-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

A note on homotopy types of connected components of

Title Map(S[4], B SU(2))

Author(s) | Tsutaya, Mitsunobu

Citation Journal of Pure and Applied Algebra (2012), 216(4): 826-832

Issue Date | 2012-04

URL http://hdl.handle.net/2433/152485

Right © 2011 Elsevier B.V.

Type Journal Article

Textversion | author

Kyoto University


https://core.ac.uk/display/39280243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A note on homotopy types of connected components of
Map (S*, BSU(2))

Mitsunobu Tsutaya

Abstract: Gottlieb has shown that connected components of BfaBSU(2)) are the classifying spaces of
gauge groups of principadU(2)-bundles oveS*. Tsukuda has investigated the homotopy types of connected
components of Mapg*, BSU(2)). But unfortunately, his proof is not complete for= 2. In this paper, we give a
complete proof. Moreover, we investigate the further divisibilitgalefined in Tsukuda’s paper. We apply this to
classification problem of gauge groupsfgsspaces.

1 Introduction

For a principalG-bundleP, the gauge groug(P) of P is defined as the group of all bundle madps» P covering
the identity map of the base space. It is topologized by compact open topology and becomes a topological group.
Particularly, we consider the gauge groups of princiiaf2)-bundles over the 4-dimensional sph&fe

Gottlieb [2] has constructed the universal bundles and the classifying spaces of gauge groups. The classifying
space of the gauge group of a princigabundleP over B with classifying mapr : B — BG is the connected
component of the mapping space M&BG) containinga.

Kono [4] has investigated the homotopy types of the gauge groups of prir®ij{a)-bundles ove5*. He
showed that they are completely classified by the invariant GC¢IP), [S*])), where GCD 4§, b) represents
the greatest common divisor afandb (GCD (Q a) = GCD (g, 0) = |a]), c,(P) € H4(S*; Z) is the second Chern
class ofP and [5%] € H4(S%, Z) is the fundamental class &f.

Moreover, Crabb and Sutherland [1] classified théypes (equivalent types &$-spaces (or Hopf spaces)) of
them; they are completely classified by the invariant GCD (1&0QP),[S*])). Of course, ifG(P) andG(P’) are
H-equivalent, then they are homotopy equivalent.

Tsukuda [9] has classified the isomorphism classes of them; they are completely classi@@Dy[S*])|.
Moreover, he shows thgt(P) andG(P’) are isomorphic if the classifying spaces of them are homotopy equivalent.
We remark that the converse is true in general. But the argument in the proof of Lemma 2.4 of [9] is not valid for
p = 2. The first aim of the present paper is to give a correct proof of this.

The author [10] has considered the classification problem of the gauge groups by usindf'Staakie[7]

[8]. Since ‘H-equivalence” and “homotopy equivalence of classifying spaces” are nothingAptquivalence”
and “A.-equivalence” respectively, this problem is a natural generalization. The second aim is to apply our main
theorem to it.

In §2, we review the definition o and the motivation in homotopy theory. 3 and 4, we investigate the
divisibility of . These sections are purely algebraic§ T we apply our main result t&,-types of gauge groups.

We give a lower bound of the number A§-types of gauge groups of princip@lU(2)-bundles oves*.

2 Definition and motivation

We review the definition ofe}. Let Pg be a principaSU(2)-bundle oveS* with (c,(Py),[S*]) = k € Z. Accord-
ing to [10], thep—IocaIizationg'd(Pk)(p) of the identity component of the gauge gra@fPy) is A,-equivalent to
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G"(Po)p) if and only if the map

localization

Sty HP 4 ypey Hpe L ppe 20 HPG)
extends oveB* x HP", wherek : S* — HP> is the classifying map o, i : HP" — HP® is the inclusion and

V:HP* v HP® - HP> is the folding map.
Now, we assume there exists the following homotopy commutative diagram:

S4v HPY —s Hp® v HP® — > HP™

j \L J/ localization
f

S*x HP" HPG)

wherepis a prime and : S* v HP" — S* x HP" is the inclusion.
We denote the localization of the ring of integers by the prime idgat:(Z by Z(,). The (Oth)p-local complex
K-theoryK(H P(p)) of H P is computed as

Km(HPR) = Zplal.

We may assume that the generaier H*(H Py ; Q) satisfies the equality

Similarly, take generators € K;(S*) ands € H*4(S* Q) such thatthu = s. Then,f*b = ksx 1+ 1 x bin
H4(S* x HP™; Q) and

n
ffa=kux 1+ 1><a+Z:ei(k)u><ai
i=1
in K(p)(S* x HP"), whereei(k) € Z(y. We calculatef *ch aandch f*a as follows:

*cha= f* i i 4 i
f*cha= f j; 2 - g el ),(ks><1+1><b) ksx 1+ E ( 1)!sxb o; )leb)

M-
M-

- n. o .i
chffa=chlkuxl+1xa+ » g(Kuxa|=ksx1+1x — pl+ €(K)s x —Db!
[ 2,909 ) Z(Zl), R [;(zm ]

26 (K
—ks><1+21ﬂ1><bJ ZZ Z msxb'.

i=1 1=1 jy+-+ji=I

s
[

S
[

Sincef*cha= ch f*a, we have the following formula:

P )
2'6(Kk)
(2€+1)' Z;,ZJ @i @t
Jl J\>l
For¢ = 1 andk # 0, we obtaine; (k)/k = 1/6. Moreover, using this formula and induction Qrone can see that
€(K)/k € Qis independent ok # 0. Letg = (k)/k. Theng(k) = gk for anyk € Z. Of course, the sequence
{a};2, satisfy the following formula for eack

{
EI
(25+1)' Z Z @it @2

i=1 ji+-+ji=
Jl J\>1



For examplee; = 1/6, e, = —1/180,e3 = 1/1512 etc. From the above argument, if the map (localiza@gay i) :
S* Vv HP" - HP extends oveB* x HP", theneik, - -, enk € Z(p.

Tsukuda [9] defines a non-negative integer (or infindyfk) for a primep and an integek as the largest
such that there exists an extension of

localization

S*vHP 5 Hpe v HPY D Hpe S e
overS* x HP". Remarkd,(0) = c. Clearly, if we defines = 1, then
p(k) <d (k) =min{n e Zyo| i1k ¢ Z(p) }.

Itis shown in Lemma 2.5 of [10] that,(k) = dp(k’) for any primep if the classifying spaceBG(P«) andBG(Py )
are homotopy equivalent. Lemma 2.4 in [9] asserts dhek) < oo (therefored,(k) < oo) for k # 0 and any prime
p. In the proof of it, he has shown thiet(2n + 1) € Zy) if n < di(k). For an odd primep, if p" 1 k, this implies
thatdy, (k) < (p" — 1)/2. But for p = 2, this gives no information abod;(k) So this proof is invalid fop = 2. We
will give a correct proof for this case 4.

We also state the result of [10]. #(Px) andG(Pw) are Ar-equivalent, then mim, dp(k)} = min{n, d,(k’)} for
any primep. Using this, we give a lower bound for the numbe®gftypes of the gauge groups.

3 An explicit formula for ¢

As we have seen, algebraically, the sequeegg, of rational numbers is defined inductively by the following

formula: ,
(2€+l)' Z Z , @j)t- I(2ji)!

i=1 jitetii=
Jl ]|>1

ande = 1. Equivalently{e} is defined by the equality

o X i )
; @+ 1) .Z [Z (2])']
in the ring of formal power serieQ[[ X]].

Proposition 3.1. The rational numbeg; is the i-th cogicient of the Taylor expansion &fF’(x) at0 € C for

F(X) = (cosh‘1 (1 + g))z

where F is holomorphic in a neighborhood @f

Proof. Define a holomorphic functiohl by
H(X) = 2coshvx -2 = i 2
] ~ 4 @

in a neighborhood of 0. TheR given by the above formula is the inverse functiortbfWe also defin€& by

G(X) = Z ax.
i=0
Then, formally,H’(x) = G(H(X)) by the definition ofg. Therefore, we hav&(x) = 1/F’(X). O
Since q 1
— coshtx = ,
dx X2 +1

the next proposition is seen by easy computation.



Proposition 3.2. The holomorphic function F satisfies the followingf@tential equation:
XX+ DF"(X) + (X+2)F'(x)—2=0.

If the power series
> ax
i=1

satisfies the above equation, then

i2 .
a=1, a1 = —mai (i>1)

From these equations,
20 -2 1)')2

fori > 1. Hence,

2
F0 —Z( 1y 12

and

F09 = Z(_ )'(2|+1)| x

Therefore,

i 0 H 2 H 2
_ i il _ [EEpEm—p (i)*--- (IJ!) i
609 = F(x) Z( v [Z(_ )(2|+1)l ] - Z Z B T TR T T

iz

This implies the following formula.

Theorem 3.3.

i Z ( )J+€ (il!)z"‘(ij!)z
j= 1|1+ =t (2i1+1)!---(2ij+1)!
i1

4 Divisibility of ¢
For a primep and a rational number, we denote thg-adic valuation oh by v,(n). Equivalently, if

Pt
p°s

wheres andt are integers prime t@, thenvp(n) = a— b. First, we review the divisibility of factorials. For a
positive integen and each prim@, the following formula is known (see, for example, [5]):

n—S(n)
p

vp(n!) = -1

whereS,(n) =ng+---+n, forn=n,p" + Nopt+--+ngand 0< n; < p.

vz(eﬁ”—fzm) >n,

Lemma 4.1. For a positive integer n

where the equality holds if and only if-n1.



Proof. Using the above formula, we obtain

(n)?
* ((Zn n 1)!) =2(01- () - (2n+1-S2n+ 1) = S(M) = -n.
As easily seen, this equality holds if and onlyi 1. g

Now, we observe the divisibility of by 2.

Proposition 4.2.
Vo(e) = =

Proof. By Theorem 3.3,

" e ([1)2 (i)
“= ; mg‘jg(_l)] @@ D

iz, 021

Now, from the previous lemma, we have

(i2)2--(ij!)? . -
V2((2i1+1)!..,(2ij +1)!)2 —ip = —ij= =L,

where the equality holds if and onlyiif = - -- = i; = 1. Then we obtain
€ = 6¢ mod ZHlZ(z).
Thereforey,(e) = —¢. o

In general, the divisibility ok by an odd primep is more complicated than by 2 because the interval between
a multiple of p and the next one is longer. But fpr= 3, we will have a similar result.

Lemma 4.3. Let p be an odd prime and n a positive integer. Then

(nh)2 o2
Vp((2n+1)!) = Tpot

where the equality holds if and only ifa(p — 1)/2.

Proof. Letn=np +n_1p 1+ - +nowithO < nj < p. Assumeng = ---=ng1 = (p—1)/2# ns (0 < s<r+1).
Letm=np~S+---+nsfors<randm=0fors=r+ 1. Thenwe have2+ 1= pS(2m+ 1), where Zn+ 1 is
prime top sinceng # (p — 1)/2. Thus we obtain

(2 1\ _ 1 )2\ _ 25(n) - Sp(2n) 25(m) — S(2m) 2m
“larem) = lmsa) @) == e T e e
where the last equality holds if and onlynf= 0. Moreover,

2h-m (2n+1)-(2m+1) (p°-1)(2m+1) o1
-1 p—1 = b—1 >1+p+---4+p 25

where 26— m)/(p— 1) = sif and only if s= 1 andm = 0. Therefore, we conclude that

(n)2 S
Vp((2n+1)!) = Tp-1

where the equality holds if and onlyiif= (p — 1)/2. O

Proposition 4.4. For a positive integef < n(p — 1)/2,
Vp(er) =2 —n,

where the equality holds if and onlydf= n(p — 1)/2. Especially, ¥(e;) = —¢ for any<.



Proof. Let positive integers,, - - - ,ij satisfyi, + - -- + i; = £. From the previous proposition, we have

iN2...(i:)2
P((zilili))! g.,)+ 0= pz—gl =N
where the left equality holds if and onlyiif = --- = i; = (p— 1)/2. Thus using Theorem 3.3, we obtain
Vp(er) = —n,
where the equality holds if and onlydf= n(p — 1)/2. O
Remark 1. Here we remark that y{e;) is not non-increasing oi in general. For example,s(e) = -1 but

Vs(e3) = 0, Vr(e9) = =3 but v(e10) = -2, etc.
From Proposition 4.2 and 4.4, we conclude our main result.

Theorem 4.5. Let k be a non-zero integer and p be a prime. Then

(v (p=2)
%M‘{ﬁwm—nm (pisodd) -

Thendy(k) < d/(k) < oo for any non-zero integde and we have correctly verified Lemma 2.4 of [9].
5 Applications to A,-types of gauge groups
As in §2, we assume there exists the following homotopy commutative diagram:

St v HP —Ls Hpe v HP® L P

j l J/ localization

S*x HP" HP)

wherep s a prime and andj are the inclusions. Let us consider the map

Pml fu((localization))

S*xHP"Uxx H HP

(p)*

The obstruction to extending this map o0&t x HP™! lives in m4n,7(H P;’;)). Then, from Theorem of [6], the
obstruction to extending the map

id)uid fu((localizati
St x HPM U x HPWE PO gt pn g o ppmet OO0 e

overS* x HP"™! vanishes for an odd primg Here we remark that for the cofibration
ST 5 SUx HP U x HP™ — S x HP™Y,

@ ST 5 St x HP" U+ x HP™! is defined by the restriction to the boundary of the direct product of the
characteristic maps(, S%) — (S%, ) and O**4,S*™3) — (HP™!, HP") and the composition of the direct
product and the restrictiony(S*) x 74n:a(HP™ L, HP") = 714n,8(S*x HP™L, S*x HP"U s x HP™1) — m4n,7(S*x

HP" U x x HP™) is bilinear. Hence one can sdg(pK) > dy(K) andd,(K) > v,(K) inductively. Forp = 2, from

[3], d2(4k) > da(K) anddy(K) > [v2(Kk)/2] similarly. Then, combining with Theorem 4.5, we have

o) < () < (k) = P~ Twy(l)

for an odd primep and
Vv2(K)
2

Especiallyds(k) = v3(k). From§2, the next theorem follows.

< dy(k) < dy(k) = va(K).



Theorem 5.1. Let P be a principal S{®)-bundle over 8 with (cx(P),[S*]) = 3". Then thed-localizationG'(P) 3,
of the identity componegt¥(P) of G(P) is A,-equivalent taViap (S*, SU(2))) but not Ay.1-equivalent.

This gives an example df,-equivalent but no#,,;-equivalent topological monoids for amy
Now we give the lower bound of the number Af-types of gauge groups of principglU(2)-bundle oveS*.
As stated in§2, if G(P«x) andG(Pw) are Ap-equivalent, then mim, d,(k)} = min{n, d,(k’)} for any primep. If pis
an odd prime, then
2n
p-1

since 0= dp(1) < dp(p) < dp(p?) < -+ < dp(p2V(P-Dy < n. If p =2, then

# min{n,dp(k)} [ke Z} > +1

#min(n, dy(K)} [k € Z} > [g . 1]
since 0= dy(1) < dy(4) < dx(16) < - - - < da(4V3) < n.
Theorem 5.2. The number of Atypes of gauge groups of principal $)-bundles over $is greater than

[g+1] 1—[ [pZTnl+1'

p:odd prime

We can express the logarithm of this as follows:

Iog“g+1] 1_] [pz_nl+1]=logg+l—+ Z Iog[pz_nl+1

p:odd prime p:odd prime
n _ n+l on
=log B + l_ + ;(“(ﬁ + l) - 1) (logr —log(r — 1))

m .1 <« (2n 1
_Iogé +l_ +;n(7 +l)log(1+ F)—Iog(n+1),

wherer is the prime counting function. The second equality is seen by

2n
>ry=n|l—+1|-1
} ﬂ(r_1+)

#{p :anodd prime{ [% +1
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