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Abstract  

The process of bone remodeling is regulated by metabolic activities of many bone cells. 

While osteoclasts and osteoblasts are responsible for bone resorption and formation, 

respectively, activities of these cells are believed to be controlled by a mechanosensory 

system of osteocytes embedded in the extracellular bone matrix. Several experimental and 

theoretical studies have suggested that the strain-derived interstitial fluid flow in 

lacuno-canalicular porosity serves as the prime mover for bone remodeling. Previously, we 

constructed a mathematical model for trabecular bone remodeling that interconnects the 

microscopic cellular activities with the macroscopic morphological changes in trabeculae 

through the mechanical hierarchy. This model assumes that fluid-induced shear stress acting 

on osteocyte processes is a driving force for bone remodeling. The validity of this model has 

been demonstrated with a remodeling simulation using a two-dimensional trabecular model. 

In this study, to investigate the effects of loading frequency, which is thought to be a 

significant mechanical factor in bone remodeling, we simulated morphological changes of a 

three-dimensional single trabecula under cyclic uniaxial loading with various frequencies. 

The results of the simulation show the trabecula reoriented to the loading direction with the 

progress of bone remodeling. Furthermore, as the imposed loading frequency increased, the 

diameter of the trabecula in the equilibrium state was enlarged by remodeling. These results 

indicate that our simulation model can successfully evaluate the relationship between loading 

frequency and trabecular bone remodeling. 
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1. Introduction 

    Bone is a load-bearing tissue that can adapt its internal structure and outer shape by 

remodeling to a changing mechanical environment. The morphological changes of the 

trabecular microstructure are realized by the coupling of osteoclastic bone resorption and 

osteoblastic bone formation (Parfitt, 1994). It is widely believed that the metabolic activities 

of these executive cells are coupled with osteocytes, which are interconnected within the 

extracellular bone matrix, forming a three-dimensional intercellular network through cellular 

processes (Cowin et al., 1991; Donahue et al., 1995; Kamioka et al., 2001, 2009; Knothe Tate 

et al., 2004; Sugawara et al., 2005). The osteocyte network is considered to have an important 

role in mechanosensing and intercellular signal transmission (Mullender and Huiskes, 1997; 

Burger and Klein-Nulend, 1999; Cowin, 2007; Huo et al, 2008; Adachi et al., 2009a, b, c). 

    Although the mechanism of cellular mechanosensing is not well understood, attempts 

have been made to determine the mechanical stimulus that derives the responses of 

mechanosensor cells. A variety of mechanical stimuli, such as strain energy density 

(Mullender et al., 1994; Huiskes et al., 2000; Mullender and Huiskes, 1995; Ruimerman at al., 

2005), micro-damage (Prendergast and Taylor, 1994; McNamara and Prendergast, 2007; 

Mulvihill and Prendergast, 2008), stress nonuniformity (Adachi et al., 1997, 2001; Tsubota 

and Adachi, 2004, 2005, 2006; Tsubota et al., 2002, 2009), and fluid flow (Weinbaum et al., 

1994; Burger and Klein-Nulend, 1999; Knothe Tate et al., 1998; Klein-Nulend et al., 2005; 

Bonewald and Johnson, 2008; Fritton and Weinbaum, 2009), are assumed to be candidates for 

a remodeling stimulus. Experimental studies indicate that a significant mechanical factor 
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affecting bone remodeling is the strain rate rather than the strain itself (Fritton et al., 2000; 

Goldstein et al., 1991; Lanyon, 1984). The theoretical study based on poroelasticity 

(Weinbaum et al., 1994) suggests that the interstitial fluid flow in lacuno-canalicular porosity 

induced by strain plays an important role in osteocyte mechanosensing. In the microstructure 

model of Weinbaum et al. (1994), fluid-induced shear stress over the osteocytic process is 

considered to be a driving force for bone remodeling. This model was later refined, indicating 

the importance of cellular attachment to canalicular projections (You et al., 2001; Weinbaum 

et al., 2003; Han et al., 2004) and the fiber connection between the cell membrane and the 

canalicular wall (Wang et al., 2007) as well as the fluid flow. Thus, the progress in this field 

of research from the macroscopic to microscopic level has provided important information 

about the mechanism of cellular mechanosensing. 

    A number of computational models for bone remodeling using finite element analysis 

have been proposed to investigate the mechanism of bone self-regulation (Cowin, 1993; 

Huiskes et al., 1987, 2000; Jang and Kim, 2008; Coelho et al., 2009; Dunlop et al., 2009; 

Martinez-Reina et al., 2009; Gerhard et al., 2009). We have developed a mathematical model 

for trabecular surface remodeling by assuming the nonuniformity of local stress on the 

trabecular surface as a driving force for remodeling (Adachi et al., 1997, 2001; Tsubota and 

Adachi, 2004, 2005, 2006; Tsubota et al., 2002). Applying this phenomenological model to 

the trabecular remodeling simulation for an entire human proximal femur, we were able to 

successfully describe a three-dimensional trabecular pattern similar to that in the actual femur 

(Tsubota et al., 2009). However, this model does not explicitly consider the possible 
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mechanisms at the cellular level, even though bone remodeling is accomplished by the 

coupling of the cellular activities of osteoclasts, osteoblasts, and osteocytes. 

    In order to explain the macroscopic tissue level changes in trabecular morphology in 

terms of the microscopic cellular level activities, we recently proposed a mathematical model 

for bone remodeling, taking cellular mechanosensing and intercellular communication into 

consideration (Adachi et al., 2010). This model is based on the hypothesis that osteocytes 

respond to fluid-induced shear stress (Weinbaum et al., 1994; Klein-Nulend et al., 1995a, b) 

and deliver their mechanical signals to the surface cells by intercellular communication 

(Adachi et al., 2009c). As a result, bone formation and resorption are regulated. The validity 

of our model was demonstrated by a remodeling simulation for a two-dimensional trabecular 

model (Adachi et al., 2010). The purpose of this study is to investigate the effects of loading 

frequency, which is thought to be a significant mechanical factor for bone remodeling. By 

applying the mathematical model for bone remodeling (Adachi et al., 2010) to the 

three-dimensional voxel finite element model of a trabecula, we performed bone remodeling 

simulation for a single trabecula subjected to cyclic uniaxial loading with various frequencies. 

 

2. Methods 

2.1. Mathematical model of trabecular bone remodeling 

Theoretical framework 

    The proposed theoretical framework for trabecular bone remodeling is illustrated in Fig. 

1. Mechanical loading applied to bone tissue induces bone matrix deformation and interstitial 
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fluid flow. The mechanical behavior of the interstitial fluid can be quantified by the fluid 

pressure p and its gradient pﾑ . The osteocytes buried in the bone matrix or the cells on the 

trabecular surface, such as osteoblasts and bone lining cells, respond to the fluid flow and 

transduce the mechanical stimulus into the biochemical signal Soc. Then, the produced signal 

is transmitted to the trabecular surface through an intercellular network system and is 

integrated as the total stimulus Ssf. Finally, the rate of trabecular surface remodeling M , 

which expresses formation and resorption of the trabecular surface, is regulated by the 

stimulus Ssf. 

    While the process of generating interstitial fluid flow by applied loading is purely 

mechanical, the other three processes, i.e., cellular mechanosensing, intercellular 

communication, and trabecular surface remodeling, are achieved by the intricate 

mechanical-biochemical coupling phenomena, and their detailed mechanisms remain 

unproven. In the following subsections, the mathematical models of each process are 

constructed based on rational assumptions. 

 

Cellular mechanosensing 

    It is believed by many researchers that osteocytes in the bone matrix have a role as 

mechanosensory cells, and shear stress caused by interstitial fluid flow over the osteocytes 

processes can be considered to be a mechanical stimulus. The evaluation of the shear stress 

was based on the microstructure model of Weinbaum et al. (1994) shown in Fig. 2. This 

model accounts for the interstitial fluid flow through a fiber matrix, such as proteoglycan, in 
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an annular canaliculus. Assuming the fluid flow is governed by the Brinkman equation, the 

shear stress p(n), acting on the osteocyte processes that align in direction n, can be derived 

using the fluid pressure gradient at bone tissue level p  as: 

   p

p 1 1 1 1

qr
A I B K p

q q

 




    
       

    
n x n ,     (1) 

where constants A1 and B1 are given by 

   

       

   

       

0 0

1

0 0 0 0

0 0

1

0 0 0 0

K K q
A

I q K I K q

I q I
B

I q K I K q

 

   

 

   











.      (2) 

In these equations, q is the ratio of the radius of the canaliculus rc to that of the process rp 

( c pq r r ),  is the dimensionless parameter defined by c pr k  , and I0, I1, K0, and K1 are 

modified Bessel functions (Weinbaum et al., 1994). The constant kp is the permeability of the 

fiber matrix in the fluid annulus and can be approximated by the equation 

 
2.3772

0 00.0572a a  using the fiber radius a0 and the spacing of the fiber matrix  (Tsay and 

Weinbaum, 1991). The fluid pressure gradient p  is calculated using poroelastic finite 

element analysis (Detournay and Cheng, 1993; Manfredini et al., 1999). 

    In this study, it was assumed that osteocytes are susceptible to the average value of 

fluid-induced shear stress in a day, and the quantity of biochemical signals that osteocytes 

produce is equivalent to the value of the integral of the average shear stress on the cell 

processes. Introducing the volume fraction of canaliculi oriented to n, c(n), at a particular 

position x (Kameo et al., 2010), the signal Soc(x) produced by the osteocytes per unit bone 

volume can be defined as: 
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      x n n ,     (3) 

where,  is the angle between the x3-axis in the arbitrarily given Cartesian coordinate system 

(x1, x2, x3) and the vector n,   is the angle between the x1-axis and the projection of n onto 

the x1x2-plane measured counterclockwise, and  p n  is the time-averaged shear stress in a 

day. Though the volume fraction of canaliculi c(n) depends on their orientation, in this 

modeling, the cell processes were assumed to extend isotropically, i.e.,  c c 1 2   n , 

for simplicity. 

 

Intercellular communication 

    The biochemical signals produced by osteocytes are delivered to the osteoblasts and 

osteoclasts on the trabecular surface. The intercellular communication of biochemical signals 

through the network system is illustrated in Fig. 3. Assuming that the cell on a particular 

trabecular surface location receives the signals only from the osteocytes within a limited 

region  and the cellular communication depends on the distance between cells, the total 

stimulus Ssf at position xsf on the trabecular surface is defined as 

         sf sf oc L Lwith 1S w l S d w l l l l l


    x x ,   (4) 

where w(l) is a weight function that describes the decay in signal intensity relative to the 

distance l and lL is the maximum distance for intercellular communication. The total stimulus 

Ssf is a positive scalar function, indicating cellular activity on the trabecular surface. 
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Trabecular surface remodeling 

    The self-regulation of bone mass is achieved by osteoclastic bone resorption and 

osteoblastic bone formation. In this study, it was assumed that activities of osteoclasts and 

osteoblasts are regulated by the decrease and increase in the mechanical stimulus from the 

physiological equilibrium condition, respectively. Regarding the total stimulus Ssf(xsf) as the 

driving force for bone remodeling, the relationship between the rate of trabecular surface 

remodeling M  and Ssf(xsf) can be qualitatively described by the function: 
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, (5) 

where the mechanical stimulus at the remodeling equilibrium O

sf sfS S , the lazy zone Z

sfS , 

and the maximum formation/resorption rate maxM  and maxM  are considered in the rate 

equation as shown in Fig. 4. To express trabecular surface movement in the simulation, the 

level set method (Osher and Sethian, 1988), which is a numerical technique for tracking 

interfaces and shapes of materials, was employed. 

 

2.2. Procedures of trabecular bone remodeling simulation 

    By applying the mathematical model for trabecular bone remodeling to a voxel finite 

element model of a trabecula, trabecular surface remodeling was simulated by the following 
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procedures. 

(1) The initial shape of a trabecula is discretized using cubic voxel finite elements.  

(2) The fluid pressure p and its gradient pﾑ  inside the trabecula are calculated based on 

poroelastic finite element analysis. 

(3) The biochemical signal Soc is calculated by Eq. (3) using the value of fluid-induced shear 

stress p derived by Eq. (1). 

(4) The total stimulus on the trabecular surface Ssf is calculated by Eq. (4). 

(5) The rate of trabecular surface remodeling M  is determined by Eq. (5). 

(6) Based on the value of M , the shape of the trabecular surface is updated using the level 

set method, and then the voxel finite element model of the trabecula is recreated. 

(7) Unless a remodeling equilibrium is attained, return to procedure (2), where the 

remodeling equilibrium is accomplished when the changes in the bone volume are 

sufficiently small. 

 

2.3. Voxel modeling of a single trabecula 

    As a simple trabecular model, a three-dimensional single trabecular model under cyclic 

uniaxial loading was constructed as shown in Fig. 5. The region for analysis was a1 ×a2 ×a3 = 

0.8 mm × 1.6 mm × 1.2 mm, discretized by cubic voxel finite elements with an edge size of 

40 m. A single trabecula, the diameter was 240 m, was set at the center of the region with a 

skew angle of 30°. The trabecula was modeled as a homogeneous and isotropic poroelastic 

material (Cowin, 1999; Kameo et al., 2008, 2009) with the material properties listed in Table 
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1 (Smit et al., 2002; Beno et al., 2006; Adachi et al., 2010). To impose external loadings, two 

parallel, 40-m-thick plates were added to the upper and lower edges. While the plates have 

the same material properties as the trabecula, they do not change in the shape during 

remodeling. 

    A shear-free condition was applied to the lower plane, and a free leakage of interstitial 

fluid on the trabecular surfaces was assumed. On the upper plane, cyclic loading F(t) = 

3(a1a2)sin2ft (3 = 0.07 MPa) was applied along the direction of the x3-axis, keeping the 

x3-displacement u3 uniform. To investigate the effect of frequency of the applied loading on 

morphological changes in the trabecula, the loading frequency f was determined as f = 1, 5, 

and 10 Hz. 

    The settings of the physiological parameters explained in the previous section were 

specified as follows. The radius of the osteocytic process rp and the radius of the canaliculus 

rc were determined based on the average values measured by You et al. (2004): rp = 52 nm, rc 

= 129.5 nm. The fiber radius a0 and the fiber spacing  were taken as a0 = 0.6 nm and  = 7 

nm (Weinbaum et al., 1994). The maximum remodeling rate maxM = 40 m/day (Jaworski 

and Lok, 1972) was based on the resorption rate of osteoclasts. The maximum distance for 

intercellular communication lL was set to lL = 200 m, referring to the in vitro experiment 

involving the observation of the propagation of calcium signaling between bone cells (Huo et 

al., 2008; Adachi et al., 2009c). The parameters associated with the mechanical signal, U

sfS , 

L

sfS , O

sfS , and Z

sfS , were arbitrarily set to 1.5 N, 0.5 N, 1.0 N, and 0.2 N, respectively. 
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3. Results 

    The progress of morphological changes in a single trabecula and the distribution of the 

average fluid-induced shear stress acting on the osteocytic processes in a day p  are shown 

in Fig. 6a–c for the loading frequency f = 1, 5, and 10 Hz, respectively. 

    In the case f = 1 Hz, as shown in Fig. 6a, relatively-large shear stress was observed at the 

inner surfaces with an acute angle in the initial state. This enlarged the stimuli Ssf that the 

trabecular surface cells received from neighboring osteocytes, and bone formation was 

promoted around both ends, while at the middle of the trabecula, the morphology was almost 

unchanged. At 3 days, bone resorption dominated on the outer surfaces with an obtuse angle 

due to small fluid-induced shear stress. After bone remodeling for 6 days, the concentration of 

fluid-induced shear stress observed in the initial state was relieved. As a result of successive 

remodeling, the single trabecula aligned along the loading direction. 

    As shown in Fig. 6b and 6c, the fluid-induced shear stress close to the trabecular surfaces 

in the initial state became larger with increase in the loading frequency. The stimuli Ssf on the 

surfaces exceeded the physiological equilibrium value, and bone formation occurred on the 

entire surface in both cases when f = 5 and f = 10 Hz. While this remodeling enlarged the 

diameter of the trabecula, the original orientation was preserved. The process of bone 

remodeling after 3 days was similar to that in the case f = 1 Hz, and as a result, the 

longitudinal direction of the trabecula coincided with the loading direction. As the imposed 

loading frequency increased, the diameter of the trabecula in the equilibrium state also 

increased. 
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    To evaluate morphological changes in the trabecula quantitatively, the corresponding 

changes in bone volume fraction and the apparent stiffness during remodeling are plotted in 

Fig. 7a and 7b, where the bone volume fraction refers to the ratio of the volume of the 

trabecula to that of the total analysis region, and apparent stiffness is defined as the ratio of 

the loading amplitude 3 to the apparent strain on the upper edge u3/a3. Regardless of the 

value of the loading frequency, the bone volume fraction increased slightly at an early stage, 

and then gradually decreased and converged at the constant value as shown in Fig. 7a. On the 

other hand, the apparent stiffness of the trabecula increased monotonically and reached a 

uniform plateau value for all cases as shown in Fig. 7b. As the applied loading frequency 

increased, the equilibrium values of the bone volume fraction and the apparent stiffness also 

increased. The relationship between the loading frequency and the bone volume fraction at 30 

days is indicated in Fig. 8. This figure also includes the results when f = 3 and f = 20 Hz. As 

shown in this figure, the bone volume fraction is not proportional to the loading frequency 

and tends to converge at a certain value under high loading frequency. 

 

4. Discussion 

    We constructed a mathematical model for trabecular bone remodeling that considers 

cellular mechanosensing and intercellular signal transmission. To investigate the effect of the 

applied loading frequency on bone remodeling, we simulated morphological changes of a 

single trabecula under cyclic uniaxial loading with various frequencies. The results indicated 

that the diameter of the trabecula in the remodeling equilibrium state increased with the 
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increase in the loading frequency, while all the trabeculae reoriented to the loading direction 

regardless of the value of frequency. 

    Several computational models for bone remodeling including cellular mechanosensing 

have been proposed. They assume that the transduction from the external mechanical load to 

biochemical signals produced by sensor cells is caused by strain energy density (Mullender et 

al., 1994; Huiskes et al., 2000; Mullender and Huiskes, 1995; Ruimerman at al., 2005), 

accumulation of micro-damage (Prendergast and Taylor, 1994; McNamara and Prendergast, 

2007; Mulvihill and Prendergast, 2008), or nonuniformity of local stress on trabecular surface 

(Adachi et al., 1997, 2001; Tsubota and Adachi, 2004, 2005, 2006; Tsubota et al., 2002, 2009). 

These mathematical models, which are based on the phenomenological hypothesis that 

cellular activities are affected by the mechanical state at the tissue level, can successfully 

explain bone mechanical adaptation by remodeling. However, the process of cellular 

mechanosensing is closely related to the mechanical state at the microscopic level. The 

novelty of our model is that it is possible to consider the mechanical hierarchy from 

microscopic cellular activities to the macroscopic changes in trabecular morphology by 

quantifying the mechanical behavior of interstitial fluid in lacuno-canalicular porosity. 

    As a result of the remodeling simulation when the loading frequency f = 1 Hz, the 

trabecula rotated toward the loading direction, preserving the total mass as shown in Fig. 7a 

and 7b. In general, stiffness as a structure is proportional to the volume of material; 

nevertheless, the apparent stiffness of the trabecula monotonically increased due to bone 

remodeling. These results indicate that the trabecula actively adapted to the applied 



 15 

mechanical load by changing its own morphology. In addition, Fig. 7b indicates that the 

increase in the loading frequency derives the increase in the apparent stiffness. Considering 

that a trabecula subjected to a cyclic loading has a higher risk of fracturing due to fatigue with 

the increase in the loading frequency, this behavior also could be understood as a functional 

adaptation of the trabecula to the mechanical environment. The results qualitatively coincide 

with the experimental findings that a significant bone ingrowth was observed under high 

loading rate condition (Goldstein et al., 1991). As shown in Fig. 8, in the high frequency 

range, the bone volume fraction in the equilibrium state does not vary greatly because the 

interstitial fluid inside the trabecula does not flow easily, and only the osteocytes in the 

neighborhood of the surfaces contribute to mechanosensing (Kameo et al., 2008, 2009). From 

a physiological point of view, these results are reasonable. Until date, we cannot verify the 

validity of our results quantitatively by a comparison with the experimental observations 

because of the difficulty in observing the morphological changes in a single trabecula under a 

controlled mechanical environment in vivo. However, if we could conduct a remodeling 

simulation based on the same mathematical model for a cancellous bone including multiple 

trabeculae, it would be possible to compare the simulation results with the results of 

quantitative experiments with respect to the cancellous bone adaptation (Goldstein et al., 

1991; Guldberg et al., 1997a, b). 

    The setting of the mechanical signal parameters introduced in Eq. (5), i.e., U

sfS , L

sfS , 

O

sfS  and Z

sfS , is an important issue in this simulation because it significantly affects the bone 

remodeling process. The parameter O

sfS  is the point of remodeling equilibrium, regulating the 
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balance between bone resorption and formation. With the increase in O

sfS , resorption becomes 

more dominant than formation. The parameter Z

sfS  is the width of the lazy zone (Carter, 

1984; Huiskes et al., 1987), representing a remodeling rate sensitivity to the stimulus near the 

remodeling equilibrium. As the width of the lazy zone Z

sfS  increases, the changes in bone 

volume are more suppressed. The morphological changes in a trabecula are more sensitive to 

the parameter set of O

sfS  and Z

sfS  than that of U

sfS  and L

sfS , which describe the remodeling 

rate sensitivity to the stimulus around the lazy zone. Though these parameters should have to 

be determined by comparisons with experimental observations, we set them arbitrarily due to 

the lack of the quantitative experimental results. The set of mechanical signal parameters used 

here is a case study aimed at explaining physiological bone remodeling; this simulation will 

also be able to express pathological bone remodeling, such as osteoporosis and osteopetrosis, 

by choosing the appropriate values of model parameters. 

    The limitation of our model is that we assumed that the material properties of trabeculae 

were isotropic. The bone matrix possesses anisotropic mechanical properties due to its 

microscopic structures. In addition, the observation of a trabecular cross section indicates that 

the lacuno-canalicular network system has a strong anisotropy that is perpendicular to the 

trabecular surfaces (Kameo et al., 2010). To investigate their effects on the process of bone 

remodeling, it will be necessary to resolve the contribution of this anisotropy to the 

mathematical model. In spite of the above limitations, our mathematical model for trabecular 

bone remodeling can predict bone functional adaptation successfully. Bone remodeling is a 

self-regulatory process realized by metabolic activities of many cells at the osteonal and 
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trabecular level, but the mechanism is still unclear. By refining our model with the progress of 

future experimental and theoretical studies, this computational simulation will be an 

extremely helpful method to clarify the mechanism of bone adaptation by remodeling. 
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Fig. 1. Modeling framework of trabecular remodeling. This framework considers the 

mechanical hierarchy from the microscopic to macroscopic level including the (a) trabecular, 

(b) osteocyte network, and (c) lacuno-canalicular levels. 

 

 

 

 
 

Fig. 2. Modeling of the interstitial fluid flow in an annular canaliculus. (This figure is 

modified from Weinbaum et al., (1994) with the kind permission of Prof. Sheldon Weinbaum 

and Elsevier.) 
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Fig. 3. Modeling of intercellular communication. 

 

 

 

 

Fig. 4. Relationship between the stimulus Ssf that the cell on the trabecular surface can receive 

and the trabecular surface remodeling rate M . 
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Fig. 5. A model of a single trabecula with a diameter of 240 m. On the upper plane, cyclic 

uniaxial loading is applied along the direction of the x3-axis, keeping the x3-displacement u3 

uniform. 
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Fig. 6. Change in trabecular morphology and average fluid-induced shear stresses p  for 

the applied loading frequencies (a) f = 1 Hz, (b) f = 5 Hz, and (c) f = 10 Hz. 
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Fig. 7. Quantification of morphological changes in trabecula. (a) Change in bone volume 

fraction under various loading frequencies, (b) Change in apparent stiffness under various 

loading frequencies. 
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Fig. 8. Relationship between the applied loading frequency f and bone volume fraction. 

 

 

Table 1. Material properties of trabecula. 

 

 


