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We present a comprehensive study of primordial fluctuations generated from G inflation, in which the

inflaton Lagrangian is of the form Kð�;XÞ �Gð�;XÞh� with X ¼ �ð@�Þ2=2. The Lagrangian still

gives rise to second-order gravitational and scalar field equations, and thus offers a more generic class of

single-field inflation than ever studied, with a richer phenomenology. We compute the power spectrum and

the bispectrum, and clarify how the non-Gaussian amplitude depends upon parameters such as the sound

speed. In so doing we try to keep as great generality as possible, allowing for non slow-roll and deviation

from the exact scale invariance.
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I. INTRODUCTION

Cosmological inflation [1] is now a widely accepted
paradigm explaining the flatness, homogeneity, and iso-
tropy of the observed Universe. In the most common
scenario, inflation occurs when the inflaton, a scalar field
driving the accelerated expansion, rolls down a nearly flat
potential slowly. During this slow-roll stage fluctuations in
the inflaton field are generated quantum-mechanically and
stretched outside the Hubble horizon, which eventually
reenter the Hubble radius in a later epoch to be a seed for
the large-scale structure of the Universe. The detailed
shape of the potential can be probed by observing the
power spectrum of fluctuations in terms of the cosmic
microwave background anisotropies [2]. As to theoretical
approaches, much effort has been made to determine the
inflaton potential in the particle physics context. However,
single-field inflation with a canonical kinetic term and a
nearly flat potential is not the only option to induce the
accelerated expansion and to produce almost scale-
invariant perturbations with an appropriate amplitude.
Liberating inflation models from the standard assumption,
one may consider a variety of interesting scenarios:
multiple scalar fields might participate the inflationary
dynamics, the kinetic term of the inflaton(s) might be
noncanonical [3], and a scalar field other than the inflaton
might be responsible for the density perturbation [4]. From
a high-energy physics point of view, supersymmetric theo-
ries naturally provide many scalar fields with flat potentials
[5], and the Dirac–Born–Infeld (DBI)-type noncanonical

kinetic term naturally arises from D3-brane motion in a
warped compactification [6].
Different inflationary scenarios can be distinguished by

future and ongoing experiments such as Planck [7], aiming
to obtain better constraints on the amount of non-
Gaussianities in the primordial curvature perturbations as
well as on the spectral index ns, its running, and the tensor-
to-scalar ratio r. The standard canonical slow-roll inflation
models produce negligible non-Gaussianity [8], while ex-
otic inflationary scenarios are expected to predict measur-
able non-Gaussian signals. In the context of single-field
inflation, non-Gaussian perturbations have been computed
for the Lagrangian of the form [9,10]

L� ¼ Kð�;XÞ; (1)

where� is the inflaton and X :¼ �@��@��=2. This class

of models yields a sound speed cs different from the speed
of light in general, and large non-Gaussianity is generated
for cs � 1. A significant non-Gaussian signal together
with the confirmation of the consistency relation r ¼
�8csnT , where nT is the spectral index of primordial
tensor perturbations, is a smoking gun of the inflaton
Lagrangian (1).
In this paper, we consider a more general Lagrangian

[11,12]

L� ¼ Kð�;XÞ �Gð�;XÞh�; (2)

where K and G are some generic functions of the inflaton
� and X. The new term Gð�;XÞh� in the Lagrangian (2)
is inspired by the Galileon interaction [13,14] and reduces
to the one having the Galilean shift symmetry, @�� !
@��þ b�, in the Minkowski background in the case

G / X. One of the most important properties of the
Galileon Lagrangian is that the field equations do not
contain derivatives higher than 2. The interaction
Gð�;XÞh� is a generalization of the Galileon term
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Xh� while maintaining the second-order property. In this
sense, the Lagrangian (2) defines a more generic class of
single-field inflation than ever studied. Here, the Galilean
shift symmetry is abandoned in exchange for generality,
but one should note that the symmetry does not make sense
already upon covariantization for any interaction that is
Galilean invariant in the flat background.1 (The name
‘‘Galileon’’ is therefore no longer appropriate when cova-
riantized.) Cosmological applications of the Galileon in-
teraction can be found in [15] with emphasis on dark
energy and modified gravity. Primordial inflation based
on the generic Lagrangian (2) was first proposed very
recently by [12,16], and is dubbed G inflation. Almost
simultaneously the same Lagrangian was used to explain
the late-time cosmic acceleration rather than the primordial
one [11,17]. In [18,19] the effective-field-theory approach
[20] was employed to see the consequences of imposing
the approximate Galilean shift symmetry on the
Lagrangian of primordial perturbations. Interestingly, the
scalar field theory with the Gh� term can violate the null
energy condition stably. This fact motivates the authors of
Refs. [21,22] to propose a radical scenario of the earliest
Universe alternative to inflation. Some specific form of the
above type of interaction arises from a probe brane action
in higher dimensions [23] and from the Kaluza-Klein
reduction of Lovelock gravity [24,25]. A supersymmetric
completion of Galileons is explored in [26].

The purpose of the present paper is to understand the
nature of cosmological perturbations generated from G
inflation. We rederive the power spectrum and the tilt of
the spectrum without assuming slow roll, clarifying how
the (approximate) scale invariance is achieved in G infla-
tion. We then calculate the cubic action for the curvature
perturbation and evaluate the full non-Gaussian amplitude,
again without assuming slow roll and the exact scale
invariance. Throughout the paper we try to make our
formulas as general as possible, which we hope maximizes
the usefulness of the results. Recently, non-Gaussianity
from G inflation was calculated neglecting a number of
terms working in the de Sitter limit [27] and in the slow-
roll limit [28]. See also a recent work by Naruko and
Sasaki, in which the superhorizon evolution of the
nonlinear curvature perturbation from G inflation is ad-
dressed [29].

This paper is organized as follows. In the next section we
review the basic properties of G inflation and derive the

power spectrum of the curvature perturbation. In Sec. III
we compute the cubic action for the curvature perturbation
to evaluate the three-point function in G inflation.

II. G INFLATION

We start with a brief review on the basics of G inflation
[12,16]. The scalar field Lagrangian forG inflation is given
by Eq. (2). Assuming that � is minimally coupled to
gravity, the total action we are going to study is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �M2
pl

2
RþL�

�
: (3)

In the following we will set MPl ¼ 1. The energy-
momentum tensor T�� of the scalar field is given by

T�� ¼ KXr��r��þ Kg�� � 2rð�Gr�Þ�

þ g��r�Gr���GXh�r��r��: (4)

Here and hereafter we use the notation KX for @K=@X etc.
Varying the action with respect to �, we obtain the scalar
field equation of motion,

KXh�� KXXðr�r��Þðr��r��Þ
� 2K�XX þ K� � 2ðG� �G�XXÞh�

þGX½ðr�r��Þðr�r��Þ � ðh�Þ2 þ R��r��r���
þ 2G�Xðr�r��Þðr��r��Þ þ 2G��X

�GXXðr�r��� g��h�Þðr�r��Þr��r�� ¼ 0;

(5)

which is of course equivalent to the conservation equation
r�T�

� ¼ 0. One verifies from Eqs. (4) and (5) that the

gravitational and scalar field equations are indeed of sec-
ond order.
Higher order Galileon terms (with a �-dependent coef-

ficient) such as fð�ÞX½2hð�Þ2�2r�r��r�r��þRX�
can be added to the scalar field Lagrangian while keeping
the field equations of second order. Although the effect of
such higher order Galileons might be interesting in the
context of primordial inflation, we leave the issue for future
study and concentrate on the Lagrangian of the form (2) in
the present paper.

A. The background equations

Let us consider homogeneous and isotropic background:

ds2 ¼ �dt2 þ a2ðtÞdx2; � ¼ �ðtÞ: (6)

Although the energy-momentum tensor (4) cannot be re-
cast in a perfect-fluid form in general [11], for the above
cosmological ansatz it takes the desirable form T�

� ¼
diagð��; p; p; pÞ with

� ¼ 2KXX � K þ 3HGX
_�3 � 2G�X; (7)

1Concerning this point, one may worry about the naturalness
of G-inflation models discussed in the present paper because
there is no symmetry to protect the Lagrangian. However, it
should be noted that symmetry, if present, must be broken at
least to end inflation. We therefore will not provide a symmetry-
based argument but rather take a phenomenological approach,
assuming that some UV complete theory would give the (in
some sense fine-tuned) Lagrangian that leads to second-order
field equations.
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p ¼ K � 2ðG� þGX
€�ÞX: (8)

The gravitational field equations are thus

3H2 ¼ �; (9)

� 3H2 � 2 _H ¼ p; (10)

and the scalar field equation of motion is given by

KXð €�þ 3H _�Þ þ 2KXXX €�þ 2KX�X� K�

� 2ðG� �GX�XÞð €�þ 3H _�Þ þ 6GX½ðHXÞ: þ 3H2X�
� 4GX�X €�� 2G��X þ 6HGXXX _X ¼ 0: (11)

If, for example, K is given by the standard, canonical
kinetic term with a potential, K ¼ X � Vð�Þ, one can
consider an inflationary scenario in which the energy den-
sity is dominated by the potential as in the standard case,
while the dynamics of the scalar field is modified by the
Gh� term, changing the potential that � effectively feels.
This is the scenario proposed in [16] and called potential
driven G inflation. Another possible scenario is that infla-
tion is driven by �’s kinetic energy which is kept almost
constant with a nontrivial functional form of K and G. In
models with the exact shift symmetry, � ! �þ c, i.e.,
K ¼ KðXÞ and G ¼ GðXÞ, it is easy to obtain an exactly

de Sitter background satisfying H ¼ const and _� ¼ const.
This may be regarded as a generalization of k inflation [3],
and we call the class of models kinematically driven G
inflation [12]. Deferring the summary of these two specific
classes of G inflation to Sec. II C, we now move on to
describe the general properties of the power spectrum of
primordial perturbations from G inflation.

B. Power spectrum

In this section we derive a series of general formulas for
linear cosmological perturbations without assuming any
specific form of K and G. We work in the unitary gauge,
�ðt;xÞ ¼ �ðtÞ.2 Using the remaining gauge degree of free-
dom the linearly perturbed metric is taken to be

ds2 ¼ �ð1þ 2�1Þdt2 þ 2a2@i�1dtdx
i þ a2ð1þ 2RÞdx2:

(12)

Expanding the action to second order in perturbations and
then varying with respect to �1 and �1, we obtain the
following constraint equations:

_R ¼ ��1; (13)

@2

a2
ðRþ a2��1Þ ¼ XG�1; (14)

where @2 :¼ �ij@i@j,

� :¼ H � _�XGX; (15)

G :¼KXþ2XKXXþ6GXH _�þ6G2
XX

2�2ðG�þXG�XÞ
þ6GXXHX _�: (16)

Substituting the constraints (13) and (14) to the action, we
arrive at the quadratic action for R [11,12]:

S2 ¼
Z

dtd3xa3	

�
1

c2s
_R2 � 1

a2
ð@RÞ2

�
; (17)

where

c2s :¼ F
G

; (18)

	 :¼ XF
�2

; (19)

and

F :¼ KX þ 2GXð €�þ 2H _�Þ � 2G2
XX

2 þ 2GXXX €�

� 2ðG� � XG�XÞ: (20)

One can verify that setting Gð�;XÞ ¼ 0 the quadratic
action (17) reproduces the expression obtained for k
inflation [30]. It is useful to notice that 	 can also be
expressed as

	 ¼ �
_�

�2
þ

_�XGX

�
: (21)

Let us define three parameters that characterize the rate
of change of three background quantities:


 :¼ � _H

H2
; s :¼ _cs

Hcs
; � :¼ _	

H	
: (22)

In this paper we assume that

_


H

’ 0;

_s

Hs
’ 0;

_�

H�
’ 0; (23)

but we do not neglect 
, s, and �. (In the next section,
however, we will assume some stronger conditions to
evaluate the bispectrum.) It should be noted, in particular,
that 	 is not necessarily small, in contrast to the usual (k)
inflation models in which 	 is degenerate, i.e., 	 ¼ 
 < 1
[30]. Even in the slow-roll limit we may have 	 * 1 in G
inflation.
Under the assumption that the parameters defined in (22)

are constant (but not necessarily very small), it is straight-
forward to solve the equation of motion derived from the
action (17) and compute the power spectrum of R [12].
For this purpose it is convenient to define a new time

2The unitary gauge does not coincide with the comoving
gauge, �Ti

0 ¼ 0, in the case of G inflation [12]. This fact stems
from the imperfect-fluid nature of the energy-momentum
tensor (4).
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coordinate y by dy ¼ csdt=a [31]. In terms of y, the scale
factor, the sound speed, and 	 are written as

a ¼ cs�ðy=y�Þ�1=ð1�
�sÞ

ð�y�ÞH�ð1� 
� sÞ ;

cs ¼ cs�ðy=y�Þ�s=ð1�
�sÞ;

	 ¼ 	�ðy=y�Þ��=ð1�
�sÞ;

(24)

where the quantities with � are those evaluated at some
reference time y ¼ y�. Using a new variable u :¼ ~zRwith

~z :¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2	=cs

p
, the equation of motion can be written in the

Fourier space as

u00k þ
�
k2 � ~z00

~z

�
uk ¼ 0; (25)

where the prime denotes differentiation with respect to y,
and we find

~z / ð�yÞ1=2�q;

~z00

~z
¼ q2 � 1=4

y2
; with q :¼ 3� 
� 2sþ �

2ð1� 
� sÞ : (26)

The normalized mode solution to Eq. (25) corresponding to
the Minkowski vacuum in the high frequency limit is then
given in terms of the Hankel function by

uk ¼
ffiffiffiffi
�

p
2

ffiffiffiffiffiffiffi�y
p

Hð1Þ
q ð�kyÞ: (27)

We thus write the operator R using the creation and
annihilation modes as

R ðk; yÞ ¼ c ðk; yÞâk þ c �ð�k; yÞây�k; (28)

c ðk; yÞ ¼ ukðyÞ
~z

; (29)

with the commutation relation ½âk; âyk0 � ¼ ð2�Þ3�
�ð3Þðk� k0Þ. This immediately leads to the power spec-
trum [12],

PR ¼ k3

2�2

��������
uk
~z

��������
2

¼ 22q�3

��������
�ðqÞ
�ð3=2Þ

��������
2ð1� 
� sÞ2

4�2

H2

2	cs

��������ky¼�1
:

(30)

The scalar spectral index is found to be

ns � 1 ¼ 3� 2q ¼ � 2
þ sþ �

1� 
� s
: (31)

The above formula has been derived without assuming the
smallness of 
, s, and �, though we have assumed that they
are constant. In this sense, the above expression is more
general than that given in [12,16,27,28]. To ensure the
scale invariance we require 2
þ sþ � ’ 0. However,

this does not force each parameter to be as small as
Oðns � 1Þ; each can be large, 
, s, � � Oðns � 1Þ, but
the three may cancel each other out to produce an almost
scale-invariant spectrum. This possibility was first pointed
out by [31] in the less generic context of DBI inflation, for
which 	 ¼ 
 and consequently � ¼ 0. We leave this in-
teresting possibility open, and will complete the following
calculation without taking the slow-roll limit. We would
stress again that even if we consider the slow-roll limit,	 is
not necessarily slow-roll suppressed.
Since the inflaton field is minimally coupled to gravity,

the nature of tensor perturbations is the same as the stan-
dard one and is dependent only on the geometrical quantity
H ¼ HðtÞ. In the slow-roll limit, 
 ¼ 0, the tensor power
spectrum is given by P h ¼ 8ðH=2�Þ2. The tensor-to-
scalar ratio r is thus given by

r ¼ 16	cs; (32)

where just for simplicity the scalar power spectrum is
evaluated also in the slow-roll limit, 
 ¼ s ¼ � ¼ 0.
For later convenience we introduce the following

quantity:

� :¼
_�XGX

H
; (33)

or, equivalently, � ¼ Hð1� �Þ. From Eq. (21) we obtain

	 ¼ _�

Hð1� �Þ2 þ
�

1� �
þ 


1� �
: (34)

For 
 ¼ const, s ¼ const, and � ¼ const, the above equa-
tion can be integrated to yield

H

�
¼ 1

1� �ðyÞ ¼
1

1þ 

þ 	ðyÞ

1þ 
þ �

þ
�

1

1� ��
� 1

1þ 

� 	�

1þ 
þ �

�
ðy=y�Þð1þ
Þ=ð1�
�sÞ:

(35)

If we assume � ¼ const then we have 	 ¼ const. In this
case the two quantities are related as

� ¼ 	� 


1þ 	
: (36)

Note in passing that the opposite is not in general true: for
	 ¼ const Eq. (34) still admits time-dependent �.

C. G inflation examples

1. Kinematically driven G inflation

Inflation can be driven by kinetic energy of �. This
possibility was explored in [12]. Let us consider for
simplicity the Lagrangian with exact shift symmetry
� ! �þ c, i.e.,

K ¼ KðXÞ; G ¼ GðXÞ; (37)
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and look for an exact de Sitter background satisfying

H ¼ const and _� ¼ const. It follows from the field equa-
tions that

3H2 ¼ �K; (38)

KX þ 3GXH _� ¼ 0: (39)

For this background we have

F ¼ � K

3X
�ð1� �Þ; (40)

G ¼ �K

X
�

�
1þ �� 2

XKXX

KX

þ 2
XGXX

GX

�
; (41)

	 ¼ �

1� �
; (42)

where � ¼ _�XGX=H ¼ XKX=K ¼ const. In evaluating
the above equations we used the background Eqs. (38) and
(39).

The concrete toy model presented in [12] is given by

K ¼ �X þ X2

2M3�
; G ¼ X

M3
; (43)

where M and � are parameters. In this case, cs and 	 can
be expressed in terms of �. It turns out that the tensor-to-
scalar ratio r ¼ 16	cs ¼ 16	csð	Þ is an increasing func-
tion of 	, and 	 ’ � � 1 is required in order for r not to
exceed the observationally allowed value. Explicitly, one

finds r ’ ð8= ffiffiffi
3

p Þ	3=2 ’ ð16 ffiffiffi
6

p
=3Þð ffiffiffi

3
p

�Þ3=2 [12].
Note, however, that � � 1 is not necessary to get a

stable, prolonged de Sitter phase. As already emphasized
above,	 * 1 is made possible by a suitable choice ofKðXÞ
and GðXÞ, provided that r ¼ 16	cs remains not too large.
In [27] Mizuno and Koyama have studied the case with
	 ’ � � 1 focusing their attention on the model (43). In
contrast, the analysis in the present paper can apply to more
general cases with 	 * 1.

In the presence of exact shift symmetry, the exact
de Sitter solution is an attractor. Along this attractor the
scalar fluctuations acquire an exactly scale-invariant spec-
trum. Making K and/or G weakly dependent on �, one
obtains a quasi-de Sitter attractor and thereby the spectrum
can be tilted. Though we do not provide corresponding
concrete examples here, more generic, possibly compli-
cated, choices of Kð�;XÞ and Gð�;XÞ would lead to the
interesting situation mentioned above: ns � 1 � 1 with 
,
s, � � Oðns � 1Þ.

2. Potential driven G inflation

In [16] a novel class of inflation models was proposed in
which the energy density is dominated by�’s potential but
its dynamics is nontrivial due to the Gh� term. In par-
ticular, it was shown that slow-roll inflation can proceed

even if the potential is too steep to support standard slow-
roll inflation. The model examined in [16] is described by

K ¼ X � Vð�Þ; G ¼ �gð�ÞX: (44)

For gV� � 1, the effect of theGh� term dominates in the

slow-roll equation of motion for �, and the potential is
effectively flattened, leading to slow-roll G inflation. In
this regime one finds

	 ’ 4

3

 and c2s ’ 2

3
: (45)

Though 	 could be free from the slow-roll constraint in
principle, in the present case it is actually related to 
 in a
way different from standard slow-roll inflation. Since
c2s ’ const, the scale-invariant spectrum requires that

 � 1, and hence 	 � 1.

III. BISPECTRUM

In order to evaluate the bispectrum, we compute the
cubic action for R working in the Arnowitt-Deser-
Misner (ADM) formalism [8–10],

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; (46)

where

hij ¼ a2ðtÞe2R�ij;

N ¼ 1þ �1 þ �2 þ � � � ;
Ni ¼ a2@ið�1 þ �2 þ � � �Þ þ ~N1i þ � � � ;

(47)

with @i ~Nni ¼ 0. Here, �n and �n are OðRnÞ. The fluctua-
tion of the scalar field vanishes in this gauge. At linear
order the above metric reduces to Eq. (12).
As pointed out in [8], we only need to consider first-

order perturbations in N and Ni to get the cubic action.
(This holds true even in the presence of the Gh� term.)
Therefore, it suffices to use the first-order solution of the
constraint equations, Eqs. (13) and (14), supplemented
with a vanishing first-order vector perturbation, ~N1i ¼ 0.
We plug the solution for �1 and �1 into the action and

expand it to third order in R. After cumbersome multiple
integrations by parts, one ends up with

S3 ¼
Z

dt3xa3
�
C1
H

_R3 þ C2R _R2 þ C3
a4H2

@2Rð@RÞ2

þ C4
a2H2

_R2@2Rþ C5HR2 _Rþ C6
a4H

@2Rð@R � @�Þ

þ C7
a4

@2Rð@�Þ2 þ C8
a2

Rð@RÞ2

þ C9
a2

_Rð@R � @�Þ þ 2

a3
fðRÞ �L

�R

��������1

�
; (48)

where � :¼ @�2� with

� :¼ a2

�2
XG _R ¼ a2	

c2s
_R: (49)
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The dimensionless coefficients are given by

C1 ¼ �H

�

	

c2s

�
1þ 2

I
G

�
� 2 _�XðGX þ XGXXÞ H	

c2s�
2

þ H2	

c4s�
2
; (50)

C 2 ¼ 	

c2s

�
3� H2

c2s�
2

�
3þ 
þ 2 _�

H�

��
; (51)

C3 ¼ �H2 _�XGX

�3
; (52)

C4 ¼ 2H2 _�XðGX þ XGXXÞ
�3

; (53)

C5 ¼ 	

2c2sH

d

dt

�
H2�

c2s�
2

�
; (54)

C6 ¼ 2H _�XGX

�2
; (55)

C7 ¼ 	

4
�

_�XGX

�
; (56)

C8 ¼ �	þH2

�2

	

c2s

�
1� 
� 2s� 2 _�

H�

�
; (57)

C9 ¼ 	

c2s

�
� 2H

�
þ 	

2

�
; (58)

where

I :¼ XKXX þ 2X2

3
KXXX þH _�GX þ 6X2G2

X

þ 5H _�XGXX þ 6X3GXGXX þ 2H _�X2GXXX

� 2X

3
ð2G�X þ XG�XXÞ: (59)

The last term is the field equation which follows from the
quadratic action,

�L

�R

��������1
¼ a

�
d�

dt
þH�� 	@2R

�
; (60)

multiplied by

fðRÞ ¼ H _	

4c2s�
2	

R2 þ H

c2s�
2
R _R

þ 1

4a2�2
½�ð@RÞ2 þ @�2@i@jð@iR@jRÞ�

þ 1

2a2�
½@� � @R� @�2@i@jð@iR@j�Þ�: (61)

In deriving the above cubic action we have not performed
any slow-roll expansion, so that we have kept full

generality up to here. Taking the limitG ! 0,� ! H, and
	 ! 
, we can verify that the above equations reproduce
the previous result derived for generic k-inflation models,
L� ¼ Kð�;XÞ [9,10]. In particular, the C3, C4, and C6
terms are absent in that case. The C5 term is clearly a
higher order term so that we will neglect it in the following.
Employing the in-in formalism, the 3-point function can

be computed from the following formula:

hRk1
Rk2

Rk3
i

¼�i
Z t

t0

dt0h½Rðk1;tÞRðk2; tÞRðk3;tÞ;Hintðt0Þ�i; (62)

where t0 is some early time when the fluctuation is well
inside the horizon, t is a time several e-foldings after the
horizon exit, and the interaction Hamiltonian is given by

HintðtÞ ¼ �
Z

d3xa3
�
C1
H

_R3 þ C2R _R2 þ � � �
�
: (63)

We use Eqs. (27) and (28) to evaluate each contribution,
which can be conventionally expressed as

hRk1
Rk2

Rk3
i ¼ ð2�Þ7�ð3Þðk1 þ k2 þ k3ÞP 2

R

A
k31k

3
2k

3
3

;

(64)

A ¼ X
M

AM: (65)

The power spectrum PR here is to be calculated for the
mode with kt ¼ k1 þ k2 þ k3.
To proceed, we assume that � ¼ const, which holds in a

wide class of G-inflation models as described in Sec. II C.
We then immediately see that 	 ¼ const, and C3, C6, and
C7 are all constant in time as well. The coefficients are
explicitly given by

C3 ¼ �ð1þ 	Þ2ð	� 
Þ
ð1þ 
Þ3 ;

C6 ¼ 2ð1þ 	Þð	� 
Þ
ð1þ 
Þ2 ;

C7 ¼ 4
� 	ð3� 
Þ
4ð1þ 
Þ :

(66)

In order to evaluate the contributions from the _R3 (C1) and
_R2@2R (C4) terms, we further assume that I=G and
_�X2GXX=H are of the form

I
G

¼ J 1 þ J 2

c2s
; (67)

_�X2GXX

H
¼ %1 þ %2

c2s
; (68)

where J 1, J 2, %1, and %2 are constants. In kinematically
driven G inflation [12], we indeed have I=G ¼ const and
_�X2GXX=H ¼ const in the de Sitter limit. In potential
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driven G inflation [16] I=G ’ const and GXX ¼ 0.
Therefore, the assumptions made here are sufficiently gen-
eral and reasonable. It then follows that C1 and C4 take the
form

C1 ¼ D1

c2s
þ E1

c4s
; (69)

C4 ¼ D4 þ E4

c2s
; (70)

where D1, E1, D4, and E4 are constant and are given by

D1 ¼ �	ð1þ 	Þ
1þ 


�
1þ 2J 1 þ 2

	� 
þ ð1þ 	Þ%1

1þ 


�
;

(71)

E1 ¼ �	ð1þ 	Þ
1þ 


�
2J 2 � 1þ 	

1þ 

ð1� 2%2Þ

�
; (72)

D 4 ¼ 2
ð1þ 	Þ3
ð1þ 
Þ3

�
	� 


1þ 	
þ %1

�
; (73)

E4 ¼ 2
ð1þ 	Þ3
ð1þ 
Þ3 %2: (74)

Each contribution can now be evaluated as

A 1 ¼ 3

2	
ð1� 
� sÞ

��������
�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

�
�
D1I1ðns � 1Þ þ E1

c2s�
I1ðq0Þ

�
; (75)

A2 ¼ 1

4

��������
�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

�
�
3I2ðns � 1Þ � 3� 


c2s�

�
1þ 	

1þ 


�
2
I2ðq0Þ

�
; (76)

A3 ¼ 1

2

C3
	c2s�

ð1� 
� sÞ2
��������

�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

I3ðq0Þ;

(77)

A4 ¼ 3

	
ð1� 
� sÞ2

��������
�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

�
�
D4I4ðns � 1Þ þ E4

c2s�
I4ðq0Þ

�
; (78)

A 6 ¼ C6
8c2s�

ð1� 
� sÞ
��������

�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

I6ðq0Þ;
(79)

A 7 ¼ C7
4

	

c2s�

��������
�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

I7ðq0Þ; (80)

A8¼1

8

��������
�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

�
�
�I8ðns�1Þþ1þ
�2s

c2s�

�
1þ	

1þ


�
2
I8ðq0Þ

�
; (81)

A 9 ¼ C9�
8

��������
�ðqÞ
�ð3=2Þ

��������
2
�
k1k2k3
2k3t

�
ns�1

I9ðq0Þ; (82)

where cs� and C9� are evaluated at sound horizon crossing,
kty ¼ �1, and

q0 :¼ s� 2


1� 
� s
: (83)

The k-dependent functions IM are given by

I1ðzÞ :¼ k21k
2
2k

2
3

k3t
cos

�
�z

2

�
�ð3þ zÞ

2
; (84)

I2ðzÞ :¼ cos

�
�z

2

��
2þ z

kt

X
i>j

k2i k
2
j �

1þ z

k2t

X
i�j

k2i k
3
j

�
�ð1þ zÞ;

(85)

I3ðzÞ :¼ ðk1 �k2Þk23
kt

cos

�
�z

2

�
2þ z

2

�
�ð1þ zÞþ�ð2þ zÞ

�
�
k1k2 þ k2k3 þ k3k1

k2t
þð3þ zÞk1k2k3

k3t

��
þ sym:;

(86)

I4ðzÞ :¼ k21k
2
2k

2
3

k3t
cos

�
�z

2

� ð6þ zÞ�ð3þ zÞ
12

; (87)

I6ðzÞ :¼ ðk1 �k2Þk23
kt

cos

�
�z

2

��
ð3þ zÞ�ð1þ zÞ

þ ð3þ zÞ�ð2þ zÞk3
kt
��ð3þ zÞk

2
3

k2t

�
þ sym:; (88)

I7ðzÞ :¼ ðk1 � k2Þk23
kt

cos

�
�z

2

��
�ð1þ zÞ þ �ð2þ zÞ k3

kt

�

þ sym:; (89)

I8ðzÞ :¼ cos

�
�z

2

��X
i

k2i

��
kt

1� z
� 1

kt

X
i>j

kikj

� 1þ z

k2t
k1k2k3

�
�ð1þ zÞ; (90)

I9ðzÞ :¼ ðk1 � k2Þk23
kt

cos

�
�z

2

��
ð3þ zÞ�ð1þ zÞ

� �ð2þ zÞ k3
kt

�
þ sym: (91)
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In computing the above we have used the approximation

c ðk;yÞ’ ffiffiffi
2

p
�P 1=2

R ðktÞkq�3=2
t k�qð1þikyÞe�iky; jkyj�1:

(92)

One can check that by setting 	 ! 
 the above equations
reproduce the result of [32]. The field redefinition
R ! Rn þ fðRnÞ gives rise to the non-Gaussian ampli-
tude proportional to �, which can be ignored in the present
approximation.

The shapes ofA3ð1;k2;k3Þ=k2k3 andA6ð1;k2;k3Þ=k2k3
are very similar to the equilateral one, as was already

pointed out by [27]. The contributions from _R3 (C1) and

_R2@2R (C4) give the same momentum dependence be-
cause the two terms are essentially equivalent after using
the first-order equation of motion.
The size of the three-point correlation function is con-

ventionally parameterized by fNL defined as

fNL ¼ 30
Ak1¼k2¼k3

k3t
; (93)

which can be computed straightforwardly by evaluating the
amplitude A at k1 ¼ k2 ¼ k3 ¼ kt=3. The exact expres-
sion for fNL is given by

fNL ¼ 30

��������
�ðqÞ
�ð3=2Þ

��������
2
�
1

54

�
ns�1

�
3ð1� 
� sÞ

2	

�
D1I

equi
1 ðns � 1Þ þ E1

c2s�
Iequi1 ðq0Þ

�
þ 3ð1� 
� sÞ2

	

�
D4

ns þ 5

6
Iequi1 ðns � 1Þ

þ E4

c2s�

6þ q0

6
Iequi1 ðq0Þ

�
þ 3

4
Iequi2 ðns � 1Þ þ 1

4c2s�

�
3	2

8
� 	� 


2ð1þ 
Þ �
1þ	

1þ 


�
	þ ð3� 
Þ1þ	

1þ 


��
Iequi2 ðq0Þ

� ð1� 
� sÞ2
2	c2s�

ð1þ	Þ2ð	� 
Þ
ð1þ 
Þ3 Iequi3 ðq0Þ þ 3

8ðns � 2Þ I
equi
6 ðns � 1Þ þ 1� 
� s

8c2s�

1þ	

1þ 


�
3
1þ	

1þ 

þ 2

	� 


1þ 


�
Iequi6 ðq0Þ

�
;

(94)

where we have defined I
equi
M ðzÞ :¼ k�3

t IMðzÞjk1¼k2¼k3 , i.e.,

Iequi1 ðzÞ :¼ cos

�
�z

2

�
�ð3þ zÞ
1458

; (95)

I
equi
2 ðzÞ :¼ cos

�
�z

2

� ð4þ zÞ�ð1þ zÞ
81

; (96)

Iequi3 ðzÞ :¼ cos

�
�z

2

� ð2þ zÞð39þ 13zþ z2Þ�ð1þ zÞ
2916

;

(97)

I
equi
6 ðzÞ :¼ cos

�
�z

2

� ð17þ 9zþ z2Þ�ð1þ zÞ
243

; (98)

and used the fact that I
equi
4 ðzÞ ¼ ð1þ z=6ÞIequi1 ðzÞ,

I
equi
7 ðzÞ ¼ I

equi
2 ðzÞ=2, I

equi
8 ðzÞ ¼ 3I

equi
6 ðzÞ=ð1� zÞ, and

I
equi
9 ðzÞ ¼ I

equi
2 ðzÞ to shorten the expression. The above

generic formula is involved, but an order of estimate of
fNL is found to be

fNL ¼ O
�
~	2

c2s

�
þO

�
~	2 XGXX

GX

�
þO

�
~	
I
G

�
;

~	 :¼ maxf1; 	g: (99)

This is one of the main results of the present paper.
The sound speed at horizon crossing can be written in

terms of kt as c
2
s� / ks=ð1�
�sÞ

t . Under our assumptions we
see that fNL can be expressed as fNL ¼ f1 þ f2=c

2
s�, where

f1 and f2 depend on 
, s, 	, D1;4, and E1;4, but are

independent of kt. Therefore, the wave number dependence

of fNL appears only through c2s�, so that the tilt nNG is
given by

nNG � 1 ¼ � f2c
�2
s�

f1 þ f2c
�2
s�

2s

1� 
� s
: (100)

If 
, s � 1 and the main contribution to fNL is due to a
small sound speed, then we recover the result of [10],
nNG � 1 ’ �2s, even in the presence of the Gh� term.
We close this section by illustrating several examples

of non-Gaussian shapes Að1; k2=k1; k3=k1Þðk2=k1Þ�1 �
ðk3=k1Þ�1 in G inflation. First, let us consider the
de Sitter limit of kinematically driven G inflation. The
functions K and G may be written as

K ¼ �X þ c1X
2 þ c2X

3 þ � � � ;

G ¼ X

M3
þ d2X

2 þ d3X
3 þ � � � ;

(101)

where ci, di, and M are arbitrary in principle. Given

� ¼ _�XGX=H and % ¼ _�X2GXX=H, the former is related
to XKX=K through the background equations, which in
turn fixes the value of 	. The latter is related to c2s , but
since the expression for c2s contains both of the second
derivatives KXX and GXX, c

2
s can be chosen independently

of %. Third derivatives KXXX and GXXX appear only in the
function I . In summary, in the case of kinematically driven
G inflation, the non-Gaussian amplitude in the de Sitter
limit is completely determined by the four parameters

	; cs; %;
I
G
: (102)
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The four parameters can be written in terms of ci, di, and
M, but in practice the expressions are quite involved. We
plot in Figs. 1–3 the shapes of non-Gaussianity for differ-
ent parameters.

Another example of the non-Gaussian shapes we
explicitly compute is given by potential driven G inflation
[16] in the slow-roll approximation. In this case we have
	 ’ 4
=3, c2s ’ 2=3, � ’ Hð1� 
=3Þ, and

I ¼ �gH _�þ 6g2X2 þ 4

3
Xg� ’ 1

6
G: (103)

The contributions relevant at leading order in slow roll are

A1 ’ 1

4
I1ð0Þ; A2 ’ � 3

8
I2ð0Þ; A3 ’ � 3

16
I3ð0Þ;

A4 ’ 3

2
I4ð0Þ; A8 ’ 1

16
I8ð0Þ: (104)

FIG. 1 (color online). The non-Gaussian amplitude
Að1; k2=k1; k3=k1Þðk2=k1Þ�1ðk3=k1Þ�1 as a function of k2=k1
and k3=k1 for kinematicallly driven G inflation. The amplitude
is normalized to unity at an equilateral configuration, k2=k1 ¼
k3=k1 ¼ 1. The parameters are given by 	 ¼ 0:36, cs ¼ 0:03,
% ¼ 1, and I=G ¼ 1, so that r ’ 0:17. The size of non-
Gaussianity is fNL ’ 210.

FIG. 2 (color online). The non-Gaussian amplitude
Að1; k2=k1; k3=k1Þðk2=k1Þ�1ðk3=k1Þ�1 as a function of k2=k1
and k3=k1 for kinematicallly driven G inflation. The amplitude
is normalized to unity at an equilateral configuration, k2=k1 ¼
k3=k1 ¼ 1. The parameters are given by 	 ¼ 0:1, cs ¼ 0:1, % ¼
60, and I=G ¼ 1. The size of non-Gaussianity is fNL ’ 204.

FIG. 3 (color online). The non-Gaussian amplitude
Að1; k2=k1; k3=k1Þðk2=k1Þ�1ðk3=k1Þ�1 as a function of k2=k1
and k3=k1 for kinematicallly driven G inflation. The amplitude
is normalized to unity at an equilateral configuration, k2=k1 ¼
k3=k1 ¼ 1. The parameters are given by 	 ¼ 0:1, cs ¼ 0:1,
% ¼ 1, and I=G ¼ 300. In this case the shape peaks in the
folded configuration k1 ¼ 2k2 ¼ 2k3.

FIG. 4 (color online). The non-Gaussian amplitude
Að1; k2=k1; k3=k1Þðk2=k1Þ�1ðk3=k1Þ�1 as a function of k2=k1
and k3=k1 for potential driven G inflation. The amplitude is
normalized to unity at an equilateral configuration, k2=k1 ¼
k3=k1 ¼ 1. The size of non-Gaussianity is fNL ¼ 235=3888 ’
0:06.
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More explicitly, the non-Gaussian amplitude is given by

A ¼ 7

4

k21k
2
2k

2
3

k3t
� 3

8

�
2

kt

X
i>j

k2i k
2
j �

1

k2t

X
i�j

k2i k
3
j

�

� 3

16

�
1

2kt

X
i

k4i �
1

kt

X
i>j

k2i k
2
j

�

�
�
1þ 1

k2t

X
i>j

kikj þ 3
k1k2k3
k3t

�

þ 1

16
kt

�X
i

k2i

��
1� 1

k2t

X
i>j

kikj � k1k2k3
k3t

�
; (105)

which is plotted in Fig. 4. Taking the equilateral limit, the
size of non-Gaussianity is found to be fNL ¼ 235=3888 ’
0:06. The above result is insensitive to the inflaton
potential.

IV. CONCLUSION

In this paper, we have studied G inflation, i.e., generic
single-field inflation obtained from the Lagrangian (2). We
have revisited the power spectrum and the spectral index to
clarify how the (approximate) scale invariance can be
achieved in this class of inflation models and determined

the possible non-Gaussian amplitude without assuming
slow roll and the exact scale invariance. The nonlinearity
parameter fNL in G inflation can be summarized schemati-
cally as

fNL ¼ O
�
~	2

2

�
þO

�
~	2 XGXX

GX

�
þO

�
~	
I
G

�
;

~	 :¼ maxf1; 	g:
(106)

It should be emphasized that we have in principle no
dynamical constraints that require 	 to be very small.
If the first term dominates and 	 * 1, then we have
fNL � 	2=c2s . Therefore, large fNL and large r ¼ 16	cs
are compatible. The situation should be contrasted with the
models without the Gh� term, for which 	 ¼ 
 follows,
and hence large fNLð�1=c2sÞ implies small r.
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