ided by Kyoto Univer

Kyoto University Research Information Repository	
Title	A note on homotopy types of connected components of Map(S[4], B SU(2))
Author(s)	Tsutaya, Mitsunobu
Citation	Journal of Pure and Applied Algebra (2012), 216(4): 826-832
Issue Date	2012-04
URL	http://hdl.handle.net/2433/152485
Right	© 2011 Elsevier B.V.
Туре	Journal Article
Textversion	author

A note on homotopy types of connected components of Map $(S^4, BSU(2))$

Mitsunobu Tsutaya*

Abstract: Gottlieb has shown that connected components of Map (S^4 , BSU(2)) are the classifying spaces of gauge groups of principal SU(2)-bundles over S^4 . Tsukuda has investigated the homotopy types of connected components of Map (S^4 , BSU(2)). But unfortunately, his proof is not complete for p = 2. In this paper, we give a complete proof. Moreover, we investigate the further divisibility of ϵ_i defined in Tsukuda's paper. We apply this to classification problem of gauge groups as A_n -spaces.

1 Introduction

For a principal *G*-bundle *P*, the gauge group $\mathcal{G}(P)$ of *P* is defined as the group of all bundle maps $P \to P$ covering the identity map of the base space. It is topologized by compact open topology and becomes a topological group. Particularly, we consider the gauge groups of principal SU(2)-bundles over the 4-dimensional sphere S^4 .

Gottlieb [2] has constructed the universal bundles and the classifying spaces of gauge groups. The classifying space of the gauge group of a principal *G*-bundle *P* over *B* with classifying map $\alpha : B \to BG$ is the connected component of the mapping space Map (B, BG) containing α .

Kono [4] has investigated the homotopy types of the gauge groups of principal SU(2)-bundles over S^4 . He showed that they are completely classified by the invariant GCD (12, $\langle c_2(P), [S^4] \rangle$), where GCD (*a*, *b*) represents the greatest common divisor of *a* and *b* (GCD (0, *a*) = GCD (*a*, 0) = |*a*|), $c_2(P) \in H^4(S^4; \mathbb{Z})$ is the second Chern class of *P* and $[S^4] \in H_4(S^4, \mathbb{Z})$ is the fundamental class of S^4 .

Moreover, Crabb and Sutherland [1] classified the *H*-types (equivalent types as *H*-spaces (or Hopf spaces)) of them; they are completely classified by the invariant GCD (180, $\langle c_2(P), [S^4] \rangle$). Of course, if $\mathcal{G}(P)$ and $\mathcal{G}(P')$ are *H*-equivalent, then they are homotopy equivalent.

Tsukuda [9] has classified the isomorphism classes of them; they are completely classified by $|\langle c_2(P), [S^4] \rangle|$. Moreover, he shows that $\mathcal{G}(P)$ and $\mathcal{G}(P')$ are isomorphic if the classifying spaces of them are homotopy equivalent. We remark that the converse is true in general. But the argument in the proof of Lemma 2.4 of [9] is not valid for p = 2. The first aim of the present paper is to give a correct proof of this.

The author [10] has considered the classification problem of the gauge groups by using Stasheff's " A_n " [7] [8]. Since "*H*-equivalence" and "homotopy equivalence of classifying spaces" are nothing but " A_2 -equivalence" and " A_{∞} -equivalence" respectively, this problem is a natural generalization. The second aim is to apply our main theorem to it.

In §2, we review the definition of ϵ_i and the motivation in homotopy theory. In §3 and 4, we investigate the divisibility of ϵ_i . These sections are purely algebraic. In §5, we apply our main result to A_n -types of gauge groups. We give a lower bound of the number of A_n -types of gauge groups of principal SU(2)-bundles over S^4 .

2 Definition and motivation

We review the definition of $\{\epsilon_i\}$. Let P_k be a principal SU(2)-bundle over S^4 with $\langle c_2(P_k), [S^4] \rangle = k \in \mathbb{Z}$. According to [10], the *p*-localization $\mathcal{G}^{id}(P_k)_{(p)}$ of the identity component of the gauge group $\mathcal{G}(P_k)$ is A_n -equivalent to

E-mail address: tsutaya@math.kyoto-u.ac.jp

2010 Mathematics Subject Classification. 54C35 (primary), 55P15, 55P45, 55R10 (secondary)

Key words and phrases. gauge groups, mapping spaces, A_n -spaces

^{*}Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

The author is a Research Fellow of the Japan Society for the Promotion of Science.

 $\mathcal{G}^{\mathrm{id}}(P_0)_{(p)}$ if and only if the map

$$S^4 \vee HP^n \xrightarrow{k \vee i} HP^{\infty} \vee HP^{\infty} \xrightarrow{\nabla} HP^{\infty} \xrightarrow{\text{localization}} HP^{\infty}_{(p)}$$

extends over $S^4 \times HP^n$, where $k : S^4 \to HP^\infty$ is the classifying map of P_k , $i : HP^n \to HP^\infty$ is the inclusion and $\nabla : HP^\infty \vee HP^\infty \to HP^\infty$ is the folding map.

Now, we assume there exists the following homotopy commutative diagram:

where *p* is a prime and $j: S^4 \vee HP^n \to S^4 \times HP^n$ is the inclusion.

We denote the localization of the ring of integers by the prime ideal $(p) \subset \mathbb{Z}$ by $\mathbb{Z}_{(p)}$. The (0th) *p*-local complex *K*-theory $K_{(p)}(\mathbb{H}P^{\infty}_{(p)})$ of $\mathbb{H}P^{\infty}_{(p)}$ is computed as

$$K_{(p)}(\boldsymbol{HP}_{(p)}^{\infty}) = \boldsymbol{Z}_{(p)}[a].$$

We may assume that the generator $b \in H^4(HP^{\infty}_{(p)}; Q)$ satisfies the equality

$$ch\,a = \sum_{j=1}^{\infty} \frac{2b^j}{(2j)!}.$$

Similarly, take generators $u \in \tilde{K}_{(p)}(S^4)$ and $s \in H^4(S^4; \mathbf{Q})$ such that chu = s. Then, $f^*b = ks \times 1 + 1 \times b$ in $H^4(S^4 \times \mathbf{H}P^n; \mathbf{Q})$ and

$$f^*a = ku \times 1 + 1 \times a + \sum_{i=1}^n \epsilon_i(k)u \times a^i$$

in $\tilde{K}_{(p)}(S^4 \times HP^n)$, where $\epsilon_i(k) \in \mathbb{Z}_{(p)}$. We calculate $f^*ch a$ and $ch f^*a$ as follows:

$$f^*ch \, a = f^* \sum_{j=1}^{\infty} \frac{2b^j}{(2j)!} = \sum_{j=1}^{\infty} \frac{2}{(2j)!} (ks \times 1 + 1 \times b)^j = ks \times 1 + \sum_{j=1}^n \left(\frac{k}{(2j+1)!} s \times b^j + \frac{2}{(2j)!} 1 \times b^j \right),$$

$$ch \, f^*a = ch \left(ku \times 1 + 1 \times a + \sum_{i=1}^{\infty} \epsilon_i(k)u \times a^i \right) = ks \times 1 + 1 \times \sum_{j=1}^n \frac{2}{(2j)!} b^j + \sum_{i=1}^n \sum_{j=1}^n \epsilon_i(k)s \times \left(\sum_{j=1}^n \frac{2}{(2j)!} b^j \right)^i$$

$$= ks \times 1 + \sum_{j=1}^n \frac{2}{(2j)!} 1 \times b^j + \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \frac{2^i \epsilon_i(k)}{(2j_1)! \cdots (2j_i)!} s \times b^i.$$

Since $f^*ch a = ch f^*a$, we have the following formula:

$$\frac{k}{(2\ell+1)!} = \sum_{i=1}^{\ell} \sum_{\substack{j_1 + \dots + j_i = \ell \\ j_1, \dots, j_i \ge 1}} \frac{2^i \epsilon_i(k)}{(2j_1)! \cdots (2j_i)!}.$$

For $\ell = 1$ and $k \neq 0$, we obtain $\epsilon_1(k)/k = 1/6$. Moreover, using this formula and induction on *i*, one can see that $\epsilon_i(k)/k \in \mathbf{Q}$ is independent of $k \neq 0$. Let $\epsilon_i = \epsilon_i(k)/k$. Then $\epsilon_i(k) = \epsilon_i k$ for any $k \in \mathbf{Z}$. Of course, the sequence $\{\epsilon_i\}_{i=1}^{\infty}$ satisfy the following formula for each ℓ :

$$\frac{1}{(2\ell+1)!} = \sum_{i=1}^{\ell} \sum_{\substack{j_1 + \dots + j_i = \ell \\ j_1, \dots, j_i \ge 1}} \frac{2^i \epsilon_i}{(2j_1)! \cdots (2j_i)!}.$$

For example, $\epsilon_1 = 1/6$, $\epsilon_2 = -1/180$, $\epsilon_3 = 1/1512$ etc. From the above argument, if the map (localization) $\nabla(k \lor i)$: $S^4 \lor HP^n \to HP^{\infty}_{(p)}$ extends over $S^4 \times HP^n$, then $\epsilon_1 k, \cdots, \epsilon_n k \in \mathbb{Z}_{(p)}$.

Tsukuda [9] defines a non-negative integer (or infinity) $d_p(k)$ for a prime p and an integer k as the largest n such that there exists an extension of

$$S^4 \vee HP^n \xrightarrow{k \vee i} HP^{\infty} \vee HP^{\infty} \xrightarrow{\nabla} HP^{\infty} \xrightarrow{\text{localization}} HP^{\infty}_{(p)}$$

over $S^4 \times HP^n$. Remark $d_p(0) = \infty$. Clearly, if we define $\epsilon_0 = 1$, then

$$d_p(k) \le d'_p(k) := \min\{n \in \mathbb{Z}_{\ge 0} \mid \epsilon_{n+1}k \notin \mathbb{Z}_{(p)}\}.$$

It is shown in Lemma 2.5 of [10] that $d_p(k) = d_p(k')$ for any prime p if the classifying spaces $B\mathcal{G}(P_k)$ and $B\mathcal{G}(P_{k'})$ are homotopy equivalent. Lemma 2.4 in [9] asserts that $d'_p(k) < \infty$ (therefore $d_p(k) < \infty$) for $k \neq 0$ and any prime p. In the proof of it, he has shown that $k/(2n + 1) \in \mathbb{Z}_{(p)}$ if $n \leq d'_p(k)$. For an odd prime p, if $p^r \nmid k$, this implies that $d'_p(k) < (p^r - 1)/2$. But for p = 2, this gives no information about $d'_2(k)$. So this proof is invalid for p = 2. We will give a correct proof for this case in §4.

We also state the result of [10]. If $\mathcal{G}(P_k)$ and $\mathcal{G}(P_{k'})$ are A_n -equivalent, then min $\{n, d_p(k)\} = \min\{n, d_p(k')\}$ for any prime *p*. Using this, we give a lower bound for the number of A_n -types of the gauge groups.

3 An explicit formula for ϵ_i

As we have seen, algebraically, the sequence $\{\epsilon_i\}_{i=0}^{\infty}$ of rational numbers is defined inductively by the following formula:

$$\frac{1}{(2\ell+1)!} = \sum_{i=1}^{\ell} \sum_{\substack{j_1 + \dots + j_i = \ell \\ j_1, \dots, j_i \ge 1}} \frac{2^i \epsilon_i}{(2j_1)! \cdots (2j_i)!}$$

and $\epsilon_0 = 1$. Equivalently, $\{\epsilon_i\}$ is defined by the equality

$$\sum_{\ell=0}^{\infty} \frac{x^{\ell}}{(2\ell+1)!} = \sum_{i=0}^{\infty} \epsilon_i \left(\sum_{j=1}^{\infty} \frac{2x^j}{(2j)!} \right)^{\ell}$$

in the ring of formal power series Q[[x]].

Proposition 3.1. The rational number ϵ_i is the *i*-th coefficient of the Taylor expansion of 1/F'(x) at $0 \in C$ for

$$F(x) = \left(\cosh^{-1}\left(1 + \frac{x}{2}\right)\right)^2,$$

where F is holomorphic in a neighborhood of 0.

Proof. Define a holomorphic function H by

$$H(x) = 2\cosh \sqrt{x} - 2 = \sum_{i=1}^{\infty} \frac{2}{(2i)!} x^{i}$$

in a neighborhood of 0. Then F given by the above formula is the inverse function of H. We also define G by

$$G(x) = \sum_{i=0}^{\infty} \epsilon_i x^i.$$

Then, formally, H'(x) = G(H(x)) by the definition of ϵ_i . Therefore, we have G(x) = 1/F'(x).

Since

$$\frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2 + 1}},$$

the next proposition is seen by easy computation.

Proposition 3.2. *The holomorphic function F satisfies the following differential equation:*

$$x(x+4)F''(x) + (x+2)F'(x) - 2 = 0.$$

If the power series

$$\sum_{i=1}^{\infty} a_i x^i$$

satisfies the above equation, then

$$a_1 = 1$$
, $a_{i+1} = -\frac{i^2}{(2i+2)(2i+1)}a_i$ $(i \ge 1)$.

From these equations,

$$a_i = (-1)^{i-1} \frac{2((i-1)!)^2}{(2i)!}$$

for $i \ge 1$. Hence,

$$F(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2((i-1)!)^2}{(2i)!} x^i$$

and

$$F'(x) = \sum_{i=0}^{\infty} (-1)^i \frac{(i!)^2}{(2i+1)!} x^i.$$

Therefore,

$$G(x) = \frac{1}{F'(x)} = \sum_{j=0}^{\infty} (-1)^j \left(\sum_{i=1}^{\infty} (-1)^i \frac{(i!)^2}{(2i+1)!} x^i \right)^j = 1 + \sum_{j=1}^{\infty} \sum_{i_1, \cdots, i_j \ge 1} (-1)^{j+i_1+\dots+i_j} \frac{(i_1!)^2 \cdots (i_j!)^2}{(2i_1+1)! \cdots (2i_j+1)!} x^{i_1+\dots+i_j}$$

This implies the following formula.

Theorem 3.3.

$$\epsilon_{\ell} = \sum_{j=1}^{\ell} \sum_{\substack{i_1 + \dots + i_j = \ell \\ i_1, \dots, i_j \ge 1}} (-1)^{j+\ell} \frac{(i_1!)^2 \cdots (i_j!)^2}{(2i_1 + 1)! \cdots (2i_j + 1)!}$$

4 Divisibility of ϵ_i

For a prime p and a rational number n, we denote the p-adic valuation of n by $v_p(n)$. Equivalently, if

$$n = \frac{p^a t}{p^b s}$$

where s and t are integers prime to p, then $v_p(n) = a - b$. First, we review the divisibility of factorials. For a positive integer n and each prime p, the following formula is known (see, for example, [5]):

$$v_p(n!) = \frac{n - S_p(n)}{p - 1},$$

where $S_p(n) = n_0 + \dots + n_r$ for $n = n_r p^r + n_{r-1} p^{r-1} + \dots + n_0$ and $0 \le n_i < p$.

Lemma 4.1. For a positive integer n

$$v_2\left(\frac{(n!)^2}{(2n+1)!}\right) \ge -n,$$

where the equality holds if and only if n = 1.

Proof. Using the above formula, we obtain

$$v_2\left(\frac{(n!)^2}{(2n+1)!}\right) = 2(n-S_2(n)) - (2n+1-S_2(2n+1)) = S_2(n) \ge -n.$$

As easily seen, this equality holds if and only if n = 1.

Now, we observe the divisibility of ϵ_i by 2.

Proposition 4.2.

$$v_2(\epsilon_\ell) = -\ell$$

Proof. By Theorem 3.3,

$$\epsilon_{\ell} = \sum_{j=1}^{\ell} \sum_{\substack{i_1 + \dots + i_j = \ell \\ i_1, \dots, i_j \ge 1}} (-1)^{j+\ell} \frac{(i_1!)^2 \cdots (i_j!)^2}{(2i_1 + 1)! \cdots (2i_j + 1)!}$$

Now, from the previous lemma, we have

$$v_2\left(\frac{(i_1!)^2\cdots(i_j!)^2}{(2i_1+1)!\cdots(2i_j+1)!}\right) \ge -i_1-\cdots-i_j = -\ell,$$

where the equality holds if and only if $i_1 = \cdots = i_j = 1$. Then we obtain

$$\epsilon_{\ell} \equiv 6^{-\ell} \mod 2^{-\ell+1} \mathbf{Z}_{(2)}.$$

Therefore, $v_2(\epsilon_\ell) = -\ell$.

In general, the divisibility of ϵ_i by an odd prime *p* is more complicated than by 2 because the interval between a multiple of *p* and the next one is longer. But for p = 3, we will have a similar result.

Lemma 4.3. Let p be an odd prime and n a positive integer. Then

$$v_p\left(\frac{(n!)^2}{(2n+1)!}\right) \ge -\frac{2n}{p-1},$$

where the equality holds if and only if n = (p - 1)/2.

Proof. Let $n = n_r p^r + n_{r-1} p^{r-1} + \dots + n_0$ with $0 \le n_i < p$. Assume $n_0 = \dots = n_{s-1} = (p-1)/2 \ne n_s$ $(0 \le s \le r+1)$. Let $m = n_r p^{r-s} + \dots + n_s$ for $s \le r$ and m = 0 for s = r+1. Then we have $2n + 1 = p^s(2m + 1)$, where 2m + 1 is prime to p since $n_s \ne (p-1)/2$. Thus we obtain

$$v_p\left(\frac{(n!)^2}{(2n+1)!}\right) = v_p\left(\frac{1}{2n+1}\right) + v_p\left(\frac{(n!)^2}{(2n)!}\right) = -s - \frac{2S_p(n) - S_p(2n)}{p-1} = -s - \frac{2S_p(m) - S_p(2m)}{p-1} \ge -s - \frac{2m}{p-1},$$

where the last equality holds if and only if m = 0. Moreover,

$$\frac{2(n-m)}{p-1} = \frac{(2n+1) - (2m+1)}{p-1} = \frac{(p^s-1)(2m+1)}{p-1} \ge 1 + p + \dots + p^{s-1} \ge s,$$

where 2(n - m)/(p - 1) = s if and only if s = 1 and m = 0. Therefore, we conclude that

$$v_p\left(\frac{(n!)^2}{(2n+1)!}\right) \ge -\frac{2n}{p-1},$$

where the equality holds if and only if n = (p - 1)/2.

Proposition 4.4. For a positive integer $\ell \le n(p-1)/2$,

$$v_p(\epsilon_\ell) \geq -n,$$

where the equality holds if and only if $\ell = n(p-1)/2$. Especially, $v_3(\epsilon_{\ell}) = -\ell$ for any ℓ .

П

Proof. Let positive integers i_1, \dots, i_i satisfy $i_1 + \dots + i_i = \ell$. From the previous proposition, we have

$$v_p\left(\frac{(i_1!)^2\cdots(i_j!)^2}{(2i_1+1)!\cdots(2i_j+1)!}\right) \ge -\frac{2\ell}{p-1} \ge -n,$$

where the left equality holds if and only if $i_1 = \cdots = i_j = (p-1)/2$. Thus using Theorem 3.3, we obtain

$$v_p(\epsilon_\ell) \ge -n,$$

where the equality holds if and only if $\ell = n(p-1)/2$.

Remark 1. Here we remark that $v_p(\epsilon_\ell)$ is not non-increasing on ℓ in general. For example, $v_5(\epsilon_2) = -1$ but $v_5(\epsilon_3) = 0$, $v_7(\epsilon_9) = -3$ but $v_7(\epsilon_{10}) = -2$, etc.

From Proposition 4.2 and 4.4, we conclude our main result.

Theorem 4.5. Let k be a non-zero integer and p be a prime. Then

$$d'_{p}(k) = \begin{cases} v_{2}(k) & (p = 2) \\ v_{p}(k)(p-1)/2 & (p \text{ is odd}) \end{cases}$$

Then $d_2(k) \le d'_2(k) < \infty$ for any non-zero integer k and we have correctly verified Lemma 2.4 of [9].

5 Applications to *A_n*-types of gauge groups

As in §2, we assume there exists the following homotopy commutative diagram:

$$S^{4} \vee HP^{n} \xrightarrow{k \lor i} HP^{\infty} \vee HP^{\infty} \xrightarrow{\nabla} HP^{\infty}$$

$$\downarrow \text{localization}$$

$$S^{4} \times HP^{n} \xrightarrow{f} HP^{\infty}$$

where *p* is a prime and *i* and *j* are the inclusions. Let us consider the map

$$S^4 \times HP^n \cup * \times HP^{n+1} \xrightarrow{f \cup ((\text{localization})i)} HP^{\infty}_{(p)}$$

The obstruction to extending this map over $S^4 \times HP^{n+1}$ lives in $\pi_{4n+7}(HP_{(p)}^{\infty})$. Then, from Theorem of [6], the obstruction to extending the map

$$S^{4} \times HP^{n} \cup * \times HP^{n+1} \xrightarrow{(p \times id) \cup id} S^{4} \times HP^{n} \cup * \times HP^{n+1} \xrightarrow{f \cup ((\text{localization})i)} HP^{\infty}_{(p)}$$

over $S^4 \times HP^{n+1}$ vanishes for an odd prime p. Here we remark that for the cofibration

$$S^{4n+7} \xrightarrow{\varphi} S^4 \times HP^n \cup * \times HP^{n+1} \to S^4 \times HP^{n+1},$$

 $\varphi: S^{4n+7} \to S^4 \times HP^n \cup * \times HP^{n+1}$ is defined by the restriction to the boundary of the direct product of the characteristic maps $(D^4, S^3) \to (S^4, *)$ and $(D^{4n+4}, S^{4n+3}) \to (HP^{n+1}, HP^n)$ and the composition of the direct product and the restriction $\pi_4(S^4) \times \pi_{4n+4}(HP^{n+1}, HP^n) \to \pi_{4n+8}(S^4 \times HP^{n+1}, S^4 \times HP^n \cup * \times HP^{n+1}) \to \pi_{4n+7}(S^4 \times HP^n \cup * \times HP^{n+1})$ is bilinear. Hence one can see $d_p(pk) > d_p(k)$ and $d_p(k) \ge v_p(k)$ inductively. For p = 2, from [3], $d_2(4k) > d_2(k) \ge [v_2(k)/2]$ similarly. Then, combining with Theorem 4.5, we have

$$v_p(k) \le d_p(k) \le d'_p(k) = \frac{p-1}{2}v_p(k)$$

for an odd prime p and

$$\left[\frac{v_2(k)}{2}\right] \le d_2(k) \le d'_2(k) = v_2(k).$$

Especially, $d_3(k) = v_3(k)$. From §2, the next theorem follows.

Theorem 5.1. Let P be a principal SU(2)-bundle over S^4 with $\langle c_2(P), [S^4] \rangle = 3^n$. Then the 3-localization $\mathcal{G}^{id}(P)_{(3)}$ of the identity component $\mathcal{G}^{id}(P)$ of $\mathcal{G}(P)$ is A_n -equivalent to Map $(S^4, SU(2))_{(3)}$ but not A_{n+1} -equivalent.

This gives an example of A_n -equivalent but not A_{n+1} -equivalent topological monoids for any n.

Now we give the lower bound of the number of A_n -types of gauge groups of principal SU(2)-bundle over S^4 . As stated in §2, if $\mathcal{G}(P_k)$ and $\mathcal{G}(P_{k'})$ are A_n -equivalent, then $\min\{n, d_p(k)\} = \min\{n, d_p(k')\}$ for any prime p. If p is an odd prime, then

$$\#\{\min\{n, d_p(k)\} \mid k \in \mathbb{Z}\} \ge \left\lfloor \frac{2n}{p-1} + 1 \right\rfloor$$

since $0 = d_p(1) < d_p(p) < d_p(p^2) < \dots < d_p(p^{\lfloor 2n/(p-1) \rfloor}) \le n$. If $p = 2$, then
$$\#\{\min\{n, d_2(k)\} \mid k \in \mathbb{Z}\} \ge \left\lfloor \frac{n}{2} + 1 \right\rfloor$$

since $0 = d_2(1) < d_2(4) < d_2(16) < \dots < d_2(4^{\lfloor n/2 \rfloor}) \le n$.

Theorem 5.2. The number of A_n -types of gauge groups of principal SU(2)-bundles over S^4 is greater than

$$\left[\frac{n}{2}+1\right]\prod_{p:\text{odd prime}}\left[\frac{2n}{p-1}+1\right].$$

We can express the logarithm of this as follows:

$$\log\left(\left[\frac{n}{2}+1\right]\prod_{p:\text{odd prime}}\left[\frac{2n}{p-1}+1\right]\right) = \log\left[\frac{n}{2}+1\right] + \sum_{p:\text{odd prime}}\log\left[\frac{2n}{p-1}+1\right]$$
$$= \log\left[\frac{n}{2}+1\right] + \sum_{r=2}^{n+1}\left(\pi\left(\frac{2n}{r-1}+1\right)-1\right)(\log r - \log(r-1))$$
$$= \log\left[\frac{n}{2}+1\right] + \sum_{r=1}^{n}\pi\left(\frac{2n}{r}+1\right)\log\left(1+\frac{1}{r}\right) - \log(n+1),$$

where π is the prime counting function. The second equality is seen by

$$\#\left\{p: \text{an odd prime } \left| \left[\frac{2n}{p-1} + 1\right] \ge r\right\} = \pi\left(\frac{2n}{r-1} + 1\right) - 1.$$

Acknowledgment

The author is so grateful to Professor Akira Kono and Doctors Kentaro Mitsui and Minoru Hirose for fruitful discussions. He also thanks the referee for giving a concise proof for the number theoretic argument in §4.

References

- M. C. Crabb and W. A. Sutherland, *Counting homotopy types of gauge groups*, Proc. London Math. Soc. 81 (2000), 747-768.
- [2] D. H. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23-50.
- [3] I. M. James, On the suspension sequence, Ann. Math. 65 (1957), 74-107.
- [4] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh: Sect. A **117** (1991), 295-297.
- [5] J. W. Sander, A Story of Binomial Coefficients and Primes, Amer. Math. Monthly 102 (1995), 802-807.
- [6] P. Selick, *Odd primary torsion in* $\pi_k(S^3)$, Topology **17** (1978), 407-412.

- [7] J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
- [8] J. D. Stasheff, *Homotopy associativity of H-spaces. II*, Trans. Amer. Math. Soc. **108** (1963), 293-312.
- [9] S. Tsukuda, *Comparing the homotopy types of the components of* Map (S⁴, BSU(2)), J. Pure and Appl. Algebra **161** (2001), 235-247.
- [10] M. Tsutaya, Finiteness of A_n -equivalence types of gauge groups, J. of London Math. Soc., to appear.