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Connections are explored between the free energy difference of two systems and the microscopic
distribution functions of the energy difference. On the basis of a rigorous relationship between
the energy distribution functions and the free energy, the scheme of error minimization is intro-
duced to derive accurate and simple methods of free energy computation. A set of distribution-
function approaches are then examined against model systems, and the newly derived methods ex-
hibit state-of-art performance. It is shown that the notion of error minimization is powerful to im-
prove the free energy calculation using distribution functions. © 2011 American Institute of Physics.
[doi:10.1063/1.3637036]

I. INTRODUCTION

Liquid, biomolecule, and lipid membrane have both or-
der and randomness. To describe these, weakly ordered sys-
tems, a statistical-mechanical viewpoint is indispensable. A
method of distribution function is highly useful in statistical-
mechanical description. A few physical variables are chosen
to characterize the state of the system of interest, and its prob-
ability distribution (with appropriate normalization) provides
ensemble-averaged information often on the molecular and
microscopic level.

A distribution function is even more useful when it
constructs a macroscopic or thermodynamic observable. The
distribution function can then serve as a bridge between
molecular understanding and realistic observation. In chem-
ical applications, a most important observable is the (stan-
dard) free energy change for a process of interest. A number
of approximate theories are thus formulated which compute
the free energy in terms of distribution function, for example,
of distance, spatial coordinate, or energy.1–13

A fundamental expression connecting the free energy dif-
ference and distribution functions was provided by Shing and
Gubbins.14 In this expression, the distribution functions of the
energy difference between two systems of interest constitute
an exact functional for the free energy difference between the
two systems. In practice, the histograms of the energy differ-
ence are constructed for the two systems and the overlapping
region of the two histograms is used to estimate the free en-
ergy difference; the method is often called overlapping distri-
bution method.

The distribution-function based approach to free energy
computation was significantly strengthened by a recent work
of Yokogawa.15 On the basis of a hypernetted-chain-like for-
mulation used in equilibrium theory of liquids, he put forward
an exact, analytical functional for the free energy expressed
in terms of distribution functions of energy. His work showed

a)Author to whom correspondence should be addressed. Electronic mail:
nobuyuki@scl.kyoto-u.ac.jp.

that the statistical mechanics of solutions can improve the nu-
merical evaluation of free energy (and entropy).

In the present work, we investigate distribution-function
methods for evaluating the free energy difference between
two systems of interest. We examine the original overlap-
ping distribution method and Yokogawa’s method, and pro-
pose new and improved schemes formulated by minimizing
the estimated error of free energy computation. The error due
to finite sampling is analyzed with statistical methods, and is
used to determine optimized functionals for exact computa-
tion of the free energy.

Apart from distribution-function based approaches, sev-
eral methods were developed to obtain the free en-
ergy difference.16–20 In the method of thermodynamic
integration,21 the “mean force” is calculated along reaction
coordinate and is integrated to provide the free energy differ-
ence. The free energy perturbation method22 uses the forward
or reverse work over typically small changes of the system.
The idea of introducing the statistical error analysis into free
energy estimation appears in the weighted histogram analysis
method (WHAM) (Refs. 23 and 24) and Bennett’s acceptance
ratio (BAR) (Ref. 25) method. The former improves the free
energy estimation from observations in multiple systems, and
the latter does so by combining both the forward and reverse
works. The key notion in WHAM and BAR is the error min-
imization, and it is employed in the present work to optimize
the free energy calculation based on distribution function.

The organization of the present paper is as follows. In
Sec. II, we review Shing-Gubbins formula for the free energy
difference and express a few free energy estimators as func-
tionals of distribution function. We then derive new estimators
based on error analysis. In Sec. III, we test the free energy
schemes against model systems of harmonic oscillator and
small biomolecules of ∼40 atoms. We conclude in Sec. IV.

II. THEORY

The target quantity of the present developments is the
free energy difference between two systems, called systems

0021-9606/2011/135(11)/114108/11/$30.00 © 2011 American Institute of Physics135, 114108-1
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0 and 1. The reduced potential function defined as26 Uλ(x)
= (kBTλ)−1Vλ(x) is provided at λ = 0 and 1, where Vλ(x)
is the potential function defined over the configuration space
x, kB is the Boltzmann constant, and Tλ is the temperature.
The configuration space x is the same for both systems of
λ = 0 and 1. The configurations in system λ are sampled in
accordance with the Boltzmann distribution proportional to
exp(−Uλ(x)). The ith sample or snapshot from the simulation
of system λ is denoted as xλi . The total number of samples in
system λ is Nλ. To be exact, Nλ is the number of uncorrelated
samples.27, 28 The dimensionless free energy difference �f ,
which is the target quantity, is given by

�f = − log

∫
dx exp (−U1 (x))∫
dx exp (−U0 (x))

. (1)

We introduce the distribution function of reduced energy dif-
ference as14, 15

ρλ (ε) =
∫

dxδ (U1 (x) − U0 (x) − ε) exp (−Uλ (x))∫
dx exp (−Uλ (x))

for λ = 0 and 1, (2)

where δ (·) is the Dirac delta function. This distribution func-
tion is the density of total energy difference ε between the
two systems. Since the number of configurations from a sim-
ulation is finite, the true energy distribution ρλ (ε) cannot be
obtained in practice. Instead, the distribution can be obtained
only from finite samples, and furthermore, the energy differ-
ence needs to be discretized into a set of finite bins.

The approximate probability distribution from finite sam-
ples and finite bins is introduced as

ρ̃λi = 1

Nλ

∫ ei

ei−1

dε

Nλ∑
i=1

δ (U1 (xλi) − U0 (xλi) − ε) , (3)

where ρ̃λi is the discretized distribution function in system λ

for the ith bin with 1 ≤ i ≤ B, and B is the number of bins.
The binning of the energy difference is conducted with (B
+ 1) energy values of

e0 < e1 < . . . < eB, (4)

and they are typically partitioned with equal intervals. With
Nλ → ∞, ρ̃λi converges to∫ ei

ei−1

dερλ (ε) , (5)

and thus ρ̃λi is a finite-sample approximation to the dis-
cretized distribution function. ρ̃λi is usually obtained from a
simulation by

ρ̃λi = nλi

Nλ

, (6)

where nλi is the number of samples (snapshots) falling into
the ith bin.

A. Linear thermodynamic integration

The method of linear thermodynamic integration (LTI)
was introduced by Mezei and Beveridge29 to obtain the free

energy difference between two systems. LTI approximates the
thermodynamic integration linearly through

�fLTI = 1

2

∫
dε ε (ρ0 (ε) + ρ1 (ε)) . (7)

In this approximation, the free energy difference does not con-
verge to the exact value even in the limit of bringing both N0

and N1 to infinity. Thus, the LTI is a biased estimator. The
difference between the exact free energy difference �f and
the LTI estimation �fLTI is given as15, 30

�f − �fLTI = 1

2

∫
dε (ρ0 (ε) + ρ1 (ε)) log

ρ1 (ε)

ρ0 (ε)
. (8)

This difference will increase when ρ1 (ε) differs more
from ρ0 (ε).

B. Overlapping distribution method
and Yokogawa’s method

Shing and Gubbins proposed the overlapping distribution
method.14 This method estimates the free energy difference
from the two distribution functions ρ0 (ε) and ρ1 (ε) of the
energy difference. The key equation is written as14, 25

�f = log ρ1 (ε) − log ρ0 (ε) + ε. (9)

Equation (9) is valid for any ε when the numbers of samples
N0 and N1 are infinite. A single, arbitrary ε does not provide
an accurate �f in practice, however, due to limited number
of samples. A weighting function w(ε) is then introduced to
stabilize the calculation. The free energy can be calculated as
a functional with arbitrary weighting function w(ε) through

�f =
∫

dεw (ε) (log ρ1 (ε) − log ρ0 (ε) + ε) , (10)

where w(ε) satisfies the normalization condition of∫
dε w(ε) = 1. (11)

Equation (10) involves the integration over the continuous ε.
In numerical implementation, a discretized version needs to
be employed. Using a set of bins given by Eq. (4), we rewrite
Eq. (10) into

�f = �f binned + �f rest (12)

≡
B∑

i=1

wi (log ρ1i − log ρ0i + εi) + �f rest (13)

�
B∑

i=1

wi (log ρ̃1i − log ρ̃0i + εi) + �f rest, (14)

where the discretized weight wi is

wi =
∫ ei

ei−1

dεw(ε) . (15)

εi is the representative energy of the ith bin and is usually set
to

εi = 1

2
(ei−1 + ei) , (16)
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where ei is introduced in Eq. (4) and defines the “edge” of bin.
Equation (16) expresses the mid-point convention and will be
justified in Appendix A. The discretized probability distribu-
tion ρλi within Eq. (13) is introduced through Eq. (2) as

ρλi =
∫ ei

ei−1

dερλ (ε) . (17)

The free energy difference from the discretized set of distri-
bution is defined as the first term of Eq. (13), and the term is
written as �f binned. The extra term �f rest represents the error
from the discretization of the continuous energy difference ε,
and will be discussed further in Sec. II E and Appendix A. We
write Eqs. (13) and (14) distinctively to emphasize the finite-
ness of the number of samples Nλ. ρλi corresponds to the
binned probability distribution with infinite number of sam-
ples, while ρ̃λi is its counterpart with finite samples. Some of
ρ̃λi may vanish even when the corresponding ρλi is non-zero,
thus the divergent log ρ̃λi can be problematic in Eq. (14).

To avoid the problem of vanishing ρ̃λi , the overlapping
distribution (hereafter OD) method adopts a weighting func-
tion w(ε) in the form of14

wOD (ε) =
{

(em − el)
−1 el ≤ ε ≤ em

0 otherwise.
(18)

The minimum and maximum energies of el and em are de-
termined to be within “good” overlapping region of ρ0 (ε)
and ρ1 (ε), in which both of ρ0 (ε) and ρ1 (ε) are obtained
with good statistics. The corresponding discretized weight is
given by

wOD,i =
{

(m − l)−1 l + 1 ≤ i ≤ m

0 otherwise
(19)

when the binning is done with an equal interval.
Yokogawa proposed a variant of OD method15, 30 (here-

after Yokogawa’s method), with a weighting function ex-
pressed as

wYokogawa (ε) = 1

2
(ρ0 (ε) + ρ1 (ε)) . (20)

The corresponding discretized weight is

wYokogawa,i = 1

2
(ρ̃0i + ρ̃1i) . (21)

With this setting, however, the weight may be non-zero even
in the bin with ρ̃λi = 0. To avoid the problem of divergent
log ρ̃λi , Yokogawa introduced a smoothed estimate of the his-
togram ρ�

λi as

ρ�
λi ∝ Pλ,i ρ̃λi + P1−λ,i

exp (−εi) ˜ρ1−λ,i∑B
j=1 exp

(−εj

) ˜ρ1−λ,j

, (22)

Pλ,i = ρ̃λi

ρ̃0i + ρ̃1i

. (23)

The normalization factor is determined from
∑B

i=1 ρ�
λi = 1

and ρ�
λi is used in place of ρ̃λi in Eq. (14).

C. Error minimization

The weighting function w(ε) is essential to compute the
free energy difference accurately. In this subsection, we de-
rive new forms of w(ε) by minimizing the error of estimated
free energy difference. The statistical error of �f binned is es-
timated as

σ 2(�f binned) =
B∑

i=1

w2
i (σ 2(log ρ0i) + σ 2(log ρ1i)), (24)

where σ 2 (log ρλi) denotes the estimated variance of log ρ̃λi of
Eq. (14) and wi satisfies the normalization constraint of

B∑
i=1

wi = 1. (25)

The total error σ 2(�f binned) can then be minimized by choos-
ing wi as

wi = C

σ 2 (log ρ0i) + σ 2 (log ρ1i)
, (26)

where C is the normalizing constant and is determined from
Eq. (25). With wi of Eq. (26), the total statistical error is

σ 2(�f binned) = C =
(

B∑
i=1

1

σ 2 (log ρ0i) + σ 2 (log ρ1i)

)−1

.

(27)

The concept of determining the weight according to the error
minimization is used in well-known methodologies such as
the WHAM.23, 24

The remaining problems are (1) to estimate σ 2 (log ρλi)
and (2) to circumvent the divergence of log ρ̃λi . For this pur-
pose, we resort to the Bayesian analysis of the probability to
fall into each bin and derive the estimated mean log ρλi and
variance σ 2 (log ρλi) of log ρ̃λi as

log ρλi = −
Nλ+B−1∑
k=nλi+1

1

k
, (28)

σ 2 (log ρλi) =
Nλ+B−1∑
k=nλi+1

1

k2
, (29)

where nλi is the number of samples falling into the ith
bin and appeared with respect to Eq. (6). The derivation of
Eqs. (28) and (29) is given in Appendix B. Note that log ρλi

will converge to log ρλi with Nλ → ∞ and does not di-
verge even when nλi = 0. The free energy difference is then
written as

�f binned
EROD =

B∑
i=1

wEROD,i

(
log ρ1i − log ρ0i + εi

)
, (30)

where wEROD,i is given by Eq. (26) combined with Eq. (29). In
the following, we call this method error-resilient overlapping
distribution (EROD) method because the method focuses on
heavily sampled region and is insensitive to outliers.

Another weighting strategy can be formulated from an
error analysis of the number of samples in the bin. Let

Downloaded 17 Oct 2011 to 130.54.110.73. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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σ 2 (nλi) be the variance of the number of samples falling
into the ith bin. When Nλ is fixed, σ 2 (log ρλi) is estimated
as σ 2 (nλi) /n2

λi , by virtue of Eq. (6) and the chain rule for
the variance. Further, σ 2 (nλi) is equal to nλi by assum-
ing the Poisson distribution, as adopted in the derivation of
WHAM.23, 24 We then have

σ 2 (log ρλi) � 1

nλi

, (31)

and derive an easy-to-use scheme with the weight of

wHMOD,i = CHMOD

(
1

n0i

+ 1

n1i

)−1

= CHMOD
n0in1i

n0i + n1i

= CHMOD
N0N1ρ̃0i ρ̃1i

N0ρ̃0i + N1ρ̃1i

, (32)

where CHMOD is the normalizing constant expressed through
Eq. (27) as

CHMOD =
(

B∑
i=1

N0N1ρ̃0i ρ̃1i

N0ρ̃0i + N1ρ̃1i

)−1

. (33)

The continuous counterpart of Eqs. (32) and (33) is

wHMOD (ε) = CHMOD
N0N1ρ0 (ε) ρ1 (ε)

N0ρ0 (ε) + N1ρ1 (ε)
, (34)

CHMOD =
(∫

dε
N0N1ρ0 (ε) ρ1 (ε)

N0ρ0 (ε) + N1ρ1 (ε)

)−1

. (35)

We call this method harmonic mean overlapping distribution
(HMOD) method. Its obvious advantage is the simplicity. Fur-
thermore, the weighting factor wHMOD,i serves to emphasize
the ε domain in which both ρ̃0i and ρ̃1i are non-zero and large.
The bin with ρ̃0i = 0 or ρ̃1i = 0 is weighed as wHMOD,i = 0
and is excluded from numerical calculation. Using Eq. (14),
the free energy difference is calculated as

�f binned
HMOD =

B∑
i=1

wHMOD,i (log ρ̃1i − log ρ̃0i + εi) , (36)

and the statistical error is estimated as Eq. (27) through
Eq. (33) in discrete case and through Eq. (35) in continuous
case.

The assumptions of the chain rule and the Poisson dis-
tribution are independent from the Bayesian assumption. The
two schemes of EROD and HMOD were thus derived inde-
pendently through error minimization with the different es-
timates of errors. Both are unbiased estimators for the free
energy difference, and their rates of convergence determine
which is superior or inferior.

D. Bennett’s acceptance ratio method

BAR (Ref. 25) estimates the free energy difference on
the basis of the variance minimization. It directly computes
the free energy difference from the set of energy differences
corresponding to snapshots of the system. The BAR is derived
as the maximum likelihood solution of Eq. (9) as31

�fBAR = CBAR − log
N1

N0
, (37)

CBAR = �fBAR

+ log
N1

∑N0
i=1 F (U1 (x0i) − U0 (x0i) − CBAR)

N0
∑N1

i=1 F (U0 (x1i) − U1 (x1i) + CBAR)
,

(38)

where F is the Fermi function defined as

F (x) = 1

1 + exp(x)
, (39)

and the sum is taken over systems 0 and 1, respectively,
for the numerator and denominator within the logarithm of
Eq. (38). The free energy difference �fBAR is calculated self-
consistently from Eqs. (37) and (38). In the limit of large N0

and N1, Eq. (38) reduces to an identity expressed as

CBAR = �fBAR + log

∫
dερ0 (ε)F (ε − CBAR)∫

dερ1 (ε)F (−ε + CBAR)
, (40)

which is valid for any CBAR by virtue of Eq. (9); note that
CBAR of Eqs. (37) and (38) is the optimum at finite N0 and N1.
Equation (40) has only a simple (linear) average over ρλ (ε),
and does not involve any non-linear operation on ρλ (ε). Thus,
the binning of ε is not necessary, and the binning error is ab-
sent in the form of Eq. (38). In fact, LTI has this property, too,
as is evidenced in Eq. (7). As the BAR does not use bins, a
straightforward implementation requires O (N0 + N1) mem-
ory space, while distribution-function based methods require
only O (B) space, where B is the number of bins and is typi-
cally much smaller than N0 and N1.

Still, the statistical error exists in the estimation of BAR,
which is provided in the literature.25, 31 It is given by

σ 2 (�fBAR) =
(∫

dε
N0N1ρ0 (ε) ρ1 (ε)

N0ρ0 (ε) + N1ρ1 (ε)

)−1

− N0 + N1

N0N1
.

(41)

If the error is expressed as the variance, no method based only
on the set of energy difference shall provide a better estima-
tion than BAR, without a specific model for ρ0 (ε) and ρ1 (ε).
The error of HMOD given by Eq. (35) is equal to the first term
of Eq. (41). The second term (N0 + N1) /N0N1 in Eq. (41)
vanishes at Nλ → ∞ and is usually negligible in practice. The
errors from HMOD and BAR are thus expected to coincide
with each other at large enough N0 and N1.

E. Systematic error due to binning

The systematic error due to the binning, represented as
�f rest in Eq. (12), arises from the discretization of the con-
tinuous energy difference ε. �f rest depends on the number
of bins B and on the definition of bin “edges” e0, e1, . . . , eB

given by Eq. (4). Generally speaking, the systematic error is
larger if the probability distribution ρ0 (ε) and/or ρ1 (ε) is less
flat within the bin. More precisely, the error from the ith bin
is expressed as

�f rest
i � − 1

24
wi (ei − ei−1)2
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×
[(

∂ log ρ1 (ε)

∂ε

)2

ε=εi

−
(

∂ log ρ0 (ε)

∂ε

)2

ε=εi

]
,

(42)

�f rest =
B∑

i=1

�f rest
i . (43)

The derivation of Eq. (42) is described in Appendix A. Note
that although the systematic error will converge to zero with
the increase of the number of bins B, it does not vanish only
with the increase of the number of samples Nλ. The system-
atic error given by Eq. (42) is enhanced especially when ρλ (ε)
is “rough” in the sense that the relative variation of ρλ (ε)
within the bin is large.

III. RESULTS AND DISCUSSION

In this section, we test the free energy methods against
harmonic oscillator and biomolecules of ∼40 atoms. The re-
sults will be all shown in dimensionless form in accordance
with the developments in Sec. II.

A. One-dimensional harmonic oscillator

We examine the free energy difference of a pair of
one-dimensional harmonic oscillators, represented by
U = (x ± α/2)2. The two harmonics have different mini-
mum coordinates at x = ±α/2 and the free energy difference
is exactly 0. The statistical ensemble was generated by
the Box-Muller transform32 over the number of samples
Nλ = 100 000 for each of the two harmonic systems. The
free energy differences were computed for all the methods de-
scribed in Sec. II. For each numerical method, we performed
the simulation for 1000 times, to investigate the statistical
errors. When the free energy difference is calculated to be
�f (i) at the ith simulation, the statistical error is given by√√√√ 1

1000

1000∑
i=1

�f (i)2

since the exact value of the free energy difference is 0. The
OD, EROD, and HMOD methods used B = 100 bins, equally
partitioning the overlapping region of non-zero ρ0 (ε) and
ρ1 (ε). In the OD method, only the bins with more than 10
sample counts were used with Eq. (19). Yokogawa’s method
used 100 bins equally partitioning between the minimum and
maximum energies of non-zero ρ0 (ε) and ρ1 (ε).

The results are summarized in Fig. 1. In Fig. 1, LTI shows
the best convergence. The reason of LTI’s stability is that the
bias term in Eq. (8) vanishes in the present case. The HMOD
and BAR methods follow at the second in tie, presenting ac-
curate and robust estimation of the free energy. The EROD
method is also robust, although it has slightly larger error
when α ≥ 9. The Yokogawa value increases steeply with α as
the overlap becomes insufficient. The reason for this is con-
sidered to come from the treatment of low-counts region in
the histogram. The OD estimation has a large error even at

α
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FIG. 1. The standard error of the free energy estimation as a function of the
distance between the minima α of two harmonics. Note the log-scale of the
ordinate. The lines are drawn for eye guide. The HMOD and BAR values are
barely distinguishable from each other for all α. The EROD value is barely
distinguishable from the HMOD and BAR values when α ≤ 8, and is slightly
larger than them for α ≥ 9.

small α. This is due to the presence of low-counts bins. Outer
bins in the overlapping region of ρ0 (ε) and ρ1 (ε) have gen-
erally low sample counts, whereas even low-counts bins have
the same weights as the others and amplify the error, as shown
with Eqs. (24), (29), and (31).

We consider the effect of the number of bins B. Figure 2
represents the dependence of the statistical error on B, for
U = (x ± α/2)2 with α = 5. The abscissa of Fig. 2 is ex-
pressed in the form of N/B, which corresponds to the num-
ber of sample counts in each bin if the counts in the bins are
constant. LTI is removed from comparison as it is irrespec-
tive to the binning, while BAR is left in the figure for com-
parison. With enough number of samples in each bin (N/B

� 5 × 102), the errors of EROD and HMOD are smaller than
those of OD and Yokogawa’s methods, and are hardly distin-
guishable from that of BAR. Furthermore, HMOD remains
almost as accurate as BAR for any number of bins.

With the distribution-function based methods derived
from error minimization, therefore, the statistical error can
be made competitive to the state-of-art method. The mid-
point convention of εi , as specified in Eq. (16) and justified in
Appendix A, reduces the systematic error due to binning, fur-
thermore, which turns out to be inappreciable in practice.
EROD’s instability compared to HMOD’s for small N/B

is considered to be caused mainly from assigning non-zero
weights to the bins with nλi = 0 in EROD, since the error is
significant only when N/B is small.

B. Realistic chemical species

We examine the free energy differences of ATP (ATP4−;
adenosine 5′-triphosphate) and ADP (ADP3−; adenosine 5′-
diphosphate) ions between 300 K and a variety of tempera-
tures T K with T = 150 · (300/150)i/10 (i = 0, 1, . . . , 9). The
all-atom, classical force field parameters by Meagher et al.33

were used for ATP and ADP. The system was modeled as a
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FIG. 2. The dependence of the standard error on the number of bins B for a
pair of harmonics U = (x ± α/2)2 with α = 5. The abscissa is expressed in
the form of N/B with the number of samples N = Nλ = 100 000. N/B is
equal to the number of sample counts in each bin if the counts are constant.
LTI is removed from the comparison as it is unaffected by the number of bins.
Since BAR is unaffected by the number of bins, its result is represented as a
horizontal line without symbols. The lines for the other methods are drawn
for eye guide. Note the log scales of both axes. The HMOD data overlaps the
line for BAR when N/B ≥ 102.

single particle in vacuo, and the simulation was performed
with GROMACS 4.0 at double precision.34 The Langevin dy-
namics was employed at constant temperature with a time step
of 0.5 fs. The replica-exchange method35 was adopted to gen-
erate the ensembles at a set of temperatures ranging from 140
to 800 K with 16 replicas at an exchange interval of 1 ps. After
20 ns of equilibration, 10 independent runs of 400 ns molec-
ular dynamics simulation were performed to obtain the vari-
ance of the free energy difference. The potential energy was
recorded with 1 ps interval and used for the free energy analy-

sis. Thus, the number of samples is N0 = N1 = 400 000. We
used MBAR (Ref. 26) to calculate the accurate free energy
difference. All the methods presented in Sec. II were exam-
ined except for LTI, which is a biased estimator. The error
was calculated by√√√√ 1

10

10∑
i=1

(�f (i) − �fMBAR)2, (44)

where �f (i) is the free energy estimation from the ith run
by the examined method, and �fMBAR is the free energy dif-
ference estimated from MBAR. To obtain �f (i), the binning
strategies were set similarly to those in Sec. III A. The error of
�fMBAR is several times smaller than the others, and �fMBAR

is used as the reference for assessing the performance of the
methods in Sec. II. It should be noted for MBAR that a multi-
ple set of intermediate systems are explicitly handled to con-
nect the two systems of which the free energy difference is the
target of computation. In the methods in Sec. II, on the other
hand, inputs are needed only from the two systems of inter-
est. MBAR cannot thus be treated on an equal footing, and is
used only as the reference to evaluate the statistical error by
Eq. (44).

The results for ATP and ADP are shown in Fig. 3. The
number of bins B is B = 100 in Fig. 3, and the effect of the
B value is described in Appendix C. The EROD, HMOD, and
BAR methods exhibit excellent convergences for both ions.
The scheme of error minimization works well in practice for
distribution-function based method. The OD method shows
moderate error, however, the error does not drop even when
the temperature of system 0 increases and the difference be-
tween systems 0 and 1 diminishes. Such a behavior is also ob-
served in Fig. 1; even low-counts bins have the equal weights
in OD and amplify the error. The error in Yokogawa’s method
is the largest in Fig. 3 and is rather irregular. The cause of
this is considered to be outliers in the sampled potential en-
ergy, which are used to estimate the smoothed histogram ρ�
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FIG. 3. The standard error of the free energy difference between system 0 (variable temperature, abscissa) and system 1 (temperature set to 300 K) of (a) ATP
and (b) ADP. The data symbols are common in (a) and (b). Note the log-scale of the ordinate. The error was computed as the standard deviation from the
numerically exact value, which was obtained with the MBAR method (see main text for details). The lines are drawn for eye guide. The EROD, HMOD, and
BAR values are barely distinguishable among one another for both species.
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in Eq. (22). In the extrapolation scheme given by Eq. (22),
the presence of exponential coefficient may give rise to sig-
nificant numerical variation in ρ� and thus in �f when the
extrapolation is conducted over large change of ε. When the
system of interest is ATP or ADP, the ε range is significantly
larger than in the case of alanine dipeptide treated in Ref. 15.
Yokogawa’s method thus deteriorates when the domain of ex-
trapolation is extended, and may improve the accuracy when
combined with different extrapolation strategy.

In the developments of Sec. II, the number of samples
N refers actually to the number of statistically uncorrelated
samples. Configurations sampled from a molecular simula-
tion are correlated, on the other hand, if the sampling interval
is too short. A short interval reduces the effective number of
independent samples, and may increase the statistical error
when the total number of samples is fixed. To illustrate the
effect of sampling interval, we examined the error estimated
by Eq. (44) for the free energy difference between 196 and
300 K of the ATP system. The sampling interval was varied
at 0.1, 0.2, 0.5, 1.0, and 2.0 ps with the number of samples
fixed at 200 000 and the number of bins fixed at B = 100.
The free energy errors from the EROD, HMOD, and BAR
schemes were then 1 × 10−2, 9 × 10−3, 8 × 10−3, 1 × 10−2,
and 8 × 10−3, respectively, at the intervals examined. The er-
ror depends weakly on the sampling interval, and there is not
much gain from a large interval in the present case (note that
the computation time is determined by the sampling inter-
val multiplied by the number of samples, which is fixed at
200 000 here).

The free energy schemes in Secs. II C and II D do not
show optimal performances when the correlated samples are
used without any correction of the effect of statistical inter-
ference and N0 and N1 in Eqs. (28), (29), (32), (37), and (38)
refer to the numbers of snapshots read from simulations. An
unbiased estimator such as EROD, HMOD, and BAR pro-
vides a correct value at the limit of large sample size, however,
even when the sampling interval is too short and the correla-
tion persists. The only, possible effect of the uncorrected use
of N0 and N1 is a deteriorated rate of convergence.

IV. CONCLUSION

In the present work, we systematically analyzed several
schemes to calculate the free energy difference on the ba-
sis of distribution function. The statistical error due to finite
sampling was estimated, and improved schemes of free en-
ergy computation were derived through error minimization.
We then tested the free energy methods against harmonic os-
cillator and biomolecules of ∼40 atoms. The newly derived
methods exhibit clear improvement over the previously es-
tablished, overlapping distribution method and Yokogawa’s
method. Their performance is further seen to be comparable
to Bennett’s acceptance ratio method. Since the distribution
function has clear, physical meanings, its utility in accurate
and robust free energy calculation is desirable from both the
analytical and computational viewpoints.

The notion of error minimization is a mature yet use-
ful one for numerically determining physical quantities ac-
curately. The present work applies this notion to distribution-

function based approach to free energy computation. Within
the context of error minimization, in fact, the “error” is set
to the variance of estimated free energy difference. As far as
the measure of error is defined as the variance, no more im-
provement beyond the variance-minimized scheme is possi-
ble within that definition of error measure. Further improve-
ment and/or modification would then be possible by changing
the measure of error, for example, by incorporating some in-
formation of higher-order moments to strongly suppress low-
counts data.
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APPENDIX A: DERIVATION OF EQ. (42)

The ith bin is defined as ei−1 ≤ ε ≤ ei . The mid-point εi

and the bin width W are then expressed, respectively, as

εi = ei−1 + ei

2
, (A1)

W = ei − ei−1, (A2)

and the ith bin is rewritten as

εi − W/2 ≤ ε ≤ εi + W/2. (A3)

The systematic error term �f rest
i of the free energy dif-

ference contributed from the ith bin is given by taking
Eqs. (10) and (15) into Eq. (13) as

�f rest
i =

(∫ ei

ei−1

dε w (ε) (log ρ1 (ε) − log ρ0 (ε) + ε)

)
−wi (log ρ1i − log ρ0i + εi)

= wi�f − wi

[
log

(∫ εi+W/2

εi−W/2
ρ1 (ε) dε

)

− log

(∫ εi+W/2

εi−W/2
ρ0 (ε) dε

)
+ εi

]
. (A4)

We treat Eq. (A4) by approximating ρλ (ε) in quadratic
form as

ρλ (ε) � ρλi + aλi (ε − εi) + bλi

2
(ε − εi)

2 , (A5)

ρλi = ρλ (εi) , (A6)
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aλi =
(

∂ρλ (ε)

∂ε

)
ε=εi

, (A7)

bλi =
(

∂2ρλ (ε)

∂ε2

)
ε=εi

, (A8)

for εi − W/2 ≤ ε ≤ εi + W/2. Since Eq. (9) is valid for any
ε, ρλi and εi satisfy

log ρ1i − log ρ0i + εi = �f, (A9)

since ρ0i and ρ1i are the values at εi . With Eqs. (A5) and (A9),
Eq. (A4) reduces to

�f rest
i � wi

[
− log

(
1 + b1iW

2

24ρ1i

)
+ log

(
1 + b0iW

2

24ρ0i

)]
.

(A10)

The factor aλi vanishes in Eq. (A10) and �f rest
i is of O

(
W 2

)
since εi is set to the mid-point of the ith bin. If the representa-
tive value of the ith energy bin is not taken to be the mid-point
value εi , �f rest

i would be of O (W ). Thus, the mid-point con-
vention for εi adopted in the present work reduces the error
due to the bin width.

When we further assume bλiW
2 � ρλi , the dominant

term of �f rest
i is

�f rest
i � −wiW

2

24

(
b1i

ρ1i

− b0i

ρ0i

)
(A11)

= −wiW
2

24

[(
∂ log ρ1 (ε)

∂ε

)2

ε=εi

−
(

∂ log ρ0 (ε)

∂ε

)2

ε=εi

]
.

(A12)

From Eq. (A11) to Eq. (A12), we used the relations of

∂2 log ρ1 (ε)

∂ε2
− ∂2 log ρ0 (ε)

∂ε2
= ∂2 (log ρ1 (ε) − log ρ0 (ε))

∂ε2

= 0, (A13)

1

ρλ (ε)

∂2ρλ (ε)

∂ε2
= ∂2 log ρλ (ε)

∂ε2
+

(
∂ log ρλ (ε)

∂ε

)2

. (A14)

Equation (A13) holds by virtue of Eq. (9). �f rest
i treated in the

present Appendix is a systematic error, not a statistical error.
The total systematic error �f rest is thus given by the (linear)
sum of �f rest

i over i, as shown in Eq. (43).

APPENDIX B: DERIVATION OF EQS. (28) AND (29)

In this Appendix, we derive Eqs. (28) and (29) on the ba-
sis of the statistical error of observed count in the sampling of
the distribution functions. Using Bayesian statistics, we de-
rive the mean and variance of log ρ̃λi for the ith bin, namely
log ρλi and σ 2 (log ρλi) , respectively.

Let ρ◦
λi be the true probability of observing the energy

difference ε to fall into the ith bin (1 ≤ i ≤ B). The true prob-
ability is an idealistic one and can be obtained only from in-
finite number of sampling. In practice, the probability is esti-
mated from finite sampling expressed as a set of the count nλi

of the ε values falling into the ith bin. We denote the finite-
sample estimate as ρλi . ρλi in the present Appendix is dif-
ferent from ρλi of Eq. (17), which is obtained from infinite
sampling. This expression is adopted here only for the sake of
notational simplicity of the following equations. ρ◦

λi and ρλi

satisfy the normalization conditions given by

B∑
i=1

ρ◦
λi = 1, (B1)

B∑
i=1

ρλi = 1. (B2)

For notational convenience, we define the vectors of ρ◦
λ

= (ρ◦
λ1, ρ

◦
λ2, . . . , ρ

◦
λB ), ρλ = (ρλ1, ρλ2, . . . , ρλB ), and nλ

= (nλ1, nλ2, . . . , nλB ). Since different simulations performed
over finite period provide different ρλ, ρλ is stochastic and its
“probability distribution” is treated in the following.

Since a finite-length sampling inevitably contains statis-
tical errors, the true probability ρ◦

λ is unable to obtain directly
from simulation. We resort to Bayesian statistics and consider
the probability of ρ◦

λ = ρλ when the observed count in the ith
bin is nλi . According to Bayes rule,

Pr
(
ρ◦

λ = ρλ | bin counts = nλ

)
∝ Pr

(
bin counts = nλ | ρ◦

λ = ρλ

)
Pr

(
ρ◦

λ = ρλ

)
∝ ρ

nλ1
λ1 ρ

nλ2
λ2 . . . ρ

nλB

λB Pr
(
ρ◦

λ = ρλ

)
, (B3)

where Pr(X) is the probability that X occurs and Pr(X | Y ) is
the conditional probability that X occurs when Y occurs. The
second factor Pr(ρ◦

λ = ρλ) is called prior distribution, since it
corresponds to our prior knowledge on the system; if some
ρ◦

λi value is more plausible than others, this prior is set so
that Pr(ρ◦

λ = ρλ) is high around the corresponding ρ◦
λ. In the

present work, we assume that Pr(ρ◦
λ = ρλ) is constant over

0 ≤ ρλi ≤ 1 for each i, meaning that there are no biases in
the value of ρλi . The proportionality factor of Eq. (B3) can be
determined from∫

dρλ Pr
(
ρ◦

λ = ρλ | bin counts = nλ

) = 1. (B4)

Equation (B3) is then rewritten as

Pr
(
ρ◦

λ = ρλ | bin counts = nλ

) = Mult
(
ρλ | nλ

)
, (B5)
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where Mult
(
ρλ | nλ

)
is the multinomial distribution ex-

pressed as

Mult
(
ρλ | nλ

) = Nλ!

nλ1!nλ2! . . . nλB!

B∏
i=1

ρ
nλi

λi , (B6)

Nλ =
B∑

i=1

nλi. (B7)

Using Eq. (B6), the mean value log ρλi and the variance
σ 2(log ρλi) are estimated, respectively, as

log ρλi =
∫

dρλ (log ρλi) Mult
(
ρλ | nλ

)
, (B8)

σ 2 (log ρλi) =
∫

dρλ

(
log ρλi − log ρλi

)2
Mult

(
ρλ | nλ

)
.

(B9)

These integrations can be calculated as the moments of expo-
nential family distribution,36 yielding Eqs. (28) and (29).

In the Bayesian treatment, it is also a common practice to
use the Dirichlet distribution Pr(ρ◦

λ = ρλ) = Dir(ρλ | αλ) as
the prior. This is known as the conjugate prior of the multino-
mial distribution37 and is given by

Dir
(
ρλ | αλ

) =
�

(∑B
i=1 αλi

)
∏B

j=1 �
(
αλj

) B∏
k=1

ρ
αλk−1
λk , (B10)

where �(·) is the gamma function and αλ = (αλ1,

αλ2, . . . , αλB) is the set of parameters subject to the
Bayesian update. Setting αλ = 1 is equivalent to choosing
the uniform prior (constant Pr(ρ◦

λ = ρλ)), which is a non-
informative prior for the multinomial distribution37 and was
used to derive Eqs. (28) and (29). With the Dirichlet prior, the

equations corresponding to Eqs. (28) and (29) are derived as

log ρλi = ψ (nλi + αλi) − ψ

⎛⎝Nλ +
B∑

j=1

αλj

⎞⎠ , (B11)

σ 2 (log ρλi) = ψ ′ (nλi + αλi) − ψ ′

⎛⎝Nλ +
B∑

j=1

αλj

⎞⎠ ,

(B12)

where ψ (·) and ψ ′ (·) are the digamma and trigamma func-
tions, respectively, expressed as

ψ (x) = d

dx
log � (x) , (B13)

ψ ′ (x) = d2

dx2
log � (x) . (B14)

Since the prior distribution cannot be determined a priori, we
used the uniform prior in the present work for simplicity. In
fact, we tested the Dirichlet prior with αλi = 1 + 1/B, and
found that the errors of the free energy difference do not de-
viate appreciably (within ±1 %) from those from the uniform
prior.

APPENDIX C: FREE ENERGY DIFFERENCES OF ATP
AND ADP WITH VARIOUS NUMBERS OF BINS

The free energy differences of ATP and ADP ions be-
tween 300 K and a variety of temperatures were investigated
in Sec. III B using the number of bins B = 100. In this Ap-
pendix, we show the B dependence of the ATP and ADP re-
sults. The system setup and parameters are identical to those
in Sec. III B except for the number of bins. Figure 4 shows
the computed results of the standard errors at B = 500. The
error of HMOD is almost the same as the case of B = 100 for
both ATP and ADP. The error of EROD is larger than in Fig. 3
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FIG. 4. The standard error of the free energy difference between system 0 (variable temperature, abscissa) and system 1 (temperature set to 300 K) of (a) ATP
and (b) ADP. The number of bins is B = 500, and the other setups are identical to those in Fig. 3. The data symbols are common in (a) and (b). The lines are
drawn for eye guide. The HMOD and BAR are barely distinguishable from each other for both species.

Downloaded 17 Oct 2011 to 130.54.110.73. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



114108-10 S. Sakuraba and N. Matubayasi J. Chem. Phys. 135, 114108 (2011)

N/B

S
ta

nd
ar

d 
er

ro
r

102 103 104

10
−

3
10

−
2

10
−

1
10

0

(a) ATP 172 K  vs 300K

N/B

S
ta

nd
ar

d 
er

ro
r

102 103 104

10
−

3
10

−
2

10
−

1
10

0

(b) ADP 172 K  vs 300K

N/B

S
ta

nd
ar

d 
er

ro
r

102 103 104

10
−

3
10

−
2

10
−

1
10

0

(c) ATP 261 K  vs 300K
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FIG. 5. The dependence of the standard error on the number of bins B for the free energy differences of ATP and ADP between system 1 at 300 K and system 0
at two temperatures of 172 and 261 K. The abscissa is expressed in the form of N/B with the number of samples N = 400 000. The data symbols are common
in (a) to (d). Since BAR is unaffected by the number of bins, its result is represented as a horizontal line without symbols. The lines for the other methods are
drawn for eye guide. Note the log scale of both axes.

at all the temperatures, and the error of OD is slightly smaller
than in Fig. 3. These trends coincide with the results in Fig. 2,
where the OD error is susceptible to the number of bins and
the EROD gives larger error when B is larger.

The dependence on the number of bins B is presented
in Fig. 5 at two temperatures of system 0. The plot is shown
as a function of N/B, where N is the number of snapshots in
systems 0 and 1 and N = 400 000. The overall trends are sim-
ilar to those in Fig. 2. The HMOD shows a good agreement
with BAR at both 172 K and 261 K, whereas the EROD’s es-
timation becomes worse when N/B is small. The OD method
shows good agreement with BAR over limited N/B at 172 K.
The Yokogawa’s results are irregular also in Fig. 5, and agree
with BAR only in (d).
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