutathione-Sepharose (GE 

Healthcare Bioscience) and thrombin digestion, was used for ATPase assays. The expression vector 

for the recombinant MBP-tagged p80-CTD of mouse was also constructed by a standard protocol 

using PCR, and ligated into the EcoRI-HindII sites of pMAL-c2X (NEB). The fusion protein was 

prepared by expression in E. coli BL21 (DE3), followed by affinity purification on amylose-

sepharose (GE Healthcare Bioscience), and used for NMR experiments and binding experiments 

with p60-vMIT. 

 

Production of p60-katanin 

 The expression vector for the recombinant GST-tagged full-length p60-katanin of mouse 

was constructed by a standard protocol using PCR, and ligated into the BamHI-SalI sites of pGEX-

6P3 (GE Healthcare Bioscience)14. An Ala-substituted mutant (K255A) was engineered with the 

QuikChange site-directed mutagenesis kit (Stratagene). Two complementary oligonucleotides with 

mutated sequences for each mutant were used as primers (Table 2). The fusion proteins were 

produced in E.coli JM109. Expression was induced with 0.1 mM IPTG, and LB cultures were  
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grown overnight at 20 °C. For co-sedimentation assays, GST-tagged proteins were purified with 

glutathione-Sepharose and eluted in the elution buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 

mM DTT, 50 mM reduced glutathione, and 5% glycerol). For ATPase assays, proteins were eluted 

in the elution buffer (20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM DTT, 1 mM EGTA, 2 mM 

MgCl2, 0.25 mM ATP, 0.02% Triton X-100, and 5% glycerol) after PreScission Protease digestion 

on the column. 

 Production of the recombinant GST-tagged p60-vMIT domains of mouse including wild-

type and Ala-substituted mutants was done as previously described (Table 2)
14

. The fusion proteins 

were expressed in E. coli BL21 (DE3), affinity-purified on glutathione-Sepharose and dialyzed. 

These fusion proteins were used for MBP-tagged p80-CTD binding assays. For NMR spectroscopy, 

a 1 L culture was incubated with [
15

N]-ammonium chloride as the sole nitrogen source by following 

a standard fermentation protocol at 25°C. Purification of 
15

N-labeled p60-vMIT was achieved by 

glutathione-Sepharose affinity chromatography followed by thrombin digestion, benzamidine-

Sepharose chromatography, and gel filtration using a Superdex 75 column (GE Healthcare 

Bioscience). The complex of 
15

N-labeled p60-vMIT with p80-CTD was purified from a mixture of 

15
N-labeled GST-tagged p60-vMIT and non-labeled MBP-tagged p80-CTD prepared following 

FactorXa and thrombin digestion, respectively. 

 

 

 

TABLE 1. Oligonucleotides used as primers for Ala substitution. 

 

Primer                   Sequence 

 

K255A_F    CACCTGGCACTGGAGCGACCCTTCTAGCTAAAG 

K255A_R    CTTTAGCTAGAAGGGTCGCTCCAGTGCCAGGTG 
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Primer                   Sequence 

 

K11A_F     CAAATGATTGTTGAGAATGTAGCCTTGGCTCGTGAATATGCACTG 

K11A_R     CAGTGCATATTCACGAGCCAAGGCTACATTCTCAACAATCATTTG 

E15A_F     GAGAATGTAAAATTGGCTCGTGCCTATGCACTGCTGGGAAACTATGAC 

E15A_R     GTCATAGTTTCCCAGCAGTGCATAGGCACGAGCCAATTTTACATTCTC 

Y16A_F     GAGAATGTAAAATTGGCTCGTGAAGCCGCACTGCTGGGAAACTATGAC 

Y16A_R     GTCATAGTTTCCCAGCAGTGCGGCTTCACGAGCCAATTTTACATTCTC 

D23A_F     GCACTGCTGGGAAACTATGCCTCTGCAATGGTCTACTATCAG 

D23A_R     CTGATAGTAGACCATTGCAGAGGCATAGTTTCCCAGCAGTGC 

V27A_F     GGAAACTATGACTCTGCAATGGCCTACTATCAGGGAGTTCTTGAC 

V27A_R     GTCAAGAACTCCCTGATAGTAGGCCATTGCAGAGTCATAGTTTCC 

Y28A_F     GGAAACTATGACTCTGCAATGGTCGCCTATCAGGGAGTTCTTGAC 

Y28A_R     GTCAAGAACTCCCTGATAGGCGACCATTGCAGAGTCATAGTTTCC 

Q35A_F     CAGGGAGTTCTTGACGCCATGAACAAGTACCTGTACTCAGTC 

    Q35A_R     GACTGAGTACAGGTACTTGTTCATGGCGTCAAGAACTCCCTG 

    N37A_F     CAGGGAGTTCTTGACCAAATGGCCAAGTACCTGTACTCAGTC 

    N37A_R     GACTGAGTACAGGTACTTGGCCATTTGGTCAAGAACTCCCTG 

D45A_F     CTGTACTCAGTCAAAGCCACACACCTCCGTCAGAAATGG 

    D45A_R     CCATTTCTGACGGAGGTGTGTGGCTTTGACTGAGTACAG 

    R49A_F     GTCAAAGATACACACCTCGCCCAGAAATGGCAACAG 

    R49A_R     CTGTTGCCATTTCTGGGCGAGGTGTGTATCTTTGAC 

    Q53A_F     CTCCGTCAGAAATGGGCCCAGGTTTGGCAGGAAATAAATGTG 

    Q53A_R     CACATTTATTTCCTGCCAAACCTGGGCCCATTTCTGACGGAG
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Primer                   Sequence 

 

Q54A_F     CTCCGTCAGAAATGGCAAGCCGTTTGGCAGGAAATAAATGTG 

Q54A_R     CACATTTATTTCCTGCCAAACGGCTTGCCATTTCTGACGGAG 

V55A_F     CTCCGTCAGAAATGGCAACAGGCCTGGCAGGAAATAAATGTG 

    V55A_R     CACATTTATTTCCTGCCAGGCCTGTTGCCATTTCTGACGGAG 

    E58A_F     CAGAAATGGCAACAGGTTTGGCAGGCCATAAATGTGGAAGCTAAG   

    E58A_R     CTTAGCTTCCACATTTATGGCCTGCCAAACCTGTTGCCATTTCTG 

K64A_F     GTTTGGCAGGAAATAAATGTGGAAGCTGCCCAAGTTAAGGATATCATG 

    K64A_R     CATGATATCCTTAACTTGGGCAGCTTCCACATTTATTTCCTGCCAAAC 

K67A_F     GTGGAAGCTAAGCAAGTTGCCGATATCATGAAAACATAATAGAGC 

    K67A_R     GCTCTATTATGTTTTCATGATATCGGCAACTTGCTTAGCTTCCAC 

    D68A_F     GTGGAAGCTAAGCAAGTTAAGGCCATCATGAAAACATAATAGAGC 

D68A_R     GCTCTATTATGTTTTCATGATGGCCTTAACTTGCTTAGCTTCCAC 

 

 

 

 

Continuous ATPase assays of p60-katanin 

 ATPase activity was measured using an ATP regenerating system. The reaction mixture 

contained 50 mM Tris-HCl, pH 7.5, 50 mM KCl, 2 mM MgCl2, 2 mM phosphoenolpyruvate, 1 mM 

ATP, 50 μg/ml pyruvate kinase, 50 μg/ml lactate dehydrogenase, and 0.2 mM NADH. The reactions 

were performed in the presence of 0.4 μM p60-katanin, and ATPase activity was measured by 

monitoring the decrease in NADH absorption at 340 nm at room temperature using UV-Vis 

spectrophotometer, UV mini-1240 (Shimadzu, Tokyo, Japan). The shifts in absorption at 340 nm 

caused by the addition of taxol-stabilizing MTs and p80-CTD were measured. The absorbnce data 
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were representative of two or three independent experiments and were normalized relative to the 

level of the time-point zero. ATP hydrolysis activity was then calculated and represented in the unit 

of μmoles of ATP hydrolyzed per min per mg of p60-katanin (units/mg). 

 

In vitro binding experiments 

 Maltose binding protein (MBP)-p80 bound to amylose resin was incubated with lysate of 

GST- tagged p60-vMIT domains in binding buffer (20 mM Tris-HCl, pH 7.4, 200 mM NaCl, and 1 

mM EGTA) for 2 hour at 4°C. The beads were washed four times in wash buffer (20 mM Tris-HCl, 

pH 7.4, 200 mM NaCl, and 1 mM EGTA). The associated proteins were analyzed by SDS-PAGE. 

 

Co-sedimentation assays for MT-binding and MT-severing activity of p60-katanin 

 Taxol-stabilized MTs (1 μM) and GST-tagged p60-katanin (3.5 μM) were incubated for 30 

min at 25°C in binding buffer (80 mM PIPES, pH 7.0, 2 mM MgCl2, 1mM EGTA, 1 mM ATP, and 

20 μM taxol). Reaction mixtures (50 μl) were spun through a glycerol cushion buffer (50% [v/v] 

glycerol in binding buffer; 100 μl) for 30 min at 100,000 g. Supernatants and Pellets ware analyzed 

by SDS-PAGE. The band intensity of proteins was quantified with Image J (http://rsbweb.nih. 

gov/ij/). 

 

NMR experiments 

 1
H-

15
N HSQC spectra of 

15
N-labeled p60-vMIT in either the presence or the absence of 

p80-CTD were acquired at 25°C on a Bruker AVANCE III 600 MHz spectrometer equipped with a 

cryogenic probe. These samples were dissolved in 20 mM sodium phosphate, pH 7.5, and 150 mM 

NaCl, and the protein concentrations were below 50 μM because of the low solubility of p80-CTD. 

1
H-

15
N HSQC spectra for Ce

3+
 titration experiments were recorded using 0.1 mM 

15
N-labeled p60-

vMIT at 25°C on a Bruker AVANCE 500 MHz spectrometer equipped with a cryogenic probe. 
1
H- 
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15
N HSQC spectra for Ca

2+
 titration experiments were similarly performed (Fig. 8). The samples 

were dissolved in 20 mM HEPES, pH 7.5, and 25 mM NaCl. All data were processed using 

NMRPipe
47

 and SPARKY
48

 software. The position of the coordinating Ce
3+

 ion was calculated by 

using the program FANTASIAN
49

 coupled with an inhouse grid-search program with 144 

pseudocontact shift value of NH signals. For calculation the coordinates of hVps4b-MIT 

(PDB:1wr0) and p60-vMIT (PDB:2rpa) were used. All of the figures were prepared by MOLMOL
50

. 

 

Molecular modelling 

 A hexameric ring model of the AAA domains of p60-katanin was generated on the basis of 

the hexameric ring structure of p97 D1 (PDB: 1s3s) using MODELLER (version 9v6) 

(http://salilab.org/modeller/) as described previously
14

. A molecular model of the complex of p60-

vMIT with a tubulin oligomer (PDB: 3du7) was constructed on the basis of the complex between 

Vps4a-MIT and CHMP1a (PDB: 2jq9)
51

 by replacing each component corresponding to p60-vMIT 

and helix 12 of -tubulin, respectively
14

. Finally, the complex model of full-length p60-katanin and 

part of an MT was built by connecting these two models by a flexible linker corresponding to 

residues 91–204, and by placing the hexameric AAA domain close to the vMIT domain. The model 

was adjusted and visualized using MOLMOL
50

. 

 

http://salilab.org/modeller/
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Similarities of the structure and the molecular mechanism 

If the amino acid sequences are highly evolutionarily conserved among proteins, these 

proteins are expected to have the similar character. While, in proteins with low sequence identities, 

similarities in both the domain architecture and the 3D structure suggests that the molecular 

mechanism might be evolutionarily conserved among proteins.  

In CHAPTER 1, I identified kp60-NTD as a novel domain suited for structural 

determination by NMR. In CHAPTER 2, I determined the 3D structure of kp60-NTD for the first 

time. Kp60-NTD has comprised three anti-parallel -helices, resembling the structure of Vps4-MIT. 

I further identified the tubulin binding interface of kp60-NTD. The location of the interface of 

kp60-NTD is similar to that of Vps4-MIT. As expected above, both kp60 and Vps4 resemble in not 

only the domain architecture and the 3D structure of the NH2-terminal domain but also the 

molecular mechanism, in which both enzymes contribute to disassemble their macromolecular 

substrates in an ATP-dependent manner, through binding to substrates using the same surface of 

their NH2-terminal domains. On the basis of these similarities between kp60 and Vps4, I proposed a 

model for kp60–MT complex. In this model, the structure of the hexameric AAA domains of kp60 

was generated from the known structure of the type II AAA ATPase, whose sequences of the first 

AAA (D1) domain resemble those of a single AAA domain of kp60 and Vps4.  

In type II AAA ATPases VCP/p97 and NSF, the interfacial residues between the N (NH2-

terminal) domain and the D1 domain have been thought to be the key to the hydrolysis of ATP. In 

other word, it has been known that a contact between the N domain and the D1 domain is induced 

by a domain conformational change from a non-activate (basal) state to an activate state, and may 

regulate the ATPase activity. In CHAPTER 3, the kp60–MT complex model has suggested that 

kp60-NTD can move close enough to the AAA domain of kp60, when kp60 binds MTs. At this time, 

a contact of the putative interface between kp60-NTD and its AAA domain may act as a sensor for 

regulating the ATPase activities or the MT-severing activities. In fact, locations of the putative 
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interfacial residues of kp60 are similar to those of the interfacial residues between the N domain and 

the D1 domain in VCP/p97 and NSF. This putative interface also corresponds to the Ca
2+

-binding 

site of kp60-NTD. Since I showed that Ca
2+

 inhibits the MT-severing activities of kp60 by 

biochemical assays, the MT-severing may be regulated in a Ca
2+

-dependent manner. The kp60–MT 

complex model can explain the biochemical phenomena induced by Ca
2+

. In Vps4, the mechanism 

such as VCP/p97 and NSF has not been found. It is interesting if there are similarities or differences 

of the mechanism for regulating the ATPase activities between kp60 and Vps4. 

 

A model for kp60–MT complex 

MT usually has 13 protofilaments and a 3-start helix in which each turn of the helix spans 

3 tubulin monomers. Because the start number of this helix is odd, there must always be a „seam‟ 

where  subunits are laterally adjacent to  subunits. The stability of the seam is lower than that of 

bonds between the other protofilaments, where the same subunits are laterally adjacent. My model 

for kp60–MT complex demonstrates that a diameter of the hexameric AAA domains of kp60 

approximately corresponds to that of about 2.5 tubulin monomers. And, my preliminary 

biochemical assay has suggested that the central pore of the hexameric AAA domains of kp60 may 

tug on the COOH-terminal tail of -tubulin, resulting in the disassembly of MTs (unpublished data). 

I assume that kp60 has to just attack the seams of MTs so that the pore of the hexameric AAA 

domain of kp60 tugs on the tail of -tubulin in an ATP-dependent manner. At this time, while kp60-

NTD may contact with the AAA domain, kp60-NTD interacts with -tubulin in the constant 

direction, as showed in CHAPTER 3. (Fig. 1) The contact of two domains and the interaction 

between the kp60-NTD and -tubulin may increase the ATPase activity of kp60 and accelerate MT-

severing by kp60. Additionally, because the seams of MTs could break easily, it seems that it is not 

surprising that kp60 prefers to attack there. 
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FIGURE 1. A seam of MT and a model of 

kp60 bound to MT at the seam. (A) A 13 

protofilament MT with seam. Lateral 

interactions between protofilaments are  

to  (yellow-green) and  to  (green), 

except at the seam. A seam is formed 

because one turn of a 3-start helix results in 

a rise of 3 tubulin monomers. (B) Proposed 

model of kp60 bound to MT at the seam. 

One of the six kp60-NTDs in a hexamer is 

drawn. The kp60-NTD binds -tubulin at 

the seam, and the pore of the hexameric 

AAA domain tugs on the COOH-terminal 

tail of -tubulin at the seam. 

 

Structural biology of katanin p60 

There are still little 3D structural information on MAPs and complexes between tubulin 

and MAPs. Therefore, demonstrations of the 3D structure of kp60-NTD and the interface with 

tubulin on kp60-NTD are crucially important for MT/tubulin studies, and would provide insight 

into a molecular mechanism for MT disassembly. The further technical developments of the 

structural analyses such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy, 

and the functional analyses such as single molecule imaging, fluorescent proteins and probes are 

desirable in structural biology, biochemistry, and molecular cell biology. 

Finally, I set up a system to be expressed the full-length kp60 protein in E.coli. On the 

basis of the results in CHAPTER 3, I could elucidate a molecular mechanism of kp60 in detail by 

monitoring enzymatic activities (the MT-severing activities and the MT-binding activities) of kp60s 

produced by the molecular engineering, such as mutations in the flexible linker of kp60 and 

mutations in the putative interface between kp60-NTD and the AAA domain. 
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Concluding remarks 

In this thesis, I proposed a novel methodology, in which the domain boundary was 

optimized by combination of bioinformatics and NMR spectroscopy, to obtain a protein sample 

suitable for the 3D structural analysis. Next, I first determined the 3D structure of the novel NTD of 

kp60, which is the tubulin binding domain. I further identified the interface with tubulin on kp60-

NTD. The structure and the interface with its substrate of kp60-NTD are well similar to those of 

another type I AAA ATPase, Vps4. There are also the similarities to the molecular mechanisms for 

their substrates between kp60 and Vps4. These results allowed me to propose a model for kp60–MT 

complex. Additionally, I showed that kp60-NTD interacts with a minimum region of kp80-CTD, 

possibly using another interface that differs from the tubulin binding interface. Interestingly, I found 

that Ca
2+

 ion cancels the enhanced ATPase activity of kp60 in the presence of MT. Furthermore, I 

found that the MT-severing activity of kp60 is inhibited in Ca
2+

-dependent manner. NMR 

experiments showed that Ca
2+

 directly binds kp60-NTD at the edge of this domain. It was suggested 

that this Ca
2+

 binding site is close to the putative interface between the NTD and the AAA domain. 

Finally, I hypothesized that Ca
2+

 and a spatial rearrangement of kp60-NTD relative to the AAA 

domain regulate MT-severing by kp60. 

 

 

 

 


