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RANDOM PROPORTIONAL WEIBULL HAZARD MODEL 

FOR LARGE-SCALE INFORMATION SYSTEMS 

 

 

 

Structured Abstract 

 
In this study, the  purpose of which is to aid in the asset management of large-scale 

information systems supporting infrastructure, a Weibull hazard model is used to 

formulate the failure generation process of component wear-out failure, the rate of 

which changes with time. Information systems are composed of many devices. In order 

to consider the heterogeneity of the hazard rate of each device, the random proportional 

Weibull hazard model, which expresses the heterogeneity of the hazard rate as random 

variables, is proposed. Furthermore, the authors develop a methodology that expresses 

the heterogeneity of hazard rates in gamma distribution as well as estimates unknown 

parameters and the heterogeneity of hazard rates contained in the hazard model. Finally, 

using historical data regarding actual failures in the traffic control system of 

expressways, the authors estimate the wear-out failure rate of components.  The validity 

of the methodology is investigated through a case study. Concretely, as for HDD which 

mainly composes information systems, the service life at which the survival probability 

is 50% is estimated as 158 months. However, even for the same HDD, use environment 

differs according to usage. Actually, among the 3 different usages (PC, server, others), 

failures happen earliest in the case of PCs, which have the highest heterogeneity 

parameter and a survival probability of 50% after 135 months of usage. On the other 

hand, as for others, its survival probability is 50% at 303 months. 

 

 



  2 

RANDOM PROPORTIONAL WEIBULL HAZARD MODEL 

FOR LARGE-SCALE INFORMATION SYSTEMS 
 

 

 

 

 

 

 

ABSTRACT. In this study, the  purpose of which is to aid in the asset management of large-

scale information systems supporting infrastructure, a Weibull hazard model is used to 

formulate the failure generation process of component wear-out failure, the rate of which 

changes with time. Information systems are composed of many devices. In order to consider 

the heterogeneity of the hazard rate of each device, the random proportional Weibull hazard 

model, which expresses the heterogeneity of the hazard rate as random variables, is proposed. 

Furthermore, the authors develop a methodology that expresses the heterogeneity of hazard 

rates in gamma distribution as well as estimates unknown parameters and the heterogeneity of 

hazard rates contained in the hazard model. Finally, using historical data regarding actual 

failures in the traffic control system of expressways, the authors estimate the wear-out failure 

rate of components.  The validity of the methodology is investigated through a case study. 

 

Keywords; asset management, large-scale information system, deterioration prediction, 

                   Random proportional Weibull hazard model, historical data, heterogeneity 

 

 

INTRODUCTION 

 

In order to achieve efficiency of operation and speedy provision of information to users of 

large-scale infrastructure, information systems have been developed which are composed of 

various monitoring sensors and processing/output devices. Asset management of 

infrastructure is an important issue as well. Points to be noted for asset management of 

information systems are as follows: 1) that the information system is a large-scale system 

formed from an enormous number of components, 2) that the system has a hierarchical 

structure whereby a failure in an individual device can possibly develop into a functional 

failure of the whole system, and 3) that the deterioration of the information system’s function, 

such as through  obsolescence or physical deterioration, is an important management point. 

 

When performing asset management of information systems, it is necessary to consider the 

differences in management at the 1) component level, 2) system level, and 3) function level, 

with the latter points requiring a more integrated consideration. Among these, the authors 

develop a random proportional Weibull hazard model to carry out a fault analysis at the 

component level, of the components in large-scaled information systems. Of course, in order 

to perform asset management of information systems, a fault analysis at the level of each 

component is not enough, and it is necessary to develop a methodology that simultaneously 

achieves the above three points. The fault analysis model for the component level proposed in 

this study can be a basic analytical tool for constructing integrated asset management systems 

of large-scale information systems.  

 

Information systems are composed of various types of components. These components can be 

divided into two groups: the accidental failure rate of equipment, which is unrelated to time, 
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and the wear-out failure rate, which increases over time. Generally, regarding the fault 

process of accidental equipment failure, the hazard rate expressed by the moment’s failure 

rate density can be formulated by an exponential hazard model that does not depend on time 

(or a Poisson based model of failure events). On the other hand, with wear-out equipment 

failure, a non-homogeneous hazard model that takes into consideration the hazard rate’s 

dependency on time is necessary. With wear-out equipment failure, there is the characteristic 

that the failure rate increases as time progresses after the system is installed. Therefore, in 

order for decisions to be made about renewals and replacements, information regarding the 

deteriorating process of wear-out equipment failure is needed. For this reason, the authors 

focus on wear-out equipment failure, using a Weibull hazard model, known as a 

representative non-homogeneous hazard model, to analyze the mechanism of the failure rate 

increasing over time. However, large-scale information systems comprise many components, 

and different types of components might have different hazard rates. Therefore, when 

analyzing faults of information systems that comprise various types of devices and 

components, it is important to consider the heterogeneity of the hazard rates that exist 

between the different types of components. In this study, with this in consideration, the 

random proportional Weibull hazard model, whose heterogeneity of hazard rates is subject to 

a gamma distribution, is formulated and a methodology is proposed which estimates the 

failure rate of various components comprising an information system.  

 

 

BASIC IDEAS OF THIS STUDY 

 

Overview of Existing Studies 

 

In traditional hazard analysis (Cox and Oakes, 1984, Lancaster, 1990), the targeted system is 

assumed to be constructed of elements of the same quality, and the aim is to express a model 

of failure generation randomly attained according to a certain hazard function. With hazard 

analysis, the random failure generation process is modeled, and a deterministic model called a 

hazard function is employed. In reality, large-scale information systems, such as the one 

targeted for actual analysis in this study, have complex structures composed of an enormous 

number of many types of components. Managing and operating a large-scale information 

system requires important decisions regarding policy issues such as when to change 

individual components and how components should be stored. However, the failure rate of all 

the components might not be expressed by the same hazard rate. Rather, it is natural to 

assume that the hazard rate differs for each type of component. As for methods expressing the 

heterogeneity of the hazard rates of different types of components, it is possible to 1) express 

the difference of the component characteristics in dummy variables or to 2) consider the 

probability distribution of the hazard rate. The former method is simple and easy to 

understand. However, as the number of types of components increases, the number of dummy 

variables needed to express the components’ characteristics also increases, causing the 

efficiency of the model’s estimation results to decline considerably. In fact, in large-scale 

information systems, even components of the same type, categorized by type and device, have 

different deterioration characteristics depending on how they are used and where they are 

located, and these systems are structures with extremely divided deterioration characteristics. 

In hazard models, it is not practical to use dummy variables for deterioration characteristics 

sub-divided in this way. Therefore, in this study the authors choose the latter method, using a 

random proportional Weibull hazard model that expresses the heterogeneity of hazard rates of 

different components in probability distribution, and formulating a model for the failure 

process of component groups that compose information systems. 
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There have been many studies on the hazard analysis considering the heterogeneity of hazard 

rate. Especially, there have been an enormous amount of researches into the mixed hazard 

model in which the heterogeneity of hazard rate exists for each sample (Cameron and Trivedi, 

1990, 1998, Cruz, 2002, Gourieroux and Visser, 1986, McNeil, et al., 2005, Mikosch, 2000). 

In the mixed hazard model, it is assumed that the heterogeneity parameters that determine the 

hazard function is subject to a certain probability density function. The mixed hazard model is 

defined with the probabilistic convolution of the hazard function and the probability 

distribution of heterogeneity parameters. The ordinary Poisson process has the condition that 

the average of the probabilities of rare events is equal to the variance of them. In this situation, 

the mixed Poisson process model has been researched, in order to increase the degree of 

freedom in describing the variance of probabilities in the Poisson process. Kaito and 

Kobayashi (2008) applied it to asset management, by producing a model of the arrival process 

of road obstacles. For analyzing the failure of a device that breaks down accidentally, it is 

effective to use the mixed Poisson process model that reflects the heterogeneity of failure rate. 

However, monitors, input and output devices, and CPUs, etc., which constitute information 

systems, are the devices that break down due to deterioration, and so it is necessary to take 

into account the heterogeneity of Weibull hazard rate. In this study, the author proposes a 

random proportional Weibull deterioration hazard model, which describes the heterogeneity 

of Weibull hazard rate with the gamma distribution. The gamma distribution is a general 

exponential probability distribution, including an exponential distribution, and has the 

characteristics that can describe a broad range of probability distributions. In addition, the 

probabilistic convolution of the Weibull distribution and the gamma distribution is simple, 

and it is possible to analytically derive the random proportional Weibull deterioration hazard 

model. Accordingly, it can be considered that this model has practically excellent features. 

 

 

Take in Figure (1) 

 

 

Basic Frame of Modeling 

 

This is a model for the occurrence and process of failure events in information systems. As 

Figure 1 shows, the components in information systems are in three layers: 1) Type, 2) 

Device, and 3) Components. The type-layer contains hard disk drive (HDD), power supply, 

and processing and monitoring equipment. An information system is composed of M-unit 

Type components and each component is represented by the suffix i (i=1, ..., M). Type i 

components are used for Ni-unit Device and each Device is represented by the suffix j (j=1, ..., 

Ni). In a traffic control system, for example, each Type of component is used in different 

Devices such as personal computers (PC), servers, and so on. Since each Device has its own 

application of components, its failure probability is different from that of others. For Device j 

(j=1, ..., Ni), Lij-unit Type i components are used and each component is represented by the 

suffix k (k=1, ..., Lij). Components in each Type and each Device are considered to have 

different hazard rates. But the failure process in components in each Device is considered to 

be described by using the same hazard rates. Here, an infinitely continuous time axis starting 

from time point t=0 is used. If the existing information systems as a whole are renewed at t=0, 

the deterioration of each component starts from t=0. When a component has a failure, it is 

immediately replaced. The new one is supposed to have the same performance that the old 

one had. Now, take a look at t=T where a certain period of time has passed. Then, a failure 

history is obtained as shown in Figure 1, which cites an example of a failure history of Device 
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2 (server). Device 2 is composed of L2-unit components. Among them, component A has no 

failure from t=0. The time of use of component A is T and the lifetime of component A is 

considered to be longer than T. On the other hand, component B had a failure twice at T1 and 

T2. The first lifetime ζ =T1 and the second ζ =T2-T1.  

 

Here, it is supposed that each type of component has the failure characteristics of the wear-out 

failure component. With the wear-out failure component, as shown in Figure 2, the generation 

rates of failures (hazard rates) grow as the elapsed time moves farther from the nearest time of 

renewal. This type of lifespan distribution for the wear-out failure component is often used to 

express the components’ time-dependent deterioration. It is assumed that this is subject to the 

Weibull distribution. Furthermore, the hazard rates of different types of components can be 

expressed in time functions, as are shown in Figure 2. Functions like this that express the 

hazard rate’s temporal change are called hazard functions. The hazard functions of each 

component are in an expansion or contraction by a factor of a baseline hazard function. A 

model that expresses proportionally expanded or contracted functions is called a proportional 

hazard model. If the failure process of each type of component that composes each device can 

be mutually expressed with a proportional hazard model, the heterogeneity in hazard rates can 

be expressed by the probability distribution of proportionality constants of hazard functions. 

Information systems comprise many devices, but in most cases, the number of the same type 

of components in each device is not that large. By estimating the parameter of the standard 

proportional Weibull hazard function and the parameter of the probability distribution that 

expresses the heterogeneity of the proportionality constant between the types, the random 

proportional Weibull hazard model can easily express the heterogeneity of the hazard rates 

between types and components. On the other hand, if the heterogeneity of the Weibull hazard 

rate cannot be expressed by the proportional hazard model, it becomes necessary to estimate 

the Weibull hazard model for the different types and devices. However, if the number of 

components of the same type that compose each device is small, it becomes difficult to 

estimate the Weibull hazard model. If the above points are considered, the random 

proportional Weibull hazard model proposed in this study is very effective for expressing the 

failure process of information systems that have sub-divided component structures.  

 

 

Take in Figure (2) 

 

 

 

RANDOM PROPORTIONAL WEIBULL HAZARD MODEL 

 

Formulation of Random Proportional Weibull Hazard Model 

 

Large-scale information systems are, as shown in Figure 1, composed of M types of 

components, and the component at number i (i = 1, …, M) is used in a total of Ni devices. 

Furthermore, the total number of type i components used in device j is Lij. Among the type i 

components, the component at number k (k = 1, …, Lij) out of the components that compose 

device j (j = 1, …, Ni) is picked up. The elapsed time since this component has been renewed 

will be expressed as k

ijt . The arrival rate of each component’s failure occurrence is based on 

the random proportional Weibull hazard model.  

 1)()(  mk

ijiij

k

ijij tmt          (1) 
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However, i is the parameter expressing the arrival density of type i, and m is the acceleration 

parameter. Equation (1) is the general Weibull hazard function (Aoki et al, 2007; Tsuda et al, 

2006) with the parameter ij (hereinafter, heterogeneity parameter) expressing the 

heterogeneity (Maher, 1996) of the hazard rates of type i and device j. The heterogeneity 

parameter expresses the heterogeneity of the hazard rates between the components of different 

devices and types. Especially, in the case thatij = 1, the random proportional Weibull hazard 

function (1) matches the general Weibull hazard function. This kind of hazard function is 

called a baseline hazard function (See Figure 2.). However, for the same component used in 

the same device, the heterogeneity parameter has a common value. The heterogeneity 

parameter takes a deterministic value in reality, but is a parameter that is impossible to 

observe. Also, the probability density function )( k

ijij tf  and survival probability )( k

ijij tF  of the 

lifespan of type i component k in device j are as follows.  

  mk

ijiji

mk

ijiij

k

ijij ttmtf )(exp)()( 1         (2a) 

  mk

ijiji

k

ijij ttF )(exp)(         (2b) 

The value of the heterogeneity parameter is a probabilistic variable which is subject to a 

certain probability distribution. The random proportional Weibull hazard model (1) has the 

same deterioration acceleration parameter m for all components, but the hazard arrival density 

miij  expresses a proportionately different deterioration characteristic for each type and 

device. In this study, a Weibull hazard model in which the hazard arrival density has a 

proportional distribution for each type and device, is defined as a random proportional 

Weibull hazard model. 

 

Here, the heterogeneity parameter ij is subject to the gamma distribution. Furthermore, use 

the case in which there are different averages of the heterogeneity parameter for each type. 

Gamma distribution as a special form contains exponential distribution, and can express the 

exponential probability density function family defined by  ,0 . Also, it has the merit that it 

is easy to handle analytically. Here, the parameter i expresses the average hazard arrival 

density of the type i component, and that the heterogeneity parameter ij is a probability error 

term that is subject to the gamma distribution of average 1, variance -1
. The gamma 

distribution is defined by  ,0 , and regarding the arbitrary explanatory variable and 

probability error term, the right side of equation (1) is guaranteed to have a positive value. 

Generally, the probability density function ),:(  ijg  of the gamma distribution ),( G  can 

be defined as follows.  

 











 







 



ij

ijijg exp
)(

1
),:( 1      (3) 

The average of gamma distribution ),( G  is   , and the variance is 



 2  2 . Also, 

)(  is the gamma function. Furthermore, the probability density function ):(  ijg of the 

gamma distribution of average 1, variance -1
 can be expressed as follows.  

  ijijijg 



 






  exp
)(

):( 1       (4) 

 

Estimating Method of the Model 

 

The random proportional Weibull hazard model has unknown parameters such as arrival 

density parameters i (i=1,…, M) for each type, an acceleration parameter m, different 

heterogeneity parameters ij (i = 1, …, M ; j = 1, …, Ni) for each type and device and the 

variance parameter  of the heterogeneity parameter. Normally with Weibull hazard models, 
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the parameters i and m can be estimated from failure history data. However, with the random 

proportional Weibull hazard model, it is necessary to estimate the variance parameter  of the 

heterogeneity parameter, and the heterogeneity parameters ij (i = 1, …, M ; j = 1, …, Ni) for 

each type and device, as well. For reader’s convenience, the proposed estimation flow is 

shown in Fugre 3 with the following detail dscription. 

 

Take in Figure (3) 

 

Now the database of the failure history of the targeted system is available. All the information 

regarding the time that each component failed (was exchanged) since the time of installation, 

of the targeted system, is stored in the database. Then, the failure history of the component is 

expressed as ),...,( 1 M , and ),...,( 1 iNiii    is the failure history of type i component. 

Also,

 
ij is the failure history for the type i component of device j, and is 

     ),...,1,,...,1(,,...,, 11

i

Lij

ij

Lij

ijijijij NjMitt   . Also, k

ij  is the dummy variable which takes 

the value 1 if the type i component k (k =1, …, Lij) of device j fails, and the value 0 if it does 

not. 



tij

k  is the in-service time (or lifespan) of the type i component k of device j. Therefore, 

when 0k

ij , 



tij

k  is the length of time since installation to the present. On the other hand, when 

1k

ij , 



tij

k  is the lifespan. Let us discuss it in detail with the servers A and B (device 2) of the 

power source (type 2) shown in Figure 1. Server A has been used continuously from the 

installation of the system to the present T without failure or replacement. Accordingly, 

),0( 2222 Tt AA   is recorded in the database as the information on the history of failure 

regarding Server A. In this study, the information on whether there is any failure and usage 

time is considered as a basic information unit. On the other hand, Sever B broke down twice 

at T1 and T2 and was replaced since the installation of the system. Accordingly, as the 

information on the history of failure regarding server B, ),1( 1

1

22

1

22 Tt BB  , 

),1( 12

2

22

2

22 TTt BB  , and ),0( 2

3

22

3

22 TTt BB  are recorded. Obviously, even if several 

devices are observed for the same period of time, the basic information unit varies according 

to the history of failure. When it is possible to gain several basic information units from a 

single device like server B, we should discriminate each basic information unit by adding a 

superscript to B like 1

22

B , but let us omit this superscript notation. 

 

Here it is assumed that the heterogeneity parameter 
ij  is given. The conditional likelihood 

 ijiijij m  ,,:  with observed data 
ij concerning faults of type i components of device j can 

be expressed as follows:  

    





Lij

k
ijii

k

ijijijii

k

ijijijiiijij

k
ij

k
ij

mtfmtFm
1

)1(
),,:(),,:(),,:(


 .     (5) 

However, with the above equation, the probability density function of the lifespan distribution  

),,:( ijii

k

ijij mtf 
  

and the survival function ),,:( ijii

k

ijij mtF   are explicitly expressed as the 

parameter 
ijii m  ,,  function. Here, when the heterogeneity parameter 

ij  is subject to the 

standard gamma distribution ):(  ijg , the likelihood function of the observed data 
ij  can be 

expressed as follows: 

    
ijij

Lij

k
ijii

k

ijijijii

k

ijijiijij dgmtfmtFL
k
ij

k
ij




 







0
1

)1(
):(),,:(),,:():(  

                          


  



Lij

k
ijijiji

s

ij

mk

iji dtm ij

k
ij

1
0

11 )(exp)(
)(




 


.     (6) 

However, ),,(  ii m . Also, 
1

1 1
)(,



  
mLij

k

Lij

k

k

ijij

k

ijij ts  . With the above equation, the 

heterogeneity parameter ij of all type i components of device j takes the same value. Notice 

that to express this, the authors define the likelihood function ):( iijijL   as the expected value 
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regarding the probability variable ij of the conditional likelihood ),,:( ijiiijij m  . Hence, by 

the transformation of the variable )( ijiijijx   , the following  is obtained:  

  
iji

ij
Lij

k
ij

s

iji

ijmk

ijiiijij

dx
x

x
tmL

ij
k
ij
































  









1
0

1

1 )exp()(
)(

):(  

 












Lij

k

mk

ijis

iji

ij
k
ij

ij
tm

s

1

1

1
)(

)(

)(

)(














 .    (7) 

Therefore, the logarithmic likelihood function with the observed data ),...,( 1 M  can be 

expressed as 

 
  


M

i

Ni

j
ijiij

M

i

Ni

j
iijij sNLL

1 11 1

)ln()(ln):(ln),(ln   

 
   






M

i

Ni

j

Lij

k

k

iji

k

ij

M

i

Ni

j

s

k

tmmk
ij

1 1 11 1

1

0

ln)1(lnln)ln(  .        (8) 

However, each element of ),...,( 21  M  is expressed as ),...,(),...,( 11 MM   , mM 1 , 

 2M
. Also,  


M

i iNN
1

, and with the third item on the right side of equation (8), when 

0ijs , 0)ln(
1

0






ijs

k
k  is defined. Also, when sij =1,

 
 ln)ln(

1

0






ijs

k
k .  

 

The maximum likelihood estimator of the parameter value , which maximizes the 

logarithmic likelihood function (8), is given as )ˆ,...,ˆ(ˆ
21  M which simultaneously satisfies 

 )2,...,1(,0
),(ln





Mi

L

i

  .      (9) 

Furthermore, the estimated value )ˆ(ˆ   of the asymptotic covariance matrix of the parameter 

can be expressed as follows: 

 

1
2

'

)ˆ,(ln
)ˆ(ˆ






















L .       (10) 

However, the inverse matrix of the right side of the above equation is the inverse matrix of the 

Fisher information matrix after )2()2(  MM  with elements 
jiL   /)ˆ,(ln2 . The 

parameter’s maximum likelihood estimator can be obtained by solving the non-linear 

simultaneous equation (9) of M+2 dimension. In this study, the maximum likelihood estimator 

is estimated by the Newton-Raphson method. If the maximum likelihood estimator 



ˆ  is 

obtained, the covariance matrix estimated value )ˆ(ˆ   is employed to estimate the t-test 

statistics.  

 

Next, with the maximum likelihood estimator ̂  of the parameter vector as postulate, the 

maximum likelihood estimator of the heterogeneity parameter 
ij  (i=1, …, M; j =1, …, Ni) is 

obtained. Here, the partial likelihood function is defined as follows: 

    


 



Lij

k
ijiji

s

ij

mk

ijiiijijij

ij

k
ij

tmL
1

1ˆ1ˆ

ˆ

)ˆˆˆ(exp)(ˆˆ
)ˆ(

ˆ
)ˆ:,( 









 .  (11) 

However,  


Lij

k

mk

ijij t
1

)(̂ . At this time, the maximum likelihood estimator of the 

heterogeneity parameter 
ij  can be obtained as 

ij̂  that satisfies 

 0
)ˆ:,(






ij

iijijijL





 .        (12) 
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The maximum likelihood estimator of the heterogeneity parameter obtained in this way is the 

estimated value obtained with the parameter )ˆ,ˆ,ˆ(ˆ  ii m  as postulate. To express this 

explicitly, the solution of equation (12 is expressed as )ˆ(ˆ
iij  . Finally, from equation (11), 

(12), the following equation can be obtained: 

 

ij

ij

iij

s






ˆˆˆ

1ˆ
)ˆ(ˆ




 .         (13) 

 

 

EMPIRICAL STUDY 

 

Overview of Empirical Study 

 

Targeting the traffic control system managed by a highway company, the random 

proportional Weibull hazard model is estimated. The traffic control system is a system that 

has been sequentially renewed from the old system since 1990, and has been in operation 

continuously. It comprises 9 central station systems (hereinafter, stations), manages the 

conditions of expressways, and provides appropriate real-time information to users. The 

operational conditions of the traffic control system are also under real-time surveillance, and 

in the case of faults, the failure-generated component will be specified and the time and 

content of the failure will be recorded. 

 

In this study, out of all the components that compose the traffic control system, the authors 

targeted the component group that, in case of a fault, has the possibility of developing into a 

serious functional failure of the whole system, and estimated the random proportional Weibull 

hazard model. After investigating the failure history database of the traffic control system and 

interviewing the system manager, the authors selected a component group to target for model 

estimation, ultimately deciding on three types, HDDs (Hard disk drive), power supply, and 

processing devices. In the current traffic control system, there are 177 HDDs, 306 power 

supply, and 180 processing devices. From the same research and interview, HDDs and 

processing devices are used as three different devices: PCs (used as monitors and terminals), 

servers (used as servers and processing equipment), and other devices (other uses not included 

in the former two). Furthermore, these components are used in 9 different stations, each type 

being categorized into 27 categories.  

 

Estimation Results 

 

In this study, 3 types of components: HDD, power supply and processing device are used. 

Therefore, 3 arrival density parametersi (i=1,2,3) are introduced. Also, assuming the hazard 

rates of the PCs, servers and other devices in the 9 stations are heterogeneous, heterogeneity 

parameters ij (i=1,2,3; j=1, …, Ni) are defined for each device. Therefore, the unknown 

parameters to be estimated are arrival density parameter i (i=1,2,3), acceleration parameter m, 

heterogeneity dispersion parameter , ij. The random proportional Weibull hazard model 

estimated by the method proposed is shown in Table 1. The value in parentheses shows the t- 

value, and the t- value of either parameter; as a result, the null hypothesis that they have no 

explanatory power for each explanatory variable model, is rejected at significance level 0.95. 

It is possible to show more clearly the difference in hazard rates for each type of component. 

As shown in Table 1, the maximum likelihood estimator of the acceleration parameter is 



ˆ m  2.174 . From Equation (2b), it can be seen that the survival probability of each type of 

component gradually decreases as the in-service time increases. Generally, if 



ˆ m 1.00, it 
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would be an accidemtal failure component whose failure rate does not depend on time, but all 

the components used in this study have characteristics of the wear-out failure component. 

 

 

 Take in Table (1) 

 

 

 

Analysis Results 

 

The authors categorized the 3 types of components (HDD, power supply, and processing 

device) according to which of the 9 stations of the traffic control system they are installed in, 

and further subdivided them according to the 3 types of usage, 1) PCs (used as monitors, 

terminals), 2) Servers (used as servers, processing equipment) and 3) Other devices (Used in 

other ways other than described in the former two). As shown in Table 2, this creates 27 

categories for each type. From equation (13), the maximum estimator of heterogeneity 

parameters for each category can be identically obtained. However, some categories (i,j) have 

no applicable components, and the number of heterogeneity parameters to be estimated are 

these: 21 for HDD, 9 for power supply, and 26 for processing device. Table 2 shows each of 

the estimated heterogeneity parameters )ˆ(ˆ
iij   and the number of samples of each component 

of each type. The same table shows that the maximum estimators of heterogeneity parameters 

are distributed variously depending on the device, and it can be seen that in order to express 

the deterioration characteristic of components in an information system it is necessary to 

consider the heterogeneity of hazard rates. Also, because the component structure is 

extremely subdivided, it can be surmised that the estimation efficiency will fall if the different 

component characteristics with dummy variables are expressed. By using the maximum 

estimator of heterogeneity parameters, we can obtain a deterministic Weibull hazard model 

that expresses the deterioration characteristic of each device. However, as shown in Table 2, 

there are some device categories with a very small number of samples. Therefore, there is the 

possibility of a problem occurring with the reliability of the Weibull hazard models obtained 

for each device category. In fact, of the heterogeneity parameters shown in Table 2, there are 

some for which the null hypothesis that it has no explanatory power for implementing the 

heterogeneity parameter could not be rejected, at a significance level of 95%. Therefore, by 

grouping the device categories, aggregative Weibull hazard models that express the average 

deterioration characteristic for each group can be obtained. Let’s define the heterogeneity 

parameters for each type and device ij, as aggregative average heterogeneity parameters for 

each type Ei (i=1, …, M). The aggregative partial likelihood functions for all devices are 

defined as 

       
 

 



Ni

j

Lij

k
ijiji

s

ij

mk

ijiiiii EEtmEL ij

k
ij

1 1

1ˆ1ˆ

ˆ

)ˆˆˆ(exp)(ˆˆ
)ˆ(

ˆ
)ˆ:,( 









 . (19) 

The maximum estimator of the heterogeneity parameter Ei satisfies 

 0
)ˆ:,(






i

iiiji

E

EL





        (20) 

and can be expressed as 
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












Ni

j ij

Ni

j ij

ii

s
E

1

1

ˆˆˆ

1ˆ
)ˆ(ˆ




 .       (21) 

Similarly, the maximum estimators )ˆ(ˆ
iiE  of heterogeneity parameters 

ilE (i,l=1,2,3) 

aggregated for each type and usage (PC, server, others) is 

 














lj ij

lj ij

iil

s
E










ˆˆˆ

1ˆ
)ˆ(ˆ .       (22) 

However, l is the usage of the components, and l=1 means PC, l=2 means servers, and l=3 

means others. Also, l is the set of devices of the usage l. The maximum estimators of the 

average heterogeneity parameters aggregated with the above idea are shown in Table 3. If the 

average heterogeneity parameters aggregated by type are compared, 

)ˆ(ˆ)ˆ(ˆ)ˆ(ˆ
231  EEE   is true. Furthermore, the same relation applies to the arrival density 

parameter, so the hazard rate of HDD is highest, and that of power supply is smallest. By 

obtaining the average heterogeneity parameter )ˆ(ˆ  iE , which is the heterogeneity parameters 

of each type of component aggregated, the Weibull hazard model that expresses the average 

deterioration characteristic of each type of component can be obtained. By using the average 

heterogeneity parameter )ˆ(ˆ  iE  (i=1,2,3) aggregated from each type, the average survival 

function of each type is obtained, and these are shown in Figure 4. Of all the samples, the 

shown survival probabilities are the relative ratio of the samples that survived in the targeted 

period. The lifespan of components is generally evaluated as service life. The same figure can 

be illustrated to show the service life according to the survival probability. Therefore, by 

using the survival probability as a management indicator, the service life can be evaluated by 

an arbitrary management indicator. However, the management indicator should be prepared 

with the importance of components in mind. From Figure 4, it can be seen, for example, that 

the use period (service life) at which the survival probability is 50% is 158 months for HDD, 

804 months for power supply, and 332 months for processing device. Furthermore, the 

survival probability of power supply used for 120 months is 98.9%, and it is 95% at 240 

months. For processing device, it is 92.7% at 120 months and 71.1% at 240 months. It can be 

seen that the failure rate increases as use time lengthens for power supply and processing 

device as well as for HDD. However, among the 3 types, HDD has the most rapid incline, 

while power supply has the gentlest. Furthermore, the survival functions of HDD and 

processing device obtained by aggregating heterogeneity parameters by usage are shown in 

Figure 5 and Figure 6. Figure 5 shows the survival function of HDD. Even for the same HDD, 

use environment differs according to usage. As seen from the figure, among the 3 different 

usages (PC, server, others), failures happen earliest in the case of PCs, which have the highest 

heterogeneity parameter and a survival probability of 50% after 135 months of usage. On the 

other hand, devices of other uses have the smallest heterogeneity parameter, and the survival 

probability is 50% at 455 months. In Figure 6, of processing parts, the hazard rate when they 

are used as servers is the highest, with a survival probability of 50% at 303 months. The 

hazard rate is smallest for PCs, with a survival rate of 50% at 356 months. 

 

 

 Take in Table (2) 

 

Take in Table (3) 
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Take in Figure (4) 

 

Take in Figure (5) 

 

Take in Figure (6) 

 

 

 

CONCLUSIONS 

 

In this study, a deterioration failure estimation model for components in information systems 

is proposed, aiming to improve asset management at the component level of large-scale 

information systems which support infrastructure. The authors focus on the point that 

information systems are composed of many types of components, and point out the necessity 

for a fault analysis model that can express the heterogeneity of hazard rates of different types. 

To operationally express the heterogeneity of failure rates, the Weibull hazard model is 

employed as a base, and a random proportional Weibull hazard model expressing the 

proportional heterogeneity of hazard rates with a standard gamma distribution is formulated. 

Furthermore, through a case study using a traffic control system for expressways, the validity 

of the proposed hazard model is empirically verified. As mentioned above, by using the 

random proportional hazard model considering the heterogeneity in the deterioration process, 

it is possible to improve the decision-making process regarding deterioration prediction for 

facilities and equipment, including infrastructure, and asset management based on 

deterioration prediction. The following are the findings of this study:  

 The random proportional Weibull hazard model was formulated, in order to take into 

account the heterogeneity of hazard rate of each device for large-scale information system 

composed of a variety of component. The authors proposed a two-step estimation method 

using observational data and indicated that heterogeneity parameters can be calculated 

identically.  

 The random proportional Weibull deterioration hazard model was applied to a traffic 

control information system for expressways, and examined the appropriateness of the 

proposed method. Actually, three types of devices: HDD, power supply, and processing 

device were classified into 27 categories (9 sections, 3 usages), and a hazard model estimation 

was conducted while considering each heterogeneity.  

 The results of estimation focused on the difference among device types indicate that 

expected lifespan is 158 months for HDD, 804 months for the power source, and 332 months 

for the processing part. It was also found that expected lifespan varies from 135 to 455 

months for HDD and from 303 to 356 months for the processing part according to the 

difference in purpose. 

 

Applying the random proportional Weibull hazard model to asset management shows that 

there are issues requiring future study. First, it is necessary to develop an asset management 

methodology for components, using the proposed hazard model. Especially, there are cases in 

which it is difficult to acquire necessary equipment if an information component goes out of 

production during the operation of an information system. It is expensive to use a different 

component as a substitute, so that in order to avoid the problem of out of stock components, it 

is necessary to store replacement components. Or, to carry out preventative maintenance on 

information equipment, it is necessary to decide logically on the renewal time of components. 

The hazard model proposed in this study can be used for performing asset management at the 

component level. Secondly, fault analysis is necessary at the function level of information 
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systems. With asset management at the function level, it is necessary to focus on the 

seriousness of the effect a failure in one component or component group can have on the 

functional level of the whole system, and it is necessary to consider the maintenance strategy 

of each component and component group. The authors are in the process of developing a 

methodology to analyze the system’s dynamic failure characteristics, which expresses the 

failure process of each component using the hazard model proposed in this study, and 

expresses the impact of each failure on the function of the whole system using a fault-tree. 

Thirdly, it is necessary to work on asset management at the system level of information 

systems. For this, it is necessary to consider simultaneously the technical obsolescence of the 

information system, the delay in processing time, and the dynamic failure process, and to 

develop a real-time option model to determine the best timing for renewing the information 

system. Fourth, the proposed method is applied to asset management of other types of 

infrastructure, for instance pavement, since the effect of the heterogeneity of individual 

sections of pavement would be larger than that of information systems. 
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Figure 1. Large-Scaled Infromation System and History Data of Failure Occurrences 
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Figure 2. Heterogeneity of Hazard functions 

 

Note: The baseline model applies to =1. 

Also, the hazard function of component B is 

a function multiplied by 1B  on the 

baseline model, and the hazard function 

shifts upwards. While component is 1A  

and the hazard rate proportionally shifts 

downwards.  
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Figure 3. Estimation Fllow 
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Figure 4. Survival Probabilities of Each Type 
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Figure 5. Survival Probabilities of HDD 
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Figure 6. Survival Probabilities of Processing  Device 
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Table 1. Estimation Results 

 
Parameter Model 

 1 1.251E-5 

(-5.104E6) 

2 1.631E-6 

(-2.311E7) 

3 5.293E-6 

(-9.182E6) 

m 2.174 

(49.031) 

 1.193 

(2.182) 

Logarithmic likelihood -402.441 
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Table 2. Heterogeneity Parameters 
 HDD Power supply Processing device 

Station 

1 

PC 

Server 

Others 

0.154 (1.536) 

0.148 (1.744) 

- 

0.006 (2.401) 

- 

- 

0.154 (1.398) 

0.148 (1.484) 

0.008 (3.694) 

Station 

2 

PC 

Server 

Others 

0.123 (2.973) 

2.208 (0.541) 

0.161 (1.321) 

0.120 (2.586) 

- 

- 

0.770 (8.94E-02) 

0.125 (1.897) 

0.008 (3.313) 

Station 

3 

PC 

Server 

Others 

0.146 (1.799) 

0.669 (3.357) 

0.133 (2.337) 

0.007 (5.549) 

- 

- 

0.146 (1.507) 

0.008 (3.715) 

0.860 (7.62E-02) 

Station 

4 

PC 

Server 

Others 

1.437 (5.38E-02) 

0.768 (2.136) 

0.006 (11.207) 

0.004 (3.174) 

- 

- 

0.688 (0.190) 

0.674 (0.213) 

0.833 (7.82E-02) 

Station 

5 

PC 

Server 

Others 

0.753 (0.479) 

0.600 (1.500) 

- 

0.008 (1.983) 

- 

- 

0.113 (2.170) 

0.628 (0.303) 

- 

Station 

6 

PC 

Server 

Others 

0.134 (2.310) 

0.114 (3.365) 

- 

0.008 (1.954) 

- 

- 

0.132 (1.752) 

0.802 (6.24E-02) 

0.142 (1.579) 

Station 

7 

PC 

Server 

Others 

0.147 (1.779) 

1.304 (0.246) 

- 

0.007 (2.090) 

- 

- 

0.147 (1.500) 

0.136 (1.674) 

0.009 (3.070) 

Station 

8 

PC 

Server 

Others 

5.400 (12.044) 

1.833 (0.181) 

- 

1.360 (3.519) 

- 

- 

0.481 (0.830) 

1.508 (0.325) 

0.581 (0.424) 

Station 

9 

PC 

Server 

Others 

0.844 (0.178) 

0.138 (2.140) 

- 

0.632 (3.44E-02) 

- 

- 

0.416 (1.260) 

0.948 (3.43E-03) 

0.123 (1.937) 
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Table 3. Heterogeneity parameters 
 HDD Power supply Processing device 

  ˆ
îE  0.923  (9.746) 0.205 (8.737) 0.431 (20.086) 

  ˆˆ
1iE  

  ˆˆ
2iE  

  ˆˆ
3iE  

1.302 (0.022) 

 

0.900 (6.403) 

 

0.095 (14.552) 

- 

 

- 

 

- 

0.366 (8.344) 

 

0.527 (3.973) 

 

0.410 (8.243) 
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