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A scheme is developed for estimating state-dependent drift and diffusion coefficients in a stochastic differential
equation from time-series data. The scheme does not require to specify parametric forms for the drift and diffusion
coefficients in advance. In order to perform the nonparametric estimation, a maximum likelihood method is
combined with a concept based on a kernel density estimation. In order to deal with discrete observation or
sparsity of the time-series data, a local linearization method is employed, which enables a fast estimation.
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I. INTRODUCTION

Recently, it has been clarified that stochastic nature in small
systems such as cells plays an important role in dynamics
and behavior of biological systems [1–3]. In addition, due
to recent experimental developments such as single-molecule
spectroscopy, it becomes possible to obtain time-series data
for various stochastic phenomena. From a theoretical point of
view, it is important to develop methods for analysis of the
time-series data, and actually there are many studies for the
analysis of the single-molecule time series (for example, see
Refs. [4–6]).

Parameter estimations from observed time-series data are
also important research topics. If one obtains experimental data
for a specified biochemical system, parameters in the specified
biochemical system can be estimated from the experimental
data. The biochemical system could be modeled by using
a master equation or a stochastic differential equation (a
Langevin equation). The master equation or the stochastic
differential equation for the specified biochemical system has
some parameters (e.g., reaction rates). If the reaction rates are
estimated from the experimental data, we will obtain a recon-
structed model, which would reproduce the experimental data
adequately. The reconstructed model enables us to perform
more detailed numerical simulations and to have deep insights
for the phenomenon. In recent years, a discrete property or
sparsity in observations has attracted much attention; it would
be difficult to completely observe the phenomenon and to
obtain detailed time-series data, and then we would perform
the estimation from discretely observed time-series data. For
example, estimation procedures based on Markov chain Monte
Carlo methods [7–9] and variational methods [10,11] have
been proposed for the problem of the discrete observations. (In
addition, there is a recent review article [12] for the estimation
problem.)

Here, we consider the following situation: We know that
time-series data can be modeled with a stochastic differential
equation, but specific forms of drift and diffusion coefficients
of the stochastic differential equation are unknown in advance.
That is, there is no prior knowledge about time-series data,
except for some basic properties such as a memoryless
property. While there are some works for the parametric
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estimation based on a maximum likelihood method [13,14],
simple applications of these parametric estimations are not
suitable for our problem here, and a nonparametric estimation
scheme is needed. For example, we here focus on a bimodal
distribution of a chemical substance. Relations between the
bimodal distributions and stochasticity have been discussed
experimentally [15,16] and theoretically [17,18]. Although
one may consider that the bimodal distribution is produced
from a double-well potential system, it has been known that
the bimodal distribution can also be produced from state-
dependent noise [19,20]. In addition, a recent study indicates
that such noise-induced bimodality may play an important
role in decision making in a noisy environment [21,22]. In
these situations, it is necessary to judge whether bimodal
distribution is produced from a double-well potential system
or a state-dependent noise, and it is enough to estimate how
the drift and diffusion coefficients of the stochastic differ-
ential equation depend on the state. For the nonparametric
estimations, there are many studies in various research fields.
For example, in Ref. [23], a method based on estimations of
Kramers-Moyal coefficients has been proposed. However, in
the Kramers-Moyal coefficients estimation, adjoint Fokker-
Planck equations should be solved numerically, which needs
additional computational costs. In order to perform nonpara-
metric estimations for complicated systems, fast algorithms
are required.

In the present paper, we develop a nonparametric model-
reconstruction method for a stochastic differential equation
from discretely observed time-series data. A kind of local es-
timations is employed in order to extract the state dependency
in the nonparametric estimation. In order to perform the local
estimations efficiently, we propose a maximum likelihood
method combined with a concept based on a kernel density
estimation, which has been studied a lot and widely used for
nonparametric density estimation [24]. The difficulty caused
from the discrete observations is dealt with a local linearization
method [25,26], which enables us to approximate a nonlinear
stochastic differential equation by a locally linear stochastic
differential equation. In addition, a useful second-order form
suitable for the local linearization method is proposed. We
demonstrate that the combination of these ideas enables us to
estimate the state-dependent drift and diffusion coefficients
from only a small set of discretely observed time-series
data.
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The present paper is constructed as follows. In Sec. II, we
give problem settings and an example of time-series data. In
Sec. III, we briefly review a kernel density estimation, and
the scheme is reformulated from a different point of view;
we show that a maximum likelihood method reproduces the
kernel density estimation adequately. Section IV is the main
part in the present paper; an explicit estimation scheme based
on the local linearization method is explained. Examples of
estimation results for the problem introduced in Sec. II are
given in Sec. V. Section VI is the conclusion.

II. PROBLEM SETTINGS

The aim of our estimation problem is to reconstruct a
stochastic differential equation only from observed time-series
data. In order to demonstrate the estimation, we here use
the following Ito-type stochastic ifferential equation as a toy
model:

dxt = f true(xt )dt + gtrue(xt )dWt, (1)

where Wt is a Wiener process, f true(x) and gtrue(x) are state-
dependent drift and state-dependent diffusion coefficients
defined as

f true(x) = −4x3 + 4x, gtrue(x) = 0.2 sin(πx), (2)

respectively. This model has state-dependent drift and dif-
fusion coefficients. In addition, this form of the stochastic
differential equation suggests that the potential landscape is
a double-well form, and there are two stable points around
x = 1 and x = −1. Using the Euler-Maruyama scheme [27],
we generate an original path for the stochastic differential
equation (1). In the generation of the original path, we
employ a time interval of �t = 0.001. After the generation
of the original path, we sampled data points discretely,
which corresponds to discrete observations. Although the time
interval of the observation can be varied, we here take data
points at equally spaced time interval �t = 0.05 for simplicity.
The generated time-series data are depicted in Fig. 1. Hereafter,
we must forget the stochastic differential equation (1) and
the state dependency of the drift and diffusion coefficients in
Eq. (2), and only the time-series data in Fig. 1 is focused and
analyzed.

Our aim is to analyze the time-series data in Fig. 1 under
a situation that we do not have any information about the
original model. A first guess may be as follows: It seems that
there are two stable points around x ∼ 1.0 and x ∼ −1.0,
and the time spent around x ∼ −1.0 seems to be a little
longer than that around x ∼ 1.0. Is the difference caused by a
potential landscape, or other reasons? A simple way to solve
this problem is to reconstruct an explicit model that reproduces
the time-series data. Hence, the problem settings are as follows:
Estimate f̂ (x) and ĝ(x) in

dxt = f̂ (xt )dt + ĝ(xt )dWt (3)

from time-series data {(Xi,Ti)|i = 1, . . . ,N}, where each data
point Xi is observed at time Ti , and N is the total number of
the observed data points. Note that there is no prior knowledge
about the state dependencies of f̂ (x) and ĝ(x), except that
these coefficients are time independent. It could be possible to
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FIG. 1. (a) Observed time-series data. There are totally 2000
points observed discretely. (b) Enlarged figure of (a). Each circle is
an observation with �t = 0.05, and the solid thin line is an original
path which is produced using the Euler-Maruyama approximation
with �t = 0.001.

deal with time-dependent cases, but it is beyond the scope of
the present paper.

III. KERNEL DENSITY ESTIMATION

In order to develop a scheme to estimate the drift and
diffusion coefficients in Eq. (3), we first explain a kernel
density estimation, which gives us many insights for our final
aim.

A. Brief review

A first and simple step to analyze time-series data is to
construct a probability density p(x) for the observed data. A
histogram, in which the x coordinate is split into several bins
and the numbers of data points within the bins are counted,
is a simple method to estimate the probability density p(x).
However, the histogram is based on a discrete approximation.
One of the most widely used methods for nonparametric
density estimation is a kernel density estimation [24,28]. The
kernel density estimation has been recently studied in the
context of biophysics [29], in which applications for the forced
unfolding and unbinding data for proteins are discussed.

In the kernel density estimation, a non-negative real func-
tion K(x) (i.e., a kernel function) is used. The kernel function
satisfies the normalization condition,

∫ ∞
−∞ K(x)dx = 1, and

it has a zero first moment,
∫ ∞
−∞ xK(x)dx = 0, and a finite

second moment
∫ ∞
−∞ x2K(x)dx < ∞. In the present paper, a

parameter h, a so-called bandwidth, is introduced explicitly
in the kernel function, and we write the kernel function as
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FIG. 2. Probability density function p(x). The solid line corre-
sponds to an exact solution of Eq. (1). The estimated density from
the observed time-series data is depicted with the dashed line. The
bimodality of the density is reproduced, but heights of the peaks are
different from the exact one because of the small size of the data in
Fig. 1.

Kh(x) ≡ K(x/h)/h. Using the kernel function, the probability
density is estimated as

p̂(x) = 1

N

N∑
i=1

Kh(x − Xi). (4)

There are some kernel functions, and in the present
paper, we consider only a Gaussian kernel Kh(x) =
(1/

√
2πh) exp[−x2/(2h2)], which has been widely used.

The remaining task for the kernel density estimation is
the choice of the bandwidth h of the kernel function. Various
choices have been studied, and a famous data-driven method is
a method based on cross validation [30]. In the cross-validation
method, the following risk function is minimized with respect
to the bandwidth h for the Gaussian kernel:

Q̂ = A + B
∑
i<j

[
exp

(−�2
ij

/
4
) − C exp

(−�2
ij

/
2
)]

, (5)

where

A = (2Nh
√

π )−1, B = (N2h
√

π )−1,

C = 2
√

2N/(N − 1), �ij = (Xi − Xj )/h.

Figure 2 shows the estimated probability density. Here,
we used h = 0.06476, which is selected based on the risk
function (5). The solid line corresponds to an exact solution
obtained from Eq. (1). Because of the small size of the data in
Fig. 1, there are differences between the estimated probability
density and the exact solution. We note that if there is longer
time-series data, better estimate results are obtained.

B. Kernel density estimation through maximum
likelihood estimation

The estimation of the probability density is not the aim in
the present paper, but it is helpful for us to reformulate the
kernel density estimation from the viewpoint of a maximum
likelihood estimation; this discussion gives us a way to
reconstruct a stochastic differential equation without any prior
knowledge.

The maximum likelihood estimation enables us to estimate
parameters in a statistical model (for example, see Ref. [31]).
In the context of the density estimation, the probability density
plays a role as the parameters, and we seek probable probability
density function p̂(x) from observed data.

Due to the concept of the kernel function, a contribution
from one observed data point should be distributed according
to the kernel function. For example, assume that we observe
a data point X = 1.0. Although we have only one data point,
here we introduce many replicas for the observation. Each
replica has a different pseudo-observation. For instance, when
there are four replicas and the replicas have pseudo-data-points
X = 1.0,1.2,0.7,1.2, the probability with which we observe
the total replicas is

p(X = 1.0)(p(X = 1.2))2p(X = 0.7).

There are four pseudo-observations for only one real observa-
tion, and then one may consider the fourth root,

[p(X = 1.0)]1/4[p(X = 1.2)]2/4[p(X = 0.7)]1/4.

Note that the frequency of the pseudo-observation of X is the
power index of each probability. Extending this discussion and
using the kernel function instead of the frequency of pseudo-
observation, we construct the kernelized likelihood function,
as follows. Using a discretization of the x coordinate as x =
j�x, a probability with which we observe a distributed data
point Xi is written as

lim
�x→0

∞∏
j=−∞

p(j�x)Kh(j�x−Xi ).

Note that if we use a δ-like function as the kernel function, only
a contribution from p(Xi) remains, and a usual interpretation
without the kernel function is recovered. Using a notation
X = {X1, . . . ,XN }, a likelihood function L[p̂(x)|X] is written
as

L[p̂(x)|X] = lim
�x→0

N∏
i=1

∞∏
ji=−∞

p̂(ji�x)Kh(ji�x−Xi ), (6)

where the hat of p̂ means that this is just the parameter to be
estimated. Hence, the log-likelihood function is

l(p̂(x)|X) =
N∑

i=1

∫ ∞

−∞
dxi [ln p̂(xi)] Kh(xi − Xi). (7)

In order to obtain the maximum likelihood estimates for
p̂(x), we take a functional derivative of Eq. (7) with respect to
p̂(x) under a constraint

∫
dxp̂(x) = 1. A Lagrange multiplier

λ is introduced and we consider a maximization of the
following function:

N∑
i=1

∫ ∞

−∞
dxi [ln p̂(xi)] Kh(xi − Xi) + λ

(∫
dxp̂(x) − 1

)
.

Taking the functional derivative with respect to p̂(x) and
setting the functional derivative is equal to zero, we obtain

N∑
i=1

1

p̂(x)
Kh(x − Xi) + λ = 0, (8)
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and therefore

p̂(x) = 1

λ

N∑
i=1

Kh(x − Xi). (9)

Inserting Eq. (9) into the constraint condition, we have

1 = 1

λ

∫ ∞

−∞
dx

N∑
i=1

Kh(x − Xi) = N

λ
. (10)

Hence, λ = N and we recover Eq. (4).
The above discussion indicates that the concept of dis-

tributed data points in pseudo-observation corresponds to the
kernel function. It would be expected that the combination of
the distributed data points and the maximum likelihood method
gives us a more flexible estimation scheme than the usual one.

It is straightforward to extend the above discussions
to an estimation of a conditional density. Given D =
{(X1,Y1), . . . ,(XN,YN )}, a sample of independent observa-
tions from the distribution of (X,Y ), we want to obtain the
estimation of the conditional density p̂(y|x). In this case, the
log-likelihood function should be set as

l(p̂(y|x)|D)

=
N∑

i=1

∫ ∞

−∞
dyi [ln p̂(yi |x)] K̃w(yi − Yi)KW (x − Xi),

(11)

where K̃w(y) is a kernel function for the y coordinate,
and KW (x) is that for the x coordinate. Using the similar
discussion as Eq. (7), we obtain the following conditional
density estimator

p̂(y|x) =
∑

i=1 KW (x − Xi)K̃w(y − Yi)∑N
i=1 KW (x − Xi)

, (12)

which is the same as a conventional conditional density
estimator [32,33].

Figure 3 shows a schematic illustration of the kernel
conditional density estimator. We here consider a conditional
density p(y|x0). The kernel functions K̃w with bandwidth w

are distributed according to the observations. The conditioning
x = x0 is carried out by another kernel function in the x

coordinate. The kernel function KW has a bandwidth W , and
the center of the kernel function is at x = x0. The estimation of
the conditional density is performed by summing the N kernel
functions in the y coordinate, weighted by the kernel function
in the x coordinate.

For {(X1,Y1), . . . ,(XN,YN )} being random samples from a
population having a density p(x,y), there are many studies
for estimating conditional densities and properties of the
conditional densities [34–36]. The problem in the present
paper is different from these studies; {(X1,Y1), . . . ,(XN,YN )}
are not generated from an identical density (see the next
section). The maximum likelihood method developed in this
section enables us to deal with the nonparametric estimation
for a stochastic differential equation, and we will propose the
method in the next section.

FIG. 3. A schematic illustration of the kernel density estimate
p(y|x0). Each data point has a weight, which is smoothly distributed
according to the kernel function. The conditioning on x = x0 is
carried out by another kernel function in the x coordinate.

IV. PROPOSED METHOD

A. Basics

We are now ready for constructing a method to estimate drift
and diffusion coefficients in a stochastic differential equation
from time-series data.

Firstly, the observed data {(Xi,Ti)|i = 1, . . . ,N} is con-
verted to a slightly different form D = {(Xi,�Xi,�ti)|i =
1, . . . ,N − 1}, where �Xi = Xi+1 − Xi and �ti = Ti+1 − Ti .
This conversion means that when a current coordinate is Xi ,
we have an amount of change �Xi during the time interval �ti .
For each i, the time interval can be varied in general, and then
the amount of change �Xi depends on �ti ; {(Xi,�Xi)} is not
from an identical density. Due to an assumption that the time
series has a Markov property, {(Xi,�Xi)} are independent of
each other.

Secondly, we consider a conditional probability density
p(�x|x,θx), which has a set of parameters θx . The parameters
θx depend on a specific coordinate x, and the dependency of
θx on x is unknown in advance. Note that the parametrization
of the conditional probability density is not related to the
parametrization of drift and diffusion coefficients in the
stochastic differential equation in Sec. II. Using the localized
parameters θx , the drift and diffusion coefficients only for a
specific coordinate x could be estimated.

Thirdly, we consider the following log-likelihood function:

l(θx |D) =
N−1∑
i=1

∫ ∞

−∞
d(�xi) [ln p(�xi |x,θx)]

×K̃w(�xi − �Xi)KW (x − Xi). (13)

Maximizing the above log-likelihood function with respect
to the parameters θx , it is possible to estimate the localized
parameter θx adequately.

A remaining task is to specify the conditional probability
density p(�x|x,θx). If a stochastic differential equation is
linear, the conditional probability density is expressed as a
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normal distribution (i.e., �Xi obeys a normal distribution
with mean Ei and variance Vi , where Ei and Vi depend on
Xi and �ti). For a nonlinear stochastic differential equation,
the description based on the normal distribution is impossible
in general. However, if the conditional probability density
cannot be written as the normal distribution, the calculation
scheme would become very complicated. Hence, we here
assume that the conditional probability density is written
as the normal distribution. The restriction with the normal
distribution seems to be severe, but we will discuss a method to
approximate the nonlinear stochastic differential equation to a
locally linear stochastic differential equation. The assumption
of the Gaussian form gives the conditional probability density,

ln p(�xi |x,θx) = −1

2

{
(�xi − Ei)2

Vi

+ ln(2πVi)

}
, (14)

where Ei and Vi depend on Xi , �ti , and the parameters θx .

B. Simple estimation

We here discuss the most simple case (i.e., Ei = μx0�ti ,
Vi = σ 2

x0
�ti) and θx0 = {μx0 ,σx0}. This means that for the

estimation at x = x0, we assume a stochastic differential
equation with constant drift and diffusion coefficients. Note
that this constant property is assumed only for the estimation
at x = x0, and we do not assume that f̂ (x) and ĝ(x) in
Eq. (3) are constant for all x. Repeating the estimation of
μx0 and σx0 for various points x = x0, we obtain the estimated
drift and diffusion coefficients as f̂ (x) = μx and ĝ(x) = σx ,
respectively.

The above procedure is enough for the estimation, but here
we give a discussion for the choice of the kernel bandwidth.
For simplicity, we here assume that the kernel K̃w is the
Gaussian kernel, and that �ti = 1 for all i. In addition, we
consider a simple case in which Xi = x0 for all i (i.e., all
current coordinates are at x0). Hence, the kernel function KW

is constant for all i. In this case, the following log-likelihood
function is obtained:

l
(
θx0

∣∣D) ∝ −1

2

N−1∑
i=1

∫ ∞

−∞
d(�xi)

{(
�xi − μx0

)2

σ 2
x0

+ ln
(
2πσ 2

x0

)}

× K̃w(�xi − �Xi)

= −1

2

N−1∑
i=1

{(
�Xi − μx0

)2

σ 2
x0

+ w2

σ 2
x0

+ ln
(
2πσ 2

x0

)}

(15)

The maximum likelihood method gives

μx0 = 1

N − 1

N−1∑
i=1

�Xi (16)

and

σ 2
x0

= 1

N − 1

N−1∑
i=1

(
�Xi − μx0

)2 + w2. (17)

Here, note that the unbiased estimator for the variance is given
as

σ̄ 2
x0

= 1

N − 2

N−1∑
i=1

(
�Xi − μx0

)2
. (18)

Comparing Eq. (17) with Eq. (18), it is clear that the bandwidth
w should be taken small enough for large N . In our problem
settings in the present paper, it is possible to consider that
w � 0. Hence, the kernel K̃w(�xi − �Xi) is replaced as a
Dirac δ function δ(�xi − �Xi) hereafter.

Combining the above all discussions, we obtain the follow-
ing simple estimation scheme.

Algorithm 1 (simple method)

(i) Set a bandwidth W .
(ii) For a point x0, maximize the following log-likelihood

function with respect to θx0 = {μx0 ,σx0}:

l(θx0 |D) = −1

2

N−1∑
i=1

{
(�Xi − μx0�ti)2

σ 2
x0

�ti
+ ln(2πσ 2

x0
)

}

×KW (x − Xi), (19)

i.e., calculate the following quantities:

μx0 =
∑N−1

i=1 �XiKW (x − Xi)∑N−1
i=1 �tiKW (x − Xi)

, (20)

σ 2
x0

=
∑N−1

i=1 (�Xi − μx0�ti)2KW (x − Xi)/�ti∑N−1
i=1 KW (x − Xi)

. (21)

(iii) Repeat (ii) for various x0.
(iv) Estimate the drift and diffusion coefficients as

f̂ (x) = μx and ĝ(x) = σx .

C. Local linearization method and second-order approximation

In Sec. IV B, the local drift and diffusion coefficients have
simple forms, so that we easily solve the stochastic differential
equation explicitly. Note that if we have nonlinear drift and
diffusion coefficients, we cannot obtain an explicit solution
for the stochastic differential equation exactly in general.
However, using a local linearization method [25,26], it is
possible to obtain the approximate solution with a Gaussian
form for the nonlinear stochastic differential equation. Hence,
the estimation scheme developed in Sec. IV A is available
even for the nonlinear cases. We can assume arbitrary drift
and diffusion coefficients, and a second-order approximation,
which will be introduced soon, is one of the tractable schemes.

We first note that the diffusion coefficient in the stochastic
differential equation must be positive for all x; this fact needs
an additional constraint for the optimization procedures. We,
therefore, use the following second-order approximation; f̂ (x)
and ĝ(x) around x0 is approximated as

f̂x0 (x) = μ(0)
x0

+ μ(1)
x0

(x − x0) + 1
2μ(2)

x0
(x − x0)2, (22)

ĝx0 (x) = exp
(
s(0)
x0

+ s(1)
x0

(x − x0) + 1
2 s(2)

x0
(x − x0)2

)
, (23)
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and θx0 = {μ(0)
x0

,μ(1)
x0

,μ(2)
x0

,s(0)
x0

,s(1)
x0

,s(2)
x0

}. Due to the exponential
form in Eq. (23), the diffusion coefficient ĝx0 (x) is positive for
all x.

We comment that a final estimation for the drift and
diffusion coefficients should be performed as f̂ (x) = μ(0)

x , and
ĝ(x) = exp[s(0)

x ], respectively, as discussed in Sec. IV B.
A stochastic differential equation with the state-dependent

drift coefficient f̂x0 (x) and the state-dependent diffusion
coefficient ĝx0 (x) is nonlinear, and the local linearization
method gives an analytical solution in a Gaussian form. As
a result, the conditional probability density p(�xi |x,θx) can
be written as a Gaussian distribution. We briefly explain the
local linearization method in the Appendix, and only the
consequence is shown here. We note that the kernel function
K̃w is replaced with the Dirac δ function according to the
discussion in Sec. IV B. The estimation scheme based on the
local linearization method is as follows:

Algorithm 2 (LL method)

(i) Set a bandwidth W .
(ii) For a point x0, maximize the following log-likelihood

function with respect to θx0 = {μ(0)
x0

,μ(1)
x0

,μ(2)
x0

,s(0)
x0

,s(1)
x0

,s(2)
x0

}:

l
(
θx0

∣∣D) = −1

2

N−1∑
i=1

{(
φx0 − Ei

)2

Vi

+ ln(2πVi)

− s(0)
x0

− s(1)
x0

(Xi − x0) − s(2)
x0

2
(Xi − x0)2

}

×KW (x − Xi), (24)

where

φx0 =
∫ Xi+�Xi−x0

Xi−x0

du exp

(
−s(0)

x0
− s(1)

x0
u − 1

2
s(2)
x0

u2

)
, (25)

and

Fi = f̂x0 (Xi)

ĝx0 (Xi)
− ĝx0 (Xi)

2

[
s(1)
x0

+ s(2)
x0

(Xi − x0)
]
, (26)

Li = μ(1)
x0

+ μ(2)
x0

(Xi − x0) − f̂x0 (Xi)
[
s(1)
x0

+ s(2)
x0

(Xi − x0)
]

− [
(ĝx0 (Xi)

]2

(
s(2)
x0

2
+

[
s(1)
x0

+ s(2)
x0

(Xi − x0)
]2

2

)
, (27)

Mi = ĝx0 (Xi)

2

{
μ(2)

x0
− s(2)

x0
f̂x0 (Xi)

− [
μ(1)

x0
+ μ(2)

x0
(Xi − x0)

] [
s(1)
x0

+ s(2)
x0

(Xi − x0)
]

−2
[
ĝx0 (Xi)

]2
s(2)
x0

[
s(1)
x0

+ s(2)
x0

(Xi − x0)
]

− [
ĝx0 (Xi)

]2 [
s(1)
x0

+ s(2)
x0

(Xi − x0)
]3 }

, (28)

Ei = Fi

Li

(eLi�ti − 1) + Mi

L2
i

(eLi�ti − 1 − Li�ti), (29)

Vi = e2Li�ti − 1

2Li

. (30)

(iii) Repeat (ii) for various x0.
(iv) Estimate the drift and diffusion coefficients as f̂ (x) =

μ(0)
x and ĝ(x) = exp(s(0)

x ).
For step (ii), various standard numerical maximization or
minimization algorithms are available. We note that the
function φx0 can be written using an error function or an
imaginary error function.

V. ESTIMATION RESULTS

We apply the two algorithms in Sec. IV to the discretely
observed data in Sec. II. In the numerical experiments, we use
the Gaussian kernel.

We should first set the kernel bandwidth W . It would be
possible to select the kernel bandwidth W using some criteria,
for example, using a cross-validation method. However, here
we set W heuristically. A simple choice for W is the
optimized bandwidth for the kernel density estimator discussed
in Sec. III. In Figs. 4(a) and 4(d), we show the results
obtained from the simple estimation (Algorithm 1) and the
estimation based on the local linearization (Algorithm 2),
using W = 0.06476. Because the bandwidth is narrow and
the number of data points, N , is small, the estimation results
have large fluctuations, as shown in Figs. 4(a) and 4(b).

In the estimation based on the local linearization, the
second-order approximation is used, and then the bandwidth
W could be taken larger than that of the kernel density
estimator; intuitively, it would be reasonable to select a
bandwidth three or five times as large as the optimized
bandwidth for the kernel density estimator. Larger bandwidth
W enables us to use a larger number of effective data points
for the estimation. Of course, if large W is employed, the
second-order approximation becomes invalid, and hence the
estimation results would be worse. We here set W = 0.3
ad hoc. Figures 4(c) and 4(d) are the estimated results. As
expected, the estimation results become smooth because a
larger number of effective data points is available. Due to the
simple assumption for Algorithm 1, the estimated results are
not good; the usage of the larger bandwidth W gives a kind of
averaging effect. In contrast, the estimation based on the local
linearization (Algorithm 2) gives good estimates.

The above results are only for one time-series data in
Fig. 1. Next, we generated 200 time-series data with the same
parameters, and checked the validity of our proposed method.
Figures 4(e) and 4(f) show results of averages of the drift
and diffusion coefficients for 200 trajectories, respectively.
Here, we used W = 0.3 for the estimations. The error bars in
Figs. 4(e) and 4(f) are standard deviations of the results. From
the results, we see that the estimation method based on the
local linearization (Algorithm 2) works well, especially for
the estimation of the drift coefficients.

Based on results on other numerical experiments, we
comment on the choice of the bandwidth W as follows: The
choice of the bandwidth W should be small, but if the number
of data points is not enough, a slightly larger bandwidth would
be better. One may intuitively estimate the bandwidth from the
probability density p̂(x). Although a method of the choice of
the bandwidth is beyond the scope of the present paper, the
above choice would be enough in a practical sense.
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FIG. 4. Estimation results for the drift coefficients f̂ (x) [panels (a), (c), and (e)], and for the diffusion coefficients ĝ(x) [panels (b), (d), and
(f)]. Panels (a)–(d) show results for only one trajectory in Fig. 1, and panels (e) and (f) are results of averages for 200 trajectories. The filled
circle (Simple) corresponds to the results for the simple Euler scheme, and the empty boxes (LL) are those for the local linearization method.
In (a) and (b), the bandwidth of the kernel is W = 0.06476, and in (c), (d), (e), and (f), W = 0.3. Solid curves in left panels [panels (a), (c),
and (e)] and in right panels [panels (b), (d), and (f)] correspond to f true(x) and gtrue(x) in Eq. (2), respectively. Error bars in panels (e) and (f)
are the standard deviations.

VI. CONCLUSION

In the present paper, we developed a nonparametric es-
timation scheme for a stochastic differential equation from
discretely observed time-series data. In order to make the
estimation scheme, a concept based on a kernel density esti-
mation was extended and a kernelized likelihood function was
derived. The word, kernelized, means that an observed point
is distributed with a bandwidth. In addition, we employ a local
linearization method in order to deal with the discrete property
or sparsity of the observations. A second-order approximation
was introduced, in which the diffusion coefficient is restricted
to be positive naturally. This avoids adding any constraint
for the maximization or minimization for the log-likelihood

function in the algorithm. Using a toy model, we demonstrated
that the estimation method based on the local linearization
method works well.

Although results are not shown, we applied the estimation
schemes to several different models, and confirmed that they
work well. In addition, we performed numerical experiments
for cases with larger �ti . If we have larger �ti , results
become worse. This is because that the approximation of the
local linearization is inadequate for the larger time interval.
For the large-interval cases, the Kramers-Moyal coefficients
estimation would be available [23], as explained in Sec. I.
However, as stated before, some additional computational
costs are needed. On the other hand, our estimation scheme is
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based on an approximated analytical solution of a stochastic
differential equation, and then the computational time is
largely reduced. For example, a computational time for one
point x0 in Algorithm 2 is a few seconds in a laptop computer.
In this sense, our estimation method is a complementary one
with previous works.

Finally, we comment that the estimation scheme for
stochastic differential equations could be extended to multi-
variate cases straightforwardly, because the local linearization
method has already been formulated for multivariate cases
[25]. In addition, estimations in the presence of strong
measurement noise [37–39] should be considered in future
works.
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APPENDIX: LOCAL LINEARIZATION METHOD

The local linearization method [25,26] is one of the useful
approximations for nonlinear stochastic differential equations.
The basic concept of the local linearization method is that
the nonlinear stochastic differential equation is approximated
locally as a linear stochastic differential equation. It would be
possible to obtain the same consequence using a Fokker-Planck
equation. In Refs. [25,26], an approximation for the stochastic
differential equation is explicitly given, and for the reader’s
convenience, we briefly review the local linearization method.
For details, see Refs. [25,26].

For simplicity, we here consider a one-dimensional stochas-
tic process xt satisfying

dxt = A(xt )dt + B(xt )dBt , (A1)

where A(xt ) is twice continuously differentiable with respect
to xt , B(xt ) is a continuously differentiable function of xt ,
and Bt is a standard Brownian motion. The above stochastic
differential equation can be transformed into a more tractable
equation as follows:

dzt =
(

A
dφ

dx
+ B2

2

d2φ

dx2

)
dt + dBt , (A2)

where zt = φ(xt ) and φ(xt ) satisfies an ordinary differential
equation B

dφ

dx
= 1. Ito’s formula immediately gives Eq. (A2).

Hence, we here only consider the following stochastic differ-
ential equation with a constant diffusion coefficient:

dxt = A(xt )dt + dBt . (A3)

In the local linearization method, the drift term A(xt ) is
locally approximated by a linear function of xt . Using Ito’s
formula, we have

dA = 1

2

∂2A

∂x2
dt + ∂A

∂x
dx. (A4)

Here, an assumption that both coefficients in Eq. (A4) are
constant for a small interval [s,t) gives

A(xt ) − A(xs) = 1

2

∂2A

∂x2

∣∣∣∣
x=xs

(t − s) + ∂A

∂x

∣∣∣∣
x=xs

(xt − xs).

(A5)

Hence, we obtain the drift coefficient A(xt ) as

A(xt ) = Lsxt + Mst + Ns, (A6)

where

Ls = ∂A

∂x

∣∣∣∣
x=xs

, Ms = 1

2

∂2A

∂x2

∣∣∣∣
xs

,

Ns = A(xs,s) − ∂A

∂x

∣∣∣∣
x=xs

xs − 1

2

∂2A

∂x2

∣∣∣∣
x=xs

s.

Finally, we obtain a linear stochastic differential equation as
follows:

dxt = (Lsxt + Mst + Ns)dt + dBt . (A7)

The linear stochastic differential equation can be solved
analytically, and the solution is

xt = xs + A(xs)

Ls

(eLs (t−s) − 1)

+ Ms

L2
s

(eLs (t−s) − 1 − Ls(t − s)) +
∫ t

s

eLs (t−u)dBu,

(A8)

where the fourth term follows the Gaussian distribution with
mean 0 and variance {exp[2Ls(t − s)] − 1}/(2Ls). As a result,
xt − xs follows the Gaussian distribution with mean

A(xs)

Ls

(eLs (t−s) − 1) + Ms

L2
s

[eLs (t−s) − 1 − Ls(t − s)]

and variance {exp[2Ls(t − s)] − 1}/(2Ls).
Combining the above results, the variable transformation

zt = φ(xt ), and its Jacobian, we finally obtain the conditional
probability used in Eq. (24)
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