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Abstract

Second-harmonic electron cyclotron current drive (ECCD) experiments have been performed in the

stellarator/heliotron device (S/H), Heliotron J. A focused Gaussian beam is injected with the parallel

refractive index, N||, ranging from -0.05 to 0.6. The EC driven current is estimated by excluding the

bootstrap current from the total current. The experimental results show that the EC driven current is

determined by the local magnetic field structure where the EC power is deposited. The maximum EC

driven current is attained around N||=0.5 when the EC power is deposited at nearly the top of the

magnetic ripple. A large increase in electron cyclotron emission (ECE) signals is observed when the

EC current is driven, indicating an important role for high-energy electrons in the ECCD. The

experimental results for N|| and B dependence agree with a ray tracing simulation using a parallel

momentum conservation model in which the trapped particle effect is included.
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1. Introduction

Noninductive current plays an important role in the realization of high-performance plasmas and

the sustainment of steady-state plasmas in toroidal fusion devices. In stellarator/heliotron (S/H)

systems, no Ohmic current is required for equilibrium since the confinement magnetic field is

generated by external coils. However, it is known that noninductive current flows in S/H systems as

well as in tokamaks. Finite plasma pressure gradient drives bootstrap current, and tangential neutral

beam injection (NBI) generates a noninductive NB current. Both bootstrap and NB currents modify

the rotational transform profile, thereby affecting the equilibrium and stability. In the S/H device,

Heliotron J, we have demonstrated that magnetohydrodynamic (MHD) activity of the m/n=2/1 mode

(m and n are the poloidal and toroidal mode numbers, respectively) is excited when the rotational

transform increases from 0.48 to 0.50 by bootstrap current and NB driven current [1]. The

noninductive current also modifies the edge field topology and divertor performance [2]. Furthermore,

a transition onset to an improved confinement mode in NBI plasmas has been observed in relation to

the noninductive current in the Heliotron J [3].

Electron cyclotron current drive (ECCD) is recognized as being a useful scheme for stabilizing

MHD instabilities in tokamaks[4, 5]. In S/H systems, ECCD is expected to be an effective current

drive scheme to suppress the noninductive current and to tailor the rotational transform profile,

particularly in low-shear devices. An ECCD experiment in the Heliotron J has shown that the EC

driven current strongly depends on the magnetic field configuration [6, 7], suggesting that ECCD is

determined by the balance between the Fisch–Boozer effect [8] and the Ohkawa effect [9]. We also

demonstrated that a net zero current state was maintained by cancelling the bootstrap current with

ECCD. From the viewpoint of diagnostics, S/H systems have the advantage of allowing precise

measurement of the EC driven current. Because no Ohmic current is required in S/H systems, they

achieve an accuracy of 0.1 kA using conventional Rogowski coils. Comparing experimental results

between tokamaks and helical systems gives us a deeper understanding of the ECCD physical

mechanism in toroidal devices. Experimental research on ECCD has been performed in the Heliotron

J, W7-AS [10], TJ-II [11], CHS [12] and LHD [13]. Comparative studies among various helical

devices have also been performed under international collaboration, and the ECCD efficiency was

found to be similar [14].

We have previously launched a non-focused Gaussian beam with a fixed angle for electron

cyclotron heating (ECH)/ECCD in the Heliotron J. Although several experimental ECCD findings

have been obtained using this launcher, the system has limitations for ECCD study. We have recently

installed an upgraded launcher to extend the ECCD controllability. This paper presents recent

experimental results on ECCD using the new launcher system in the Heliotron J. The dependence of

ECCD on the parallel refractive index, N||, is investigated. The role of high-energy electrons in ECCD

related to magnetic trapping is also discussed. We compare the experimental results with theoretical

analysis by using a ray-tracing simulation code, TRAVIS [15]. This paper is organized as follows. The

experimental setup including the Heliotron J device and the ECH/ECCD system is described in Sec. 2.
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In Sec. 3 we present the experimental results, especially the dependence on N|| and the magnetic field

structure. The experimental results in the Heliotron J are compared with the results from the TRAVIS

code in Sec. 4. A summary is given in Sec. 5.

2. 70-GHz ECH/ECCD System for Heliotron J

The Heliotron J is a medium-sized plasma experimental S/H device [16, 17]. The device

parameters are: plasma major radius R = 1.2 m, averaged minor radius a = 0.1–0.2 m, rotational

transform /2= 0.3–0.8 and maximum magnetic field strength on the magnetic field axis B = 1.5 T.

The coil system is composed of an L = 1, M = 4 helical coil, two types of toroidal coils A and B, and

three pairs of vertical field coils. The configuration is scanned by varying the current ratios in each

coil, making it possible to investigate the properties of noninductive current over a wide range of

magnetic configurations. Figure 1 illustrates the magnetic field strength along the magnetic axis. The

magnetic field ripple is defined by the ratio of the magnetic field at the straight section ( = 0 deg) to

that at the corner section ( = ±45 deg), h = Bstr/Bcor. Three configurations, h = 1.06 (b = 0.01), 0.95

(b = 0.06) and 0.82 (b = 0.15), are chosen. Here b is defined as b = B04/B00 at the averaged minor

radius,  = 0.67, which is varied by controlling the currents in toroidal coils A and B. Bmn is the

Fourier component of the magnetic field strength in Boozer coordinates, and m and n are the poloidal

and toroidal Fourier harmonic numbers, respectively. The toroidicity (t = B10/B00), helicity (h =

B14/B00), rotational transform and plasma volume are kept almost constant.

Plasmas are produced and heated by 70-GHz second harmonic X-mode ECH, which has a cut-off

density of 3.0 × 1019 m−3. We have recently installed an upgraded EC launching system in the

Heliotron J in order to extend the controllability of EC driven current [18]. The upgraded 70-GHz

launching system consists of an ellipsoidal mirror and a steerable flat mirror. The steerable mirror

enables us to change the beam angle flexibly in the toroidal and poloidal directions. A low power test

using a Gunn oscillator shows that the beam radius of 1/e2 power is 3 cm at the magnetic axis, smaller

than the minor radius, a ~ 17 cm, and the available N|| ranges from -0.05 to 0.6, limited by the

chamber port size. Here N|| is determined by the angle between the resonant magnetic field and EC

wave vector under vacuum conditions. The new EC launcher is positioned between the straight and

corner sections, while it was positioned at the straight section in the previous experiment, meaning

that the power is deposited at a different ripple position. See reference [6] for the previous launching

condition. EC beam injection with N|| = 0 corresponds to injection toward the corner section (~ 30

deg) in the new launcher. For large N||, the EC power is injected toward the straight section direction

(~ 15 deg), and is deposited near the ripple top for h = 1.06 and near the ripple bottom for h = 0.82.

The X-mode fraction is more than 80% for the available N||, especially more than 90% for 0.1 < N|| <

0.6. The reason why the polarization is not perfect is that only one polarizer mirror is set in the

waveguide transmission line due to the limited number of miter bends. The groove parameter is

chosen to have an X-mode fraction as high as possible in the available N|| range.
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3. ECCD Experiment

3.1. Estimation of EC Driven Current

Two effects generate EC current in toroidal devices. When EC waves are launched obliquely

from low field side in clockwise (CW) toroidal direction, they excite perpendicular excursion

in the velocity of a group of electrons with CW parallel velocity. These electrons are accelerated

to higher energy and hence to a collisionless location in velocity space. Due to difference in

collisional relaxation, the high-energy electrons are symmetrized more slowly than the low-energy

electrons, leaving an excess of electrons with CW velocity, and hence an electrical current in the

counter-clockwise (CCW) direction. This is called Fischer-Boozer effect [8]. The other effect is

related to a trapping of electrons in velocity space. If the EC waves move electrons with CW

velocity from the passing region to the trapped region, then the asymmetry of those electrons is lost

due to bouncing in the magnetic well on a faster time scale than collision time. The resulting effect of

asymmetric trapping and symmetric detrapping creates a deficit in velocity space at the original

location of the electrons, generating an electrical current in the CW toroidal direction. This is called

Ohkawa effect. [9] We note that the direction of EC current induced by the Ohkawa effect is opposite

to that induced by the Fisch-Boozer effect. The Ohkawa effect is more important as the resonance line

is close to the trapping region.

ECCD experiments have been conducted using the upgraded launching system in the Heliotron J.

The total toroidal current is measured by Rogowski coils wound on the inner wall of the poloidal

cross sections at two different toroidal angles, that is, the corner and the straight sections. An ECH

power of 260 kW is injected up to 140 msec. The L/R time is about 100–200 msec for the Heliotron J

plasma parameters, where L and R are the plasma inductance and resistance. In the experiment

reported here, the measured toroidal current became saturated within the pulse length for Ip < 3 kA.

Figure 2 shows the N|| dependence of the measured toroidal current at 0/ = ±0.499 at the high h

configuration. Here 0 and  are the electron cyclotron frequency at the magnetic axis of the straight

section, 0 = eBst(0)/me , and the wave frequency. The electron density is fixed as en = 0.5  1019 m-

3. N|| is determined at the resonant magnetic field position under vacuum conditions. We define the

current flowing in the Fisch–Boozer direction as positive. In ECH plasmas, the toroidal current is

composed of the bootstrap current and the EC current. These currents can be separated by comparing

the experimental results obtained for CW and CCW magnetic fields, since the flow direction of the

bootstrap current, which is proportional to the BB drift, is reversed by reversing the magnetic field,

while that of the EC current associated with the B strength is not The EC driven current, IEC, and the

bootstrap current, IBS, are estimated using the equations IEC = (Ip
CW+Ip

CCW)/2 and IBS = (Ip
CWIp

CCW)/2,

respectively, where Ip
CW and Ip

CCW are the toroidal currents for the CW and CCW magnetic field,

respectively. Here we have assumed that the nonlinear interaction between the bootstrap and EC

currents is negligible. We confirmed that the other plasma parameters, such as the stored energy, were

almost identical in both measurements. In the experiments reported in this paper, the line-averaged

electron density measured with a microwave interferometer is 0.2-1.81019 m-3, and the electron
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temperature measured with a pulse height analysis is 0.3-1.0 keV. The electron temperature at ne=

0.51019 m-3 ranges from 0.5 to 0.8 keV.

3.2. N|| Dependence of ECCD

Figure 3 shows the EC driven current as a function of N|| in three configurations. The EC driven

current numerically calculated by the TRAVIS code (discussed in Sec. 4) is also plotted. Before

performing the N|| scanning experiment, we adjusted the magnetic field at a fixed N|| of 0.4, to find the

magnetic field for the highest EC driven current. For high and medium h configurations, the EC

driven current increases with N|| in the Fisch–Boozer direction, having maxima of Ip = 2.3 kA and 1.8

kA at N|| ~ 0.5. For the low h configuration (h = 0.82), the EC driven current is nearly zero,

independent of N||. The estimated bootstrap current is IBS = -0.1 kA, 0.6 kA and 0.53 kA at N|| = 0 for

the configurations of h = 1.06, 0.95 and 0.82, respectively. These values are close to those derived

from neoclassical theory [4]. The reasons for the finite IEC at N|| = 0 may be that the off-center EC

waves have a finite N|| and that the refraction effect makes N|| finite. For example, according to the

TRAVIS code, the N|| of the rays at the peak deposition ranges -0.06 < N|| < 0.01 for h=0.95

configuration when N|| of central ray is set to be zero. The N|| dependence in three configurations

indicates that the EC current is more strongly driven when the power is deposited at the high field

position in the magnetic ripple structure, and it is suppressed when the EC power is deposited at

nearly the bottom of the magnetic field ripple. These EC driven currents are half or less those in the

previous experiment (5 kA and -2 kA for h=1.05 and h=0.82, respectively [7]). This may be

associated with the difference in EC power deposition position. The EC power was deposited just at

either the top or the bottom of the magnetic field ripple in the previous experiment, while the EC

power is deposited at in-between position in the experiment reported here (see Fig. 1). Although the

achieved EC driven current is reduced, N|| control ability is improved by installation of the steerable

mirror.

Figure 4 shows the electron cyclotron emission (ECE) signal intensity against N|| for three

configurations. The ECE signal is measured with a multi-channel radiometer, which views the plasma

at the second harmonic frequency near magnetic axis. The ECE intensity is normalized by that at N|| =

0 in each configuration to clarify the configuration dependence. An enhancement of the ECE signals

by one order of magnitude and a high correlation between the toroidal current and the ECE intensity

have been observed for high h configuration. Since the optical thickness at this low density is gray,

~ 1, and the stored energy is weakly changed during the N|| scan, the ECE signal reflects not only the

bulk Te but also the high-energy tail. No such enhancement has been observed in the low h

configuration where the EC driven current is nearly zero. Although an increase in ECE signals at low

density has been also observed in other S/H devices such as W7-AS [19, 20] and L-2M [21], it is not

physically clear yet how enhancement of the ECE intensity is connected with the EC driven current.

The oblique launch shifts the EC absorption to a higher energy range, increasing the population of

high-energy electrons. For low h configuration, the trapped region is so wide that the produced high-
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energy electrons do not move to the other toroidal pitch section, possibly resulting in the radiometer

located in a different toroidal section seeing only a few high-energy electrons. Although Soft-X ray

spectra measured with the pulse height diagnostic were not available in the N|| scanning experiment,

an increase in electron energy spectrum in the range of 4-10 keV was observed in the previous

experiment when the EC current was driven [7].

4. Comparison with Theory

In this section, we compare the experimental results on ECCD in the Heliotron J with a numerical

simulation in order to clarify the effect of magnetic field configuration, especially the trapped particle

effect. TRAVIS [15] is a ray tracing code for ECH/ECCD and ECE diagnostics in arbitrary 3D

magnetic configurations. The code has been applied and benchmarked with some other codes for W7-

X [22, 23] and ITER [24, 25]. For ECH/ECCD calculations, the absorption is decomposed into the

contributions from trapped and passing electrons by analyzing during integration along the resonance

line. The energy range of electrons responsible for absorption is also calculated. The resonant

harmonics, which may participate in cyclotron interaction, are defined in the code automatically by

analyzing the magnetic configuration. The CD efficiency is calculated by applying the adjoint

approach with parallel momentum conservation (PMC) taken into account [26, 27].

We apply the TRAVIS code to the Heliotron J configurations to calculate the deposition profiles

and the ECCD performance. The magnetic configuration provided by the 3D equilibrium code VMEC

is converted to Boozer coordinates and interpolated by a highly optimized package. The electron

density and temperature profiles are assumed in the simulations to be broad and peaked as ne() =

ne(0){0.01+(1-0.01)(1-8)4} and Te ()= Te(0){0.01+(1-0.01)(1-3)1.5}, which is typically observed in

ECH plasmas of S/H devices. The effective charge is fixed as Zeff = 2. Parallel Gaussian beam rays are

injected with a beam radius of 3 cm, based on the experimental cold test result. Poloidal and toroidal

cross-sections of ray trajectories calculated by TRAVIS code are shown in Fig. 5. The electron

density is ne(0)=0.51019m-3, and the electron temperature is Te(0)=0.8 keV. The magnetic field is

adjusted to locate the power deposition on axis. Figure 6 shows examples of EC power absorption

density profiles and EC driven current density profiles in three configurations. N|| is set to about 0.4

and the magnetic field strength is adjusted so that the EC driven current can be peaked on the axis. To

calculate the efficiency, both the collisional and collisionless limits were applied, which correspond to

neglecting and taking into account the trapped electrons, respectively. In the former case, i.e., without

the trapped electron effect, the total EC driven current predicted by simulation is IEC ~ 12 kA,

independent of the configuration. This amount of current corresponds to an ECCD efficiency of =

neIECR/PEC = 2.4  1017 A/Wm2 and = 32.7neIECR/PECTe = 0.10 where ne is in units of 1020 m−3, IEC in

A, R in m, PEC in W and Te in keV. It is noted that the EC power is not fully absorbed in a single path

because of the relatively gray optical depth, ~ 2. As a consequence, the EC power is absorbed by

electrons not only with k||v|| > 0, but also with k||v|| < 0, lowering the current drive efficiency as shown

in Fig. 7. The main contribution in EC absorption comes from the resonant electrons with velocities
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vres/vth=1.2-2.7 (here vth = (2Te/me)
1/2 is the thermal velocity). As the EC power is deposited at the

ripple bottom (low h configuration), the power fraction absorbed by trapped particles increases: 42%,

52% and 70% for h = 1.06, 0.95 and 0.82, respectively. This leads to a reduction in the EC driven

current if the trapped particle effect is included. In the PMC model with the trapped particle effect,

the total EC driven current is calculated as 3.0, 1.9 and -0.4 kA for h = 1.06, 0.95 and 0.82,

respectively. The EC driven current using the PMC model with the trapped particle effect is

calculated under the experimental conditions and compared with the experimental results as shown in

Fig. 3. The central electron temperature is assumed as Te(0) = 0.5–0.8 keV, based on a soft-X ray

pulse height analysis measurement. The TRAVIS calculation reproduces the N|| dependence well in all

three magnetic configurations considered in the experiments, though there is uncertainty (error bars

shown in the theoretical values) in the input parameters such as the ne and Te profiles and the effective

charge, which have not yet been measured experimentally.

We also compare experimental results obtained using the previous launching system with the

TRAVIS code calculation. An unfocused Gaussian beam of 350-kW power was launched from the top

of the torus in the straight section where the flux surfaces are bean-shaped and the B-contour forms a

saddle-type profile. Although the wave beam was injected perpendicular with respect to the equatorial

plane, it crossed the resonance layer obliquely because of the 3-D magnetic field structure, resulting

in a finite parallel refractive index N|| of 0.44 that drove the EC current. Details of the experimental

conditions are described in Ref. [4]. Figure 8 shows the B dependence of the EC driven current in

three configurations. The central electron temperature is again assumed as Te(0) = 0.5–0.8 keV. The

EC power is absorbed on the axis at 0/= 0.49 due to Doppler shift resonance. The numerical

results from the TRAVIS code agree with the experimental results and reproduce the configuration

dependence. The EC driven current is reduced when the EC power is deposited at the bottom of the

magnetic field ripple. The fraction of power absorbed by trapped electrons as a function of magnetic

field strength is shown in Fig. 9. The EC driven current in the collisional limit is too large to explain

the experimental results, and the trapped particle effect is required to explain the experimental results.

The power fraction absorbed by trapped electrons increases with an increase in magnetic field

strength, making the EC driven current nearly zero. This tendency is seen also in the other

configurations. Figure 10 shows the ne dependence of the ECCD efficiency, . The experimentally

estimated efficiency is insensitive to the electron density, and this dependence is also seen in the

simulation. There is discrepancy in the efficiency between experiment and theory by a factor of two,

although the physical reason for this is not clear. One of the reasons may be related to experimental

accuracy in magnetic field strength. The magnetic field has a saddle-type structure at the EC

launching port in the density scan experiment, where the resonant layer position is sensitive to

magnetic field strength. In this poloidal cross-section, a few percentage change in the magnetic field

strength moves the resonant layer markedly in the core region. The Heliotron J coil system has a

setting error in magnetic field about 1 %, causing a discrepancy in the efficiency between experiment

and theory especially at 0/~0.49. Experimental data such as ne and Te profiles and effective charge
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are also required to measure for more quantitative comparison of the ECCD efficiency.

5. Summary

Second-harmonic X-mode ECCD experiments have been conducted in the Heliotron J using a

focused Gaussian beam with a controllable injection angle. The EC driven current was experimentally

estimated by excluding the bootstrap current from the total current. The experimental results show

that the EC driven current can be controlled by N|| and depends on the magnetic configuration. The

maximum EC driven current is attained around N|| = 0.5 when the EC power is deposited nearly at the

top of the magnetic ripple, and the EC driven current is nearly zero independent of N|| when the EC

power is deposited near the bottom of the magnetic ripple. The ECE signal has high correlation with

the observed EC current intensity, indicating an important role for high-energy electrons. The

experimental results including the B and N|| dependences agree with ray tracing simulations using the

TRAVIS code in which the parallel momentum conservation with trapped particle effect is

considered. Comparing between the collisional and collisionless limit models indicates clear influence

of trapped electrons on the ECCD. ECCD may be an effective tool to study the role of rotational

transform on confinement and transport such as MHD stabilization and H-mode transition. We will

study the effect of localized ECCD on rotational transform profile in the forthcoming experiment. .
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Fig. 2. Measured toroidal current as a function of N|| for positive and negative
magnetic fields. The injected EC power is 260 kW and the electron density is

fixed as en ~0.51019m-3.
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Fig. 3. N|| dependence of EC current in three configurations (h=1.06, 0.95 and 0.82). The
closed and open symbols denote the experimental and theoretical EC driven current,
respectively. The injected EC power is 260kW and the electron density is fixed as
ne~0.51019m-3.
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Fig. 4. ECE intensity against N|| for three configurations.
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Fig. 5. Poloidal and toroidal cross-sections of ray trajectories calculated by TRAVIS
code in two configuration, (a) h=1.06 and (b) h=0.82. The electron density is
ne(0)=0.51019m-3, and the electron temperature is Te(0)=0.8 keV. The magnetic field
is adjusted to locate the power on axis. The bold purple line denotes B=1.25T
(0/=0.5), and the red color denotes the absorbed region.
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Fig. 6. Power absorption profiles and EC current density profiles calculated by TRAVIS code
in three configurations, (a) h=1.06, (b) h=0.95 and (c) h=0.82. The black, red and blue curves
denote the total power density and the power density absorbed by passing and trapped
particles, respectively. The injected EC power is 350 kW and the electron density is fixed as
ne(0)=0.51019m-3 and the central electron temperature is 0.8 keV.
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Fig.7. Power absorption and EC current along central ray, calculated by TRAVIS code in three
configurations, (a) h=1.06, (b) h=0.95 and (c) h=0.82. The trapped particle effect is included.
The input parameters are the same as in Fig. 8.
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Fig. 8. B dependence of EC driven current in three configurations (h=1.06, 0.95 and 0.82).
The closed and open symbols denote the experimental and theoretical EC driven currents,
respectively. The injected EC power is 350 kW and the electron density is fixed as

en ~0.51019m-3. Te(0) ranges from 0.5 to 0.8 keV in the TRAVIS calculation.
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Fig. 9. B dependence of EC driven current calculated by using PMC model in the high h
configuration. The power fraction absorbed by trapped particles is also plotted.
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Fig. 10. ne dependence of current drive efficiency, =neRIp/PEC (A/Wm2), in three
configurations.
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