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The authors have demonstrated white light emission of rare earth (RE)-free Mn-doped SnO-ZnO-P, 05 glass. The RE-
free glass shows white light emission with a high value of quantum efficiency (QE) comparable to conventional
crystalline phosphor. It is notable that the high QE value is attained for RE-free transparent glass, and the broad
emission can be continuously tuned by both the amount of activator and the composition of the glass. Since this
glass possesses low-melting property, we emphasize that the glass phosphor will lead to the development of a novel

inorganic white-light-emitting device in combination with a solid state UV light-emitting source.

Society of America
OCIS codes: 160.2750, 160.2540, 160.4670.

Currently, optical materials containing trivalent rare
earth (RE) cations have been widely used. These RE
cations possess a 4f-4f transition that is hardly affected
by the surrounding crystal field, which is characterized
by narrow band emission. The strong, sharp emission
of RE cation has also been used for white-emitting de-
vices, such as the three narrow emission band type of
white fluorescent lamp or the white LED [1]. However,
these devices consisting of sharp emission bands possess
lower color rendering than the conventional broadband
emission device. In addition, RE-free material is favor-
able from the viewpoint of the uneven distribution of
RE on earth. Since the study of phosphor has been sup-
ported by advances in LEDs [2-5], a novel phosphor for
next-generation LED will be required.

For these reasons, the authors have emphasized that
white light emission, constituted of various kinds of
wavelengths, can be attained by a RE-free phosphor,
for example Sb3t, Mn2*-doped calcium halophosphate
[6]. Although the emission of the phosphor generally pos-
sesses two broad emission bands, these emission bands
are inherently fixed because of the crystal structure [7].
On the other hand, if glass material without the RE cation
shows white light emission comparable to the crystalline
phosphor, it will be considered a novel emitting material
capable of much broader emission and good formability
that is quite important in the industrial manufacturing
process. In general, oxide glass has a great ability to in-
corporate various kinds of atoms; therefore, the coordi-
nation fields of the emission center and the resulting
emission color can be tuned. Such emitting material is
quite different from the conventional RE-doped crystal-
line phosphor.

In the study, we have focused on the ns?>-type emission
center as an activator. Since the ns?-type emission cen-
ters (néél) possess an electron in the outermost shell in
both the ground state (ns®) and the excited state
(ns'np'), the emission is strongly affected by the coordi-
nation field [1,8-11]. Therefore, this type of emission
center is suitable for amorphous glass, in which site
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distribution is much broader than that in crystal. Re-
cently, the authors of this study reported the highest
quantum efficiency (QE) for amorphous SnO-ZnO-P;05
low-melting glass [12]. It is notable that the transparent
glass containing no RE cation shows a high UV-excited
emission that is comparable to a crystal phosphor such
as MgWOy; further, this was the largest efficiency of glass
material without RE cation ever reported. The emission
is brought about by Sn?*, which is the most conventional
and harmless ns’-type center [13-16]. Moreover, the
emission property of the obtained glass remains un-
changed after heat treatment at forming temperature
regions, which indicates that the obtained glass is suita-
ble for low-melting glass that can be applied as the
sealing material of an LED [17,18]. Since the previous
glass showed broad blue emission [12], it is expected that
white light emission can be attained by the addition of
Mn2* cation, similar to the Sb?*, Mn2*-codoped calcium
halophosphate.

The present MnO-SnO-ZnO-P;0O5 glass was prepared
according to a conventional melt-quenching method that
employs a platinum crucible. Batches consisting of ZnO
and (NH,),HPO, were first heat treated at 300 °C for 1h
and 800 °C for 3 h to remove NH; and residual OH groups.
The heat-treated glass precursor was mixed with SnO
and MnO and then melted at 1100 °C for 30 min at ambi-
ent atmosphere. The glass melt was quenched on a steel
plate at 200 °C and then annealed at the glass transition
temperature, T, as measured by differential thermal ana-
lysis, for 1 h. The photoluminescent (PL) and PL excita-
tion (PLE) spectra were measured at room temperature
(r.t.). The emission decay at r.t. was measured using a
Quantaurus-Tau (Hamamatsu Photonics) with a 280 nm
LED. The absolute QE of the glass was measured using
an integrating sphere (Hamamatsu Photonics C9920-02)
at r.t. The QE was evaluated using the normalized QE
(NQE) that was obtained by normalization of practical
phosphor MgWO, excited by a wavelength of 254 nm.
The NQE was calculated using
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Table 1. Chemical Composition of the
MnO-SnO-ZnO-P,0; Glasses and the NQE*
Composition (mol. %) CCP

MnO SnO 7ZnO Py,O5 NQE (£1%) = y Color
000 25 575 40.0 0.84 022 026 [
0.10 25 575 40.0 0.99 023 027 [
025 25 575 40.0 0.93 0.25 028 []
050 25 575 40.0 0.95 0.28 030 []
070 25 575 40.0 0.90 031 031 []
1.00 25 575 400 0.91 034 032 [
2.00 25 575 40.0 0.97 042 034 []
025 25 625 35.0 0.87 0.25 0.26 []
025 25 600 375 0.91 0.25 026 [
025 25 550 425 0.99 025 029 []
050 25 625 35.0 0.90 0.29 0.28 [
050 25 600 375 0.94 0.28 028 []
050 25 550 425 0.98 0.28 030 [

“Their chromatic coordination positions (CCPs) and colors under
excitation (4.88 eV; 254 nm) are also shown.

NQE = P,AE,/P,AE,, (1)

where P, and P are the area intensity of glass and the
standard phosphor MgWO,, respectively, AE, is the ab-
sorption of MgWO, at 254 nm, and AE’g is the photon
number absorbed by the sample, which was obtained
by the difference between the area intensity of blank
E, and that of sample E;.

Table 1 shows the chemical composition of the ob-
tained glasses. These glasses were transparent and color-
less. The T'; of these glasses was less than 440 °C, as they
belong to the so-called “low-melting glass,” whose man-
ufacturing temperature is below 600°C. Figure 1 shows
the PL spectra of the xMnO-2.5Sn0-57.5Zn0-40P,05
glass excited by the photon energy of 4.88 eV (254 nm).
The value of x (mol. %) shows the additive amount of
MnO. The composition consists of MnO and the glass
composition that showed the maximum QE in the pre-
vious report [12]. These emission spectra consist of
two broad bands of the Sn’>" emission center (2.86 eV)
and Mn?* center [19] (2.05eV). It is expected that the
Sn2* center plays roles both in the emission center
and in the energy donor. The lifetimes (z/,) of the Sn
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Fig. 1. Correlation between PL intensity excited by 4.88 eV
and the amount of Mn in the xMnO-2.55n0-57.5Zn0-40P,05
glasses.
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emission (2.86eV) of the nondoped glass (x = 0) and
Mn-doped glass (x = 2.0) are 4.5us and 2.1 us, respec-
tively. The change can be explained by the energy trans-
fer using the Dexter’s theory [20]. Peak deconvolution
revealed that these two peaks showed little change in
the emission band and the half-width, indicating that lo-
cal coordination of Sn?t and Mn2* was hardly affected by
the concentration of MnO.

Figure 2 shows PL and PLE spectra of the
0.5MnO-2.5Sn0-yZnO-(97.5-y)P;05 glasses (y = 55.0,
57.5, 60.0, and 62.5). Although the concentrations of
the activators were equal in both glasses, the glass con-
taining the larger amount of ZnO exhibited a slightly nar-
rower PLE peak and a smaller Stokes shift. The observed
peak shift is due to the difference of coordination field of
the Sn?* emission center, and the emission band of Mn®*+
is almost independent of the composition. It clearly
shows that the ns?>-type Sn?>* emission center is affected
by the coordination field. The so-called theoretical basi-
city of the glass increases with increasing amounts of
ZnO [21]; it can thereby be said that the Stokes shift be-
comes smaller by increasing the optical basicity of the
glass. On the other hand, Duffy and Ingram [22] deter-
mined the optical basicity of the glass using the experi-
mentally measured peak frequency of the 1S, — 3P,
transition of T1*, Bi**, and Pb®*. Although they reported
no data concerning Sn>*, ns?-type Sn®* can also serve as
a probe for estimation of the basicity. The observed peak
shift indicates that optical basicity also increased quali-
tatively by the addition of ZnO. With an increasing
amount of ZnO, the PL peak was blueshifted to increase
the emission in the UV region. Thus, there was an in-
crease in the relative intensity of red color that was
attributed to the emission from Mn?*.

Figure 3 shows chromatic coordination mapping of the
SnO-ZnO-P, 05 glasses. The inset shows a photograph of
the glass phosphors (x = 0, 0.7, 2.0) with and without UV
light (2564nm). The NQE values and color coordination
position of the samples are shown in Table 1. It is notable
that these glasses show a high NQE value comparable to
that of practical MgWO,, whose QE value was reported
to be greater than 80%. This value enables us to confirm
the potential application of the present RE-free glass as
phosphor with a high NQE. On the other hand, it is also
noteworthy that the color coordination positions are
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Fig. 2. PL and PLE spectra of 0.5MnO-2.5SnO-yZnO-
(97.5-y)P,05 glasses.
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Fig. 3. Chromatic coordination mapping of the SnO-ZnO-P505
glasses excited by the photon energy of 4.88eV (254 nm).
Black circles: xMnO-2.5Sn0-57.5Zn0-40P;05. Green squares:
0.5Mn0O-2.5Sn0-(97.5-y)ZnO-yP,05. Blue triangles: 0.25MnO-
2.55n0-(97.5-2)Zn0O-2P505. Inset shows photograph of the glass
phosphors (x = 0, 0.7, 2.0) with and without UV light (254 nm).

continuously changed from blue to red with the addition
of MnO. In particular, several glasses satisfy the white
light emission condition without the RE cation. The emis-
sion from Sn?* in the glass showed the maximum PL
peak around 420 nm, which is about 60 nm shorter than
that of Sb?>*-doped calcium halophosphate, and therefore
no additional blue phosphor was needed to improve the
color rendering. This is also a notable advantage of the
present Sn?*-doped glass phosphor.

From the obtained results, it is suggested that the ba-
sicity of the glass affects both the emission center and the
following emission color. Since the basicity of oxide
glasses is tailored by a great variety of chemical compo-
sitions, the emission color is also controlled in a wide
range. The present results indicate that the Mn-doped
SnO-ZnO-P, 05 glass will be (1) a novel PL material that
does not contain an RE cation, which is a benefit for nat-
ural resources, (2) a candidate for conventional organic
sealant that is damaged by strong UV light, and (3) a
novel white LED in combination with deep-UV LED.
Although the present glass shows white light emission
that is similar to halo calcium phosphate crystal, there
are several large differences between the two. First, for
a greater number of emission centers, Sn?>* can be doped
in glass. Second, various kinds of elements can be added
to the glass to control the emission properties as well as
to improve the mechanical or thermal property. Third,
monolithic material can reduce optical loss due to scat-
tering at the interface. Moreover, transparent emission
material will meet novel industrial applications. Since or-
ganic material as well as an organic-inorganic hybrid
cannot be used for deep-UV light sources, inorganic

low-melting materials will be
applications.

RE cations generally exhibit a high QE value because
there is little influence of phonons. We have emphasized
that the present RE-free amorphous glass possesses high
QE values comparable to RE-doped crystalline phosphor,
although it shows a broad emission tunable by the local
coordination state. Although we have not yet clarified the
mechanism, the present ns-type center appears to be
very advantageous from the viewpoint of unique emis-
sion mechanisms in a random matrix: the coexistence
of high efficiency and broad emission. Recent develop-
ment of a deep-UV LED [5] clearly suggests a possibility
for Hg-free white fluorescent lamps in the near future.
RE-free inorganic amorphous materials possessing emis-
sion properties by excitation of a UV LED source will be
required for the novel practical optical device.

important in these
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