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Abstract—In this paper, we propose a novel approach for pri-
vate query; IPP (inner product predicate) method. Private query
is a query processing protocol to obtain requesting tuples without
exposing any information about what users request to third
persons including service providers. Existing works about private
query such as PIR, which ensure information theoretic safety,
have severe restriction because they do not support range queries
nor allow tuples having a same value in queried attributes. Our
IPP method, on the other hands, focuses range queries mainly
and it allows tuples having a same value in any attributes.
IPP method employs a query transform by trusted clients (QT)
scheme and proposes transformation algorithms which make the
correlation between plain queries and transformed queries and
the correlation between plain attribute values and transformed
attribute values small enough. Thus, the transformed queries and
attribute values have resistance to frequency analysis attacks
which implies IPP method prevents attackers, who know the
plain distribution of them, from computing the plain queries
and attribute values from transformed values. IPP method adds
perturbations to queries and attribute values and gives them a
matrix based encryption to achieve the above property. We also
confirm the computational cost on servers belongs to O(n) with
the number of tuples n and is virtually no correlation between the
distributions of transformed queries and queried attribute values
and the plain distributions of them by experimental evaluations.

I. INTRODUCTION

In Database as a Service (DaaS), security about data stored
in servers and privacy of users are two of the most important
topics discussed for a long time [1], [2]. Among them, there
is a requirement of users to obtain data without exposing
any information about what the users request to third persons
including service providers. This requirement is called private
query. One of the famous researches about private query is
known as PIR (Private Information Retrieval) [3]. In PIR,
a database server has n bits and the goal is to assure that
users are able to know the i-th bit value with keeping any
information about the requesting i information theoretical
secret.

However, this PIR does not allow two things which are
important to real applications; range queries and multi key. In
other words, most existing PIR work considers exact match
query and each index i associates with only one tuple. In this
paper, we propose a novel approach for private query, which
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Fig. 1. The QT scheme which IPP method employes.

is named IPP (inner-products predicate) method. It allows
range queries and tuples to have a same attribute value. Our
IPP method assumes that databases are constructed from two
attributes Key and V alue. Users request queries over the only
Key attribute. The domain of key attribute DK is lK bit natural
numbers. IPP method assumes database servers have tuples
which have the same Key attribute values. Queries of IPP
method is range queries i.e. users request tuples of which Key
attribute values are in a closed range [a, b](a ≤ b ∈ DK). In the
rest of this paper, we only discuss about the range queries but
exact match queries. However, exact match queries are special
cases of range queries (a = b). Therefore, any discussions
about range queries are applicable for exact match queries.

To achieve private query, IPP method employes a query
transform by trusted client (QT) scheme. Fig. 1 shows this
scheme. When an user adds a tuple (k, v), of which the Key
attribute value is k and the V alue attribute value is v, to a
database server, the trusted client of the user transforms k
to the secure Key attribute value TK(k) using an algorithm
TK. Then, the client sends the transformed tuple (TK(k), v)
to the server. When an user sends a plain query q to a database
server, the trusted client of the user transforms the plain query
q to the secure query TQ(q) using an algorithm TQ. Then,
the client sends the transformed query to the server. Note that
those algorithms TK and TQ were shared by all trusted clients
of users at the beginning.

The attack model which we consider in this paper is a
frequency analysis for the transformed queries and the trans-
formed Key attribute values. It means that the propose of
attackers is to obtain how many times each transformed query
is requested and how many tuples have a same transformed
Key attribute value. The frequency analysis enables attackers
who know the distributions of plain queries and Key attribute
values to compute the original values from transformed values.
On this QT scheme, IPP method proposes transformation algo-
rithms which make the distributions of transformed queries and



Key attribute values different from the original distributions
of the plain queries and Key attribute values. To ensure this
properties, IPP method adds perturbations to queries and Key
attribute values and then encrypts them. Perturbations are
random values added to prevent attackers from computing the
plain values, which are the distributions of plain queries and
Key attribute values. IPP method uses an encryption scheme
based on matrix algebra. Therefore, queries and key attribute
values are expressed by vectors and the query evaluation
process on servers is mapped to inner products.

II. RELATED WORK

Among many kinds of PIR work [4], the most related work
to our problem is cPIR (Computational Private Information
Retrieval) [5] which assumes only one database server and
ensures a private query based on complexity theory. As we
discussed in section I, basic cPIR approach does not support
range queries nor allow tuples have same Key attribute values.
cPIR requires O(n) computational cost on servers with the
total number of tuples n. bbPIR [6] is a weak cPIR protocol
which relaxes the security to reduce the computational cost on
servers. It brings the idea of k-anonymity [7] in cPIR. Clients
on bbPIR protocol sends a k-width bounding box containing
the index which the clients want to request. After that, the
clients and the server communicate with basic cPIR protocol
on the sub-database consists of tuples in the bounding box.
bbPIR is able to hide only which tuples in the k tuples the
clients exactly request but the computational cost on servers
is smaller than basic cPIR protocol.

For location-based services (LBS), there is a kind of private
range query using cPIR protocol [8]. In LBS, users request
some region to obtain points of interests (POIs) such as
restaurants, gas stations, etc. On the approach in [8], the 2-
dimensional space in the LBS is divided into n sub areas, in
such a way that each sub area has at most one POI. Clients
firstly compute the index of the sub area which contains the
really requesting region and then the clients request the index
using basic cPIR protocol. Therefore, this approach support a
limited range query and users cannot request flexible regions.

Some work about encrypted database (EDB) [2] is also
achieving weak private query. In the context of EDB, all
tuples on servers are encrypted and the main interest is how to
execute queries over the encrypted tuples. Therefore, queries
also do not contain plain values and in this meaning, EDB is
achieving a kind of private query. Bucketization described in
[2], [9] splits the domain of each attribute into some labeled
buckets and each attribute value is updated to the label of
which the bucket contains the plain value by clients. This
approach needs statistic information about the domains to
make each bucket have almost same number of tuples, and
re-builting buckets may be necessary after lots of new tuples
are inserted. [10] points a problem that attackers can obtain
some information about plain values by comparing the re-
builted buckets and old buckets. Order Preserving Encryption
Scheme (OPES) [11] provides range queries over EDB, i.e.
weak private range query, and needs statistic information

about domains. SCONEDB [12] provides a kind of private
query using a matrix based encryption. The main purpose of
SCONEDB is to achieve k-nearest neighbor (kNN) query over
encrypted vector databases. SCONEDB provides a querying
approach without decrypting encrypted vectors on servers.
Those approaches about EDB are able to hide plain values
from queries. However, in those approaches, queries which
request a same range are transformed to a same query for
EDB. It means those approach cannot protect the frequency
analysis attack so that attackers, who know the distribution
of plain queries, are able to compute the plain queries from
queries for EDBs. On the other hands, our IPP method adds
perturbations to queries in addition to matrix based encryption.
As a result, IPP method makes transformed queries associated
with a same plain query varied, so that it ensure to protect the
frequency analysis of attackers. Additionaly, IPP method does
not need any statistical information about domains so that IPP
method is also suitable to growing databases.

III. INNER PRODUCT PREDICAT METHOD

In this paper, we propose IPP method which is a new private
range query method i.e. it enables users to request tuples with-
out exposing their queries to third parties including servers.
On the QT scheme described section I, IPP method ensures
the distributions of transformed queries and transformed Key
attribute values are different from the distribution of plain
queries and plain Key attribute values. The assumptions for
IPP method are

• the database is constructed from Key and V alue at-
tributes,

• Key attribute has lK bit natural number domain DK ,
• users request tuples of which Key attribute values are in

closed ranges [a, b](a, b ∈ DK).
IPP method starts from a predicate query model. In this

model, clients send predicate functions p as queries to servers.
Database servers, on the other hand, search tuples of which
Key attribute value k satisfies p(k) = true and then return the
tuples to the clients. Our IPP method uses a kind of functions
p : DK → R, where R is the set of real numbers, as the
predicate functions and regards p(k) ≤ 0 as true so that
p(k) > 0 means false. For example, there is a simple predicate
function representing a range query k ∈ [a, b]:

pa,b(k) = (k − a)(k − b). (1)

This function obviously takes values below 0 if and only if k is
in the closed range [a, b]. IPP method adds perturbations to this
basic predicate pa,b and also adds them to each Key attribute
value k. In addition, IPP method encrypts predicate functions
and Key attribute values in order to make the distributions of
transformed queries and Key attribute values different from
ones of plain queries and plain Key attribute values.

A. Addition of perturbations

Perturbations for predicate functions are added to the kind of
basic predicate function pa,b defined by (1). The perturbations



d are ld bit natural numbers, where ld is a given security
parameter. The predicate function with the perturbation d is

pa,b,d(k) = (k − a)(k − b)(k + d).

From the assumptions, k, a, b, and d are all natural numbers.
Therefore, the above predicate function pa,b,d ≤ 0 if and only
if a ≤ k ≤ b. In other words, the predicate function will be
true for only tuples of which Key attribute value is in [a, b],
thus clients are able to obtain correct tuples.

The perturbations for Key attribute values are real numbers
δ which satisfy |δ| < 1/2. The perturbation-added value k̃δ of
a Key attribute value k is defined by k̃δ = k + δ. To handle
k̃δ correctly, the predicate functions pa,b,d are also arranged
as below;

p̃a,b,d(k) = (k − a+
1

2
)(k − b− 1

2
)(k + d). (2)

This function is calculated with k̃δ as follows;

p̃a,b,d(k̃δ) = (k + δ − a+
1

2
)(k + δ − b − 1

2
)(k + δ + d).

We assumed k, a, b, and d are all natural naumbers and
|δ| < 1/2, so that the above predicate function become true
i.e. p̃a,b,d(k̃δ) ≤ 0 if and only if a ≤ k ≤ b. It means
query processing by perturbation-added predicate functions
and perturbation-added Key attribute value will be calculated
correctly.

B. Encryption of queries and key attributes

IPP method uses an encryption scheme for plain Key at-
tribute values k and querying ranges [a, b] to prevent attackers
from obtaining them from perturbation-added Key attribute
values k̃δ and predicate functions p̃a,b,d. The encryption
scheme is based on matrix operations and allows servers to
handle the encrypted queries without decrypting them. In order
to apply this encryption scheme, we first express predicate
functions and Key attribute values as vectors.

Considering the perturbation-added predicate defined by (2),
we define the predicate vectors p̃a,b,d and key vectors k̃δ as
the followings;

p̃a,b,d =

⎛
⎜⎜⎝

1
−(a+ b− d)

(a− 1
2 )(b +

1
2 )− (a+ b)d

(a− 1
2 )(b +

1
2 )d

⎞
⎟⎟⎠ , (3)

k̃δ = (k̃3δ , k̃
2
δ , k̃

1
δ , 1)

t =
(
(k + δ)3, (k + δ)2, (k + δ), 1

)t
(4)

Using those vectors, the query processing on servers is to
find tuples of which the key vector satisfies <p̃a,b,d, k̃δ> ≤ 0.
This inner product is calculated by

<p̃a,b,d, k̃δ> = (k+δ−a+
1

2
)(k+δ−b− 1

2
)(k+δ+d). (5)

Thus, the condition <p̃a,b,d, k̃δ> ≤ 0 is same as (k+ δ−a+
1/2)(k+ δ− b− 1/2)(k+ δ+d) ≤ 0. Because |δ| < 1/2, this
condition is true if the key attribute value k is in the closed
range [a, b].

In the encryption scheme used IPP method, the encryption
key for predicate vectors is a four-dimensional regular-integer
matrix M i.e. M has an inversed matrix M−1 and every
elements are integer. The encryption key for key vectors is
DM = |det(M)|M−1, where det(M) means the determinant
of M . Because of the Cramer’s formula, this matrix DM

is also four-dimensional regular-integer matrix. Using these
matricies, we define the encryption procedure for predicate
vactors EPM (p) and for key vectors EKDM (k) as followings;

EPM (p) = rpM
tp, EKDM (k) = rkDMk,

where rp and rk are random natural numbers and they are set
different values each encryption time.

The query processing for those encrypted vectors is same as
for plain vectors and it is to find tuples of which the encrypted
key vector EKDM (k) satisfies <EPM (p̃a,b,d),EKDM (k̃δ)> ≤
0. This inner product is computed as

<EPM (p̃a,b,d),EKDM (k̃δ)> = rprk|det(M)|<p̃a,b,d, k̃δ>.

Because rprk|det(M)| > 0, the above inner product will be
below 0 if and only if a ≤ k ≤ b as we discussed about
(5).Thus, query processing for encrypted query vectors and
key vectors is handled in the way of anticipation without
decrypting them.

C. Integeration of vector elements

Each element of the predicate vectors and key vectors
defined by (3) and (4), respectively, is not an integer but a
real number. Therefore, servers compute the inner product
as operations for floating-point numbers and those operations
have rounding errors. As a result, the responses of queries
may have errors. In order to proof no results have errors,
IPP method makes the elements of predicate vectors and key
vectors integer and ensures the computation of servers has no
errors.

IPP method uses a linear approximate equation to make
elements of vectors integer. This approximation presumes

f(k + δ) � f(k) + δ
d

dk
f(k) (6)

for any polynomials f(x) in a condition δ/k is small enough.
In this section, we also proof the approximation does not bring
any errors to the computations of the inner product.

The greatest common divisor of the denominators of the
plain predicate vectors defined by (3) is 4. Therefore, to make
the elements of predicate vectors integer, multiplying 4 to all
elements is enough and the integer predicate vector p̂a,b,d is
defined as follows;

p̂a,b,d = 4p̃a,b,d =

⎛
⎜⎜⎝

4
−4(a+ b− d)

(2a− 1)(2b+ 1)− 4(a+ b)d
(2a− 1)(2b+ 1)d

⎞
⎟⎟⎠ . (7)

Since we assumed a, b, and d are integer, all elements of p̂a,b,d

are integer.
To make the elements of key vectors integer, we assume

δ/k is small enough in the plain key vector defined by (4). In



this assumption, we are able to apply the linear approximate
equation (6) to each element of key vectors;

k̃δ � (k3 + 3δk2, k2 + 2δk, k + δ, 1)t.

Let us φ be a natural number and δ = 1/φ, where φ is big
enough to satisfy |δ| = |1/φ| < 1/2. Since k is a natural
number, the greatest common divisor of the denominators of
the approximated key vector is φ. Therefore, we define the
integer key vector k̂1/φ by multiplying φ to the all elements;

k̂1/φ = φ(k3 + 3
1

φ
k2, k2 + 2

1

φ
k, k +

1

φ
, 1)t

= (φk3 + 3k2, φk2 + 2k, φk + 1, φ)t. (8)

Since k and φ are integer, the all elements of k̂1/φ are integer.
IPP method uses a linear approximate equation to make

the elements of key vector integer, therefore the integer key
vectors have errors. We proof those errors do not bring any
effects for the computation on servers. Let us think a function
g(k) = <k̂1/φ, p̂a,b,d> and the following four conditions;

g(a) ≤ 0, g(b) ≤ 0, g(a− 1) > 0, g(b+ 1) > 0.

If the above four conditions are satisfied, servers will handle
queries expectingly. Indeed, the four conditions are satisfied
with the assumptions; 0 < a ≤ b, 0 < d, and 0 < φ. Therefore,
the linear approximate equation does not bring any negative
effects for the query processing of servers.

D. Distributions of vector elements

The property of IPP method is to make the distributions of
transformed queries and Key attribute values different from
the distributions of plain queries and Key attribute values. In
this section, we argue the good way of choosing perturbations.

Considering the definition (7), the distributions of the
elements of the transformed predicate vector EPM (p̂a,b,d)
are dependent on abd. If we choose perturbations d from a
uniform random number generator Ru, the distribution of abd
is dependent on the distributions of a and b. It means the
distribution of transformed queries is dependent on the ones
of plain queries. Instead of Ru, we think to use an alternative
random number generator

Rd(a, b) = �Ru

ab
�. (9)

Choosing perturbation from this generator, abd is simplified
by

abRd(a, b) = ab�Ru

ab
� � Ru.

It means we can presume that the distribution of abd is
dependent on Ru and not dependent on the querying range a
and b. In other words, the distribution of queries is according
to a uniform random distribution.

Let us think about the transformed key vectors EKDM (k̂1/φ)
and (8). We can presume that each element of the key vectors
is dependent on φk3. Therefore, if we choose the perturbations
φ from the uniform random generator Ru, the distribution of
φk3 is dependent on the distribution of key attribute values

k strongly. To avoid the fact, we use an alternative random
generator

Rφ,α(k) = �Ru

kα
�. (10)

Choosing perturbations φ from the above generator,
Rφ,α(k)k

3 is computed as

Rφ,α(k)k
3 = �Ru

kα
�k3 � k3−αRu.

The parameter α controls how much the distribution of the
transformed key vectors is dependent on the distribution of
key attribute values k. For example, when α = 3, we can
presume that the distribution of key vectors is not dependent
on the distribution of key attribute values and according to a
uniform random distribution.

IV. SCHEME OF THE IPP METHOD

In this section, we summarize the scheme of IPP method.
Let us think to apply IPP method to a database server which
satisfies the assumptions of IPP method. At the first step,
administrators of this database generate an encryption key pair
(M,DM ). M is an encryption key for predicate vectors and a
four-dimensional regular-integer matrix. We assume it consists
of 16 lm bit random integers. DM is an encryption key for key
vectors and calculated from DM = |det(M)|M−1. Because of
the Cramer’s formula, each element of DM is a cofactor of
M and a determinant of three-dimensional matrix. It means
each element is a 3lm bit integer. The administrators share the
key pair to all trusted clients of users. When an user adds a
new tuple (k, v) which consists of Key attribute value k and
V alue attribute value v to the database, the trusted client of
the user transforms the Key attribute value k by the algorithm
TKDM ,Rφ

(k):
Require: DM is a encryption key, Rφ is a random generator

1: Generate a lφ bit random natural number φ by Rφ(k)
2: Compute the key vector k̂1/φ defined by (8)
3: Generate a lrk bit random natural number rk
4: Encrypt the key vector EKDM (k̂1/φ) (= rkD

t
M p̂a,b,d)

5: return EKDM (k̂1/φ)

Then, the client makes secure tuple (TKDM ,Rφ
(k), v) and

sends it to the database server.
When an user asks tuples of which Key attribute values

are in a closed range [a, b], the trusted client of the user
transforms the querying range to a secure query by the
algorithm TQM,Rd

(a, b):
Require: M is a encryption key, Rd is a random generator

1: Generate a ld bit random natural number d by Rd(a, b)
2: Compute the predicate vector p̂a,b,d defined by (7).
3: Generate a lrp bit random natural number rp
4: Encrypt the predicate vector EPM (p̂a,b,d) (= rpM

tp̂a,b,d)
5: return EPM (p̂a,b,d)

The client sends the translated and secure query TQM,Rd
(a, b)

to the server.
We estimate the necessary memory size of transformed key

attribute values and queries, and compare them to ones of



TABLE I
COMPARISON OF NECESSARY MEMORY SIZE.

Plain Transformed
Key attribute values lK 12lK + 4(lφ + 3lm + lrk)

Queries 2lK 8lK + 4(ld + lm + lrp)

plain key attribute values and queries. Let us think about
transformed key vectors rkD

t
M p̂a,b,d, first. rk is a lrk bit

integer and each element of encryption key DM is a 3lm
bit integer. The biggest element of p̂a,b,d is φk3 + 3k2 and
it is a lφ + 3lK bit integer. Considering them, each element
of transformed key vector needs lrk + 3lm + lφ + 3lK bits
and totally translated key vector needs four times of them
i.e. 12lK + 4(lφ + 3lm + lrk) bits. Next, let us think about
transformed predicate vectors rpM tp̂a,b,d. The perturbation d
is a ld bit integer and rp is a lrp bit integer. Each element
of encryption key M is assumed as lm bit integer. The
biggest element of p̂a,b,d is (2a − 1)(2b + 1)d and it is a
2lK+ld bit integer. Thus, each elements of transformed vector
needs 2lK + ld + lm + lrp bit and totally transformed vector
rpM

tp̂a,b,d requires 8lK+4(ld+ lm+ lrp) bits. Table I shows
the comparison of necessary memory size between plain values
and transformed values.

V. EXPERIMENTAL EVALUATIONS

In this section, we present two sets of experiments we
have conducted to evaluate: (i) the query processing time
is according to O(n) with the number of tuples n; (ii) the
correlations between distributions of plain queries and attribute
values and distributions of transformed queries and attribute
values, respectively is small enough. All programs are im-
plemented in Python (2.6.4). Experiments were performed on
one 2.66GHz processor virtual machine with 512MB running
on Virtual Box. We chose parameters of IPP method as
lK = lφ = lm = lrk = lrp = 32.

We first present an evaluation of query processing times.
We constructed six databases which had different sizes of
tuples and made a client request random one million queries to
each database. We wanted to reduce effects of communication
so that we run the database servers and the client on a
same computer. Fig. 2 shows the query processing times.
The vertical axis of the left(right) figure is described in the
normal (logarithm) scale, respectively. These figures shows if
the number of tuples becomes twice, the query processing time
also become twice, i.e. the query processing time is according
to O(n) with the number of tuples n.

We next present an evaluation about the correlations be-
tween distributions of plain queries and ones of transformed
queries. We made two sets of queries and each set con-
tained one thousand queries which requested [a, a+ 100](a :
1, 2, · · · , 1000). One of the two sets used a uniform random
generator Ru to the perturbations d and the other set used Rd

defined by (9). Fig. 3 shows the correlation diagram between
the left sides a of the plain queries and the first elements of
predicate vectors. We omit to describe the results about the
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TABLE II
CORRERATIONS BETWEEN PREDICATE VECTORS AND PLAIN QUERIES.

1st elem. 2nd elem. 3rd elem. 4th elem. norm

Ru 0.537092 0.536883 0.536790 0.536896 0.536907
Rd 0.014679 0.006242 0.002593 0.006774 0.006856

other elements of predicate vectors but they were similar to
the one about the first elements. Using Ru, smaller a leaded
smaller values in the predicate vectors so that the correlation
was big. On the other hands, bigger a leaded wide-range values
and the correlation was small. Using Rd, the first element
values of predicate vectors were distributed in wide range
without depending the plain values. It means the correlation
is small. Indeed, from Table II, which shows the correlations,
Rd had smaller correlations than Ru.

We finally present an evaluation about the correlation be-
tween distributions of the plain Key attribute values and
ones of key vectors. We made four sets of tuples. Each set
contained one thousand tuples of which Key attribute values
were 1 to 1 000. One set used uniform random ganerator
Ru to make the perturbations φ, and the others used Rφ,α

defined by (10). Fig. 4 shows the correlation between the
plain Key attribute values k and the first elements of the
key vectors associating with k. As same as about queries,
we omit to describe the results about the other elements of
key vectors but they were similar to the one about the first
elements. Table III shows the correlation for all elements
of key vectors. Using Ru and Rφ,2, the first elements of
the key vectors had some kind of correlation that smaller k
leaded transformed values of which the absolute values were
small and bigger k comparatively leaded transformed values of
which the absolute values were bigger. Indeed, in Table III, the
absolte values of both correlations were not small. Note that,
the reason why the correlations have negative values is because
the encryption key DM had some negative values. Using Rφ,3

and Rφ,4, the transformed values distributed almost uniformly.
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Fig. 4. Correlation diagram between key vectors and key attribute values.

TABLE III
CORRELATIONS BETWEEN KEY VECTORS AND PLAIN ATTRIBUTE VALUES.

1st elem. 2nd elem. 3rd elem. 4th elem. norm
Ru -0.739942 0.740338 0.739848 -0.739575 0.739876
Rφ,2 -0.654244 0.641542 0.657164 -0.665624 0.656257
Rφ,3 0.229862 -0.320270 -0.143313 -0.131806 -0.181528
Rφ,4 0.152775 -0.113652 -0.281633 -0.070735 -0.166220

The transformed values were not depend on the plain attribute
values. Table III also shows the correlations was small enough.

VI. CONCLUSION

In this paper, we propose a new private query approach,
IPP method, which supports range queries and allows tuples
have a same Key attribute value. IPP method is based on
a query transform by trusted query (QT) scheme in which
trusted clients of users transform queries and Key attribute
values to secure queries and Key attribute values. On this
QT scheme, IPP method provides a transformation algorithms
which adds perturbations to queries and Key attribute values
and encrypts them, so that it ensures the distributions of
transformed queries and Key attribute values to be different
from the ones of plain them. Finally, IPP method protects the
frequency analysis of attackers. IPP method provide the such
kind of private range query but it require more memorizing
cost and computational cost to servers than plain requesting
approaches. The memorizing costs for each query and each
Key attribute value are shown in table I. They needs four times
and 12 times as large as costs of plain them, respectively. The
computational cost belongs to, as same as basic PIR approach,
O(n) with the number of tuples n.

From the experimental evaluations, we confirmed the com-
putational cost on servers belongs to O(n) with the number
of tuples n. We also confirmed that the distributions of
transformed queries and Key attribute values and the ones

of plain them have almost no correlation if the perturbations
are according to the alternative random distributions which
we describe in section III-D. The fact means the distributions
of transformed queries and Key attribute values are different
from the ones of plain them.

We mainly argue about the Key attribute but V alue at-
tribute, in this paper. That is because we think to protect
V alue attribute values, which is not used to query process,
we are able to use existing encryption schemes. There is an
open problem that attackers may guess the plain queries and
Key attribute values by gathering and analyzing results of
queries. However, in general, each result of queries consists
from many tuples so that gathering the results needs much
more memorizing space. We think that it is also necessary to
argue about effectiveness of attacks for the results of querying.
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