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A note on homotopy types of connected components of
Map (S4, BSU(2))

Mitsunobu Tsutaya∗

Abstract: Gottlieb has shown that connected components of Map (S4, BSU(2)) are the classifying spaces of
gauge groups of principalSU(2)-bundles overS4. Tsukuda has investigated the homotopy types of connected
components of Map (S4, BSU(2)). But unfortunately, his proof is not complete forp = 2. In this paper, we give a
complete proof. Moreover, we investigate the further divisibility ofεi defined in Tsukuda’s paper. We apply this to
classification problem of gauge groups asAn-spaces.

1 Introduction

For a principalG-bundleP, the gauge groupG(P) of P is defined as the group of all bundle mapsP→ P covering
the identity map of the base space. It is topologized by compact open topology and becomes a topological group.
Particularly, we consider the gauge groups of principalSU(2)-bundles over the 4-dimensional sphereS4.

Gottlieb [2] has constructed the universal bundles and the classifying spaces of gauge groups. The classifying
space of the gauge group of a principalG-bundleP over B with classifying mapα : B → BG is the connected
component of the mapping space Map (B, BG) containingα.

Kono [4] has investigated the homotopy types of the gauge groups of principalSU(2)-bundles overS4. He
showed that they are completely classified by the invariant GCD (12, 〈c2(P), [S4]〉), where GCD (a,b) represents
the greatest common divisor ofa andb (GCD (0,a) = GCD (a,0) = |a|), c2(P) ∈ H4(S4; Z) is the second Chern
class ofP and [S4] ∈ H4(S4, Z) is the fundamental class ofS4.

Moreover, Crabb and Sutherland [1] classified theH-types (equivalent types asH-spaces (or Hopf spaces)) of
them; they are completely classified by the invariant GCD (180, 〈c2(P), [S4]〉). Of course, ifG(P) andG(P′) are
H-equivalent, then they are homotopy equivalent.

Tsukuda [9] has classified the isomorphism classes of them; they are completely classified by|〈c2(P), [S4]〉|.
Moreover, he shows thatG(P) andG(P′) are isomorphic if the classifying spaces of them are homotopy equivalent.
We remark that the converse is true in general. But the argument in the proof of Lemma 2.4 of [9] is not valid for
p = 2. The first aim of the present paper is to give a correct proof of this.

The author [10] has considered the classification problem of the gauge groups by using Stasheff’s “An” [7]
[8]. Since “H-equivalence” and “homotopy equivalence of classifying spaces” are nothing but “A2-equivalence”
and “A∞-equivalence” respectively, this problem is a natural generalization. The second aim is to apply our main
theorem to it.

In §2, we review the definition ofεi and the motivation in homotopy theory. In§3 and 4, we investigate the
divisibility of εi . These sections are purely algebraic. In§5, we apply our main result toAn-types of gauge groups.
We give a lower bound of the number ofAn-types of gauge groups of principalSU(2)-bundles overS4.

2 Definition and motivation

We review the definition of{εi}. Let Pk be a principalSU(2)-bundle overS4 with 〈c2(Pk), [S4]〉 = k ∈ Z. Accord-
ing to [10], thep-localizationGid(Pk)(p) of the identity component of the gauge groupG(Pk) is An-equivalent to
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Gid(P0)(p) if and only if the map

S4 ∨ HPn k∨i−→ HP∞ ∨ HP∞
∇−→ HP∞

localization−→ HP∞(p)

extends overS4 × HPn, wherek : S4 → HP∞ is the classifying map ofPk, i : HPn → HP∞ is the inclusion and
∇ : HP∞ ∨ HP∞ → HP∞ is the folding map.

Now, we assume there exists the following homotopy commutative diagram:

S4 ∨ HPn k∨i //

j

��

HP∞ ∨ HP∞
∇ // HP∞

localization
��

S4 × HPn
f // HP∞(p)

wherep is a prime andj : S4 ∨ HPn→ S4 × HPn is the inclusion.
We denote the localization of the ring of integers by the prime ideal (p) ⊂ Z by Z(p). The (0th)p-local complex

K-theoryK(p)(HP∞(p)) of HP∞(p) is computed as

K(p)(HP∞(p)) = Z(p)[a].

We may assume that the generatorb ∈ H4(HP∞(p); Q) satisfies the equality

ch a=
∞∑
j=1

2b j

(2 j)!
.

Similarly, take generatorsu ∈ K̃(p)(S4) and s ∈ H4(S4; Q) such thatch u = s. Then, f ∗b = ks× 1 + 1 × b in
H4(S4 × HPn; Q) and

f ∗a = ku× 1+ 1× a+
n∑

i=1

εi(k)u× ai

in K̃(p)(S4 × HPn), whereεi(k) ∈ Z(p). We calculatef ∗ch aandch f∗a as follows:

f ∗ch a= f ∗
∞∑
j=1

2b j

(2 j)!
=

∞∑
j=1

2
(2 j)!

(ks× 1+ 1× b) j = ks× 1+
n∑

j=1

(
k

(2 j + 1)!
s× b j +

2
(2 j)!

1× b j

)
,

ch f∗a = ch

ku× 1+ 1× a+
∞∑

i=1

εi(k)u× ai

 =ks× 1+ 1×
n∑

j=1

2
(2 j)!

b j +

n∑
i=1

n∑
j=1

εi(k)s×
 n∑

j=1

2
(2 j)!

b j

i

=ks× 1+
n∑

j=1

2
(2 j)!

1× b j +

n∑
i=1

n∑
l=1

∑
j1+···+ j i=l

2iεi(k)
(2 j1)! · · · (2 j i)!

s× bl .

Since f ∗ch a= ch f∗a, we have the following formula:

k
(2` + 1)!

=
∑̀
i=1

∑
j1+···+ j i=`
j1,··· , j i≥1

2iεi(k)
(2 j1)! · · · (2 j i)!

.

For ` = 1 andk , 0, we obtainε1(k)/k = 1/6. Moreover, using this formula and induction oni, one can see that
εi(k)/k ∈ Q is independent ofk , 0. Let εi = εi(k)/k. Thenεi(k) = εik for anyk ∈ Z. Of course, the sequence
{εi}∞i=1 satisfy the following formula for each̀:

1
(2` + 1)!

=
∑̀
i=1

∑
j1+···+ j i=`
j1,··· , j i≥1

2iεi
(2 j1)! · · · (2 j i)!

.
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For example,ε1 = 1/6, ε2 = −1/180,ε3 = 1/1512 etc. From the above argument, if the map (localization)∇(k∨ i) :
S4 ∨ HPn→ HP∞(p) extends overS4 × HPn, thenε1k, · · · , εnk ∈ Z(p).

Tsukuda [9] defines a non-negative integer (or infinity)dp(k) for a primep and an integerk as the largestn
such that there exists an extension of

S4 ∨ HPn k∨i−→ HP∞ ∨ HP∞
∇−→ HP∞

localization−→ HP∞(p)

overS4 × HPn. Remarkdp(0) = ∞. Clearly, if we defineε0 = 1, then

dp(k) ≤ d′p(k) := min{n ∈ Z≥0 | εn+1k < Z(p) }.

It is shown in Lemma 2.5 of [10] thatdp(k) = dp(k′) for any primep if the classifying spacesBG(Pk) andBG(Pk′ )
are homotopy equivalent. Lemma 2.4 in [9] asserts thatd′p(k) < ∞ (thereforedp(k) < ∞) for k , 0 and any prime
p. In the proof of it, he has shown thatk/(2n+ 1) ∈ Z(p) if n ≤ d′p(k). For an odd primep, if pr - k, this implies
thatd′p(k) < (pr − 1)/2. But for p = 2, this gives no information aboutd′2(k). So this proof is invalid forp = 2. We
will give a correct proof for this case in§4.

We also state the result of [10]. IfG(Pk) andG(Pk′) areAn-equivalent, then min{n, dp(k)} = min{n,dp(k′)} for
any primep. Using this, we give a lower bound for the number ofAn-types of the gauge groups.

3 An explicit formula for εi
As we have seen, algebraically, the sequence{εi}∞i=0 of rational numbers is defined inductively by the following
formula:

1
(2` + 1)!

=
∑̀
i=1

∑
j1+···+ j i=`
j1,··· , j i≥1

2iεi
(2 j1)! · · · (2 j i)!

andε0 = 1. Equivalently,{εi} is defined by the equality

∞∑
`=0

x`

(2` + 1)!
=

∞∑
i=0

εi

 ∞∑
j=1

2x j

(2 j)!

i

in the ring of formal power seriesQ[[ x]].

Proposition 3.1. The rational numberεi is the i-th coefficient of the Taylor expansion of1/F′(x) at 0 ∈ C for

F(x) =
(
cosh−1

(
1+

x
2

))2
,

where F is holomorphic in a neighborhood of0.

Proof. Define a holomorphic functionH by

H(x) = 2 cosh
√

x− 2 =
∞∑

i=1

2
(2i)!

xi

in a neighborhood of 0. ThenF given by the above formula is the inverse function ofH. We also defineG by

G(x) =
∞∑

i=0

εi x
i .

Then, formally,H′(x) = G(H(x)) by the definition ofεi . Therefore, we haveG(x) = 1/F′(x). �

Since
d
dx

cosh−1 x =
1

√
x2 + 1

,

the next proposition is seen by easy computation.
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Proposition 3.2. The holomorphic function F satisfies the following differential equation:

x(x+ 4)F′′(x) + (x+ 2)F′(x) − 2 = 0.

If the power series
∞∑

i=1

ai x
i

satisfies the above equation, then

a1 = 1 , ai+1 = −
i2

(2i + 2)(2i + 1)
ai (i ≥ 1).

From these equations,

ai = (−1)i−1 2((i − 1)!)2

(2i)!

for i ≥ 1. Hence,

F(x) =
∞∑

i=1

(−1)i−1 2((i − 1)!)2

(2i)!
xi

and

F′(x) =
∞∑

i=0

(−1)i
(i!)2

(2i + 1)!
xi .

Therefore,

G(x) =
1

F′(x)
=

∞∑
j=0

(−1) j

 ∞∑
i=1

(−1)i
(i!)2

(2i + 1)!
xi

 j

= 1+
∞∑
j=1

∑
i1,··· ,i j≥1

(−1) j+i1+···+i j
(i1!)2 · · · (i j !)2

(2i1 + 1)! · · · (2i j + 1)!
xi1+···+i j .

This implies the following formula.

Theorem 3.3.

ε` =
∑̀
j=1

∑
i1+···+i j=`
i1,··· ,i j≥1

(−1) j+` (i1!)2 · · · (i j !)2

(2i1 + 1)! · · · (2i j + 1)!

4 Divisibility of εi
For a primep and a rational numbern, we denote thep-adic valuation ofn by vp(n). Equivalently, if

n =
pat

pbs

wheres and t are integers prime top, thenvp(n) = a − b. First, we review the divisibility of factorials. For a
positive integern and each primep, the following formula is known (see, for example, [5]):

vp(n!) =
n− Sp(n)

p− 1
,

whereSp(n) = n0 + · · · + nr for n = nr pr + nr−1pr−1 + · · · + n0 and 0≤ ni < p.

Lemma 4.1. For a positive integer n

v2

(
(n!)2

(2n+ 1)!

)
≥ −n,

where the equality holds if and only if n= 1.
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Proof. Using the above formula, we obtain

v2

(
(n!)2

(2n+ 1)!

)
= 2(n− S2(n)) − (2n+ 1− S2(2n+ 1)) = S2(n) ≥ −n.

As easily seen, this equality holds if and only ifn = 1. �

Now, we observe the divisibility ofεi by 2.

Proposition 4.2.
v2(ε`) = −`

Proof. By Theorem 3.3,

ε` =
∑̀
j=1

∑
i1+···+i j=`
i1,··· ,i j≥1

(−1) j+` (i1!)2 · · · (i j !)2

(2i1 + 1)! · · · (2i j + 1)!
.

Now, from the previous lemma, we have

v2

(
(i1!)2 · · · (i j !)2

(2i1 + 1)! · · · (2i j + 1)!

)
≥ −i1 − · · · − i j = −`,

where the equality holds if and only ifi1 = · · · = i j = 1. Then we obtain

ε` ≡ 6−` mod 2−`+1Z(2).

Therefore,v2(ε`) = −`. �

In general, the divisibility ofεi by an odd primep is more complicated than by 2 because the interval between
a multiple ofp and the next one is longer. But forp = 3, we will have a similar result.

Lemma 4.3. Let p be an odd prime and n a positive integer. Then

vp

(
(n!)2

(2n+ 1)!

)
≥ − 2n

p− 1
,

where the equality holds if and only if n= (p− 1)/2.

Proof. Let n = nr pr +nr−1pr−1+ · · ·+n0 with 0 ≤ ni < p. Assumen0 = · · · = ns−1 = (p−1)/2 , ns (0 ≤ s≤ r +1).
Let m = nr pr−s + · · · + ns for s ≤ r andm = 0 for s = r + 1. Then we have 2n+ 1 = ps(2m+ 1), where 2m+ 1 is
prime top sincens , (p− 1)/2. Thus we obtain

vp

(
(n!)2

(2n+ 1)!

)
= vp

(
1

2n+ 1

)
+ vp

(
(n!)2

(2n)!

)
= −s−

2Sp(n) − Sp(2n)

p− 1
= −s−

2Sp(m) − Sp(2m)

p− 1
≥ −s− 2m

p− 1
,

where the last equality holds if and only ifm= 0. Moreover,

2(n−m)
p− 1

=
(2n+ 1)− (2m+ 1)

p− 1
=

(ps − 1)(2m+ 1)
p− 1

≥ 1+ p+ · · · + ps−1 ≥ s,

where 2(n−m)/(p− 1) = s if and only if s= 1 andm= 0. Therefore, we conclude that

vp

(
(n!)2

(2n+ 1)!

)
≥ − 2n

p− 1
,

where the equality holds if and only ifn = (p− 1)/2. �

Proposition 4.4. For a positive integer̀ ≤ n(p− 1)/2,

vp(ε`) ≥ −n,

where the equality holds if and only if` = n(p− 1)/2. Especially, v3(ε`) = −` for any`.
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Proof. Let positive integersi1, · · · , i j satisfyi1 + · · · + i j = `. From the previous proposition, we have

vp

(
(i1!)2 · · · (i j !)2

(2i1 + 1)! · · · (2i j + 1)!

)
≥ − 2`

p− 1
≥ −n,

where the left equality holds if and only ifi1 = · · · = i j = (p− 1)/2. Thus using Theorem 3.3, we obtain

vp(ε`) ≥ −n,

where the equality holds if and only if` = n(p− 1)/2. �

Remark 1. Here we remark that vp(ε`) is not non-increasing oǹ in general. For example, v5(ε2) = −1 but
v5(ε3) = 0, v7(ε9) = −3 but v7(ε10) = −2, etc.

From Proposition 4.2 and 4.4, we conclude our main result.

Theorem 4.5. Let k be a non-zero integer and p be a prime. Then

d′p(k) =

{
v2(k) (p = 2)
vp(k)(p− 1)/2 (p is odd)

.

Thend2(k) ≤ d′2(k) < ∞ for any non-zero integerk and we have correctly verified Lemma 2.4 of [9].

5 Applications to An-types of gauge groups

As in §2, we assume there exists the following homotopy commutative diagram:

S4 ∨ HPn k∨i //

j

��

HP∞ ∨ HP∞
∇ // HP∞

localization
��

S4 × HPn
f // HP∞(p)

wherep is a prime andi and j are the inclusions. Let us consider the map

S4 × HPn ∪ ∗ × HPn+1 f∪((localization)i)
→ HP∞(p).

The obstruction to extending this map overS4 × HPn+1 lives in π4n+7(HP∞(p)). Then, from Theorem of [6], the
obstruction to extending the map

S4 × HPn ∪ ∗ × HPn+1 (p×id)∪id
→ S4 × HPn ∪ ∗ × HPn+1 f∪((localization)i)

→ HP∞(p)

overS4 × HPn+1 vanishes for an odd primep. Here we remark that for the cofibration

S4n+7 ϕ
→ S4 × HPn ∪ ∗ × HPn+1→ S4 × HPn+1,

ϕ : S4n+7 → S4 × HPn ∪ ∗ × HPn+1 is defined by the restriction to the boundary of the direct product of the
characteristic maps (D4,S3) → (S4, ∗) and (D4n+4,S4n+3) → (HPn+1, HPn) and the composition of the direct
product and the restrictionπ4(S4)×π4n+4(HPn+1,HPn)→ π4n+8(S4×HPn+1,S4×HPn∪∗×HPn+1)→ π4n+7(S4×
HPn ∪ ∗ × HPn+1) is bilinear. Hence one can seedp(pk) > dp(k) anddp(k) ≥ vp(k) inductively. Forp = 2, from
[3], d2(4k) > d2(k) andd2(k) ≥ [v2(k)/2] similarly. Then, combining with Theorem 4.5, we have

vp(k) ≤ dp(k) ≤ d′p(k) =
p− 1

2
vp(k)

for an odd primep and [
v2(k)

2

]
≤ d2(k) ≤ d′2(k) = v2(k).

Especially,d3(k) = v3(k). From§2, the next theorem follows.
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Theorem 5.1. Let P be a principal SU(2)-bundle over S4 with 〈c2(P), [S4]〉 = 3n. Then the3-localizationGid(P)(3)

of the identity componentGid(P) ofG(P) is An-equivalent toMap (S4,SU(2))(3) but not An+1-equivalent.

This gives an example ofAn-equivalent but notAn+1-equivalent topological monoids for anyn.
Now we give the lower bound of the number ofAn-types of gauge groups of principalSU(2)-bundle overS4.

As stated in§2, if G(Pk) andG(Pk′ ) areAn-equivalent, then min{n,dp(k)} = min{n,dp(k′)} for any primep. If p is
an odd prime, then

#{min{n,dp(k)} | k ∈ Z } ≥
[

2n
p− 1

+ 1

]
since 0= dp(1) < dp(p) < dp(p2) < · · · < dp(p[2n/(p−1)]) ≤ n. If p = 2, then

#{min{n,d2(k)} | k ∈ Z } ≥
[n
2
+ 1

]
since 0= d2(1) < d2(4) < d2(16)< · · · < d2(4[n/2]) ≤ n.

Theorem 5.2. The number of An-types of gauge groups of principal SU(2)-bundles over S4 is greater than[n
2
+ 1

] ∏
p:odd prime

[
2n

p− 1
+ 1

]
.

We can express the logarithm of this as follows:

log

[n
2
+ 1

] ∏
p:odd prime

[
2n

p− 1
+ 1

] = log
[n
2
+ 1

]
+

∑
p:odd prime

log

[
2n

p− 1
+ 1

]

= log
[n
2
+ 1

]
+

n+1∑
r=2

(
π

(
2n

r − 1
+ 1

)
− 1

)
(log r − log(r − 1))

= log
[n
2
+ 1

]
+

n∑
r=1

π

(
2n
r
+ 1

)
log

(
1+

1
r

)
− log(n+ 1),

whereπ is the prime counting function. The second equality is seen by

#

{
p : an odd prime

∣∣∣∣∣∣
[

2n
p− 1

+ 1

]
≥ r

}
= π

(
2n

r − 1
+ 1

)
− 1.
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