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Abstract

We introduce a deformation of the Wess–Zumino–Novikov–Witten model with three-
dimensional squashed sphere target space. We show how with an appropriate choice
of Wess–Zumino and boundary terms it is possible to construct an infinite family of
conserved charges realizing an SU(2) Yangian. Finally we discuss the running of the
squashing parameter under renormalization group flow.



1 Introduction

In 1978, Lüscher and Pohlmeyer found that the O(N) non-linear sigma model in two
dimensions has a hidden infinite-dimensional symmetry [1] (for related work, see [2, 3] and
the comprehensive textbook [4]). This symmetry received a mathematical formulation in
the work of Drinfel’d [5], who called it Yangian. A similar construction can be extended
to non-linear sigma models on symmetric spaces where it is again possible to construct an
infinite number of non-local charges which realize a Yangian. An important point to note
here is that a flat conserved current exists always from which an infinite number of non-local
charges can be generated, for example by following the treatment in [6]. Since AdS spaces
and round spheres are symmetric spaces, the same argument can be used in the AdS/CFT
correspondence [7] as pointed out in [8, 9] and extensively discussed in [10], where a list of
symmetric spaces with potential AdS/CFT application is given.

While the symmetric cases have been studied intensively and are well understood,
finding hidden infinite-dimensional symmetries for non-symmetric cosets is still an open
problem. These are of physical interest and have been intensively studied in recent years.
Typical examples are the Schrödinger and Lifshitz spacetimes [11–14] that appear in ap-
plications of the AdS/CFT correspondence to condensed matter physics. Other examples
of non-symmetric cosets are three-dimensional squashed spheres and warped AdS spaces.
In topologically massive gravity [15] for example, warped AdS spaces appear as classical
solutions [16]. They also appear as the near-horizon geometry of the extremal Kerr black
hole [17, 18], and play an important role in the Kerr/CFT correspondence [18]. In addition,
squashed spheres and warped AdS spaces appear in string theory contexts such as deforma-
tions of heterotic string backgrounds [19–24], T–dualities of some string backgrounds [25],
as well as in relation to condensed matter system [26].

Recently, it has been shown that the Yangian symmetry is preserved in a non-linear
sigma model on a three-dimensional squashed sphere [27]:

ds2 =
L2

4

[
dθ2 + cos2 θ dφ2 + (1 + C) (dψ + sin θ dφ)2

]
. (1.1)

This geometry is a deformation of a three-dimensional round sphere S3, where the constant
parameter C measures how much the original round sphere is squashed. The round sphere
is realized for C = 0 and its isometry is SO(4) = SU(2)L × SU(2)R . For C 6= 0, the isometry
is reduced to SU(2)L ×U(1)R . Recall that the presence of a flat conserved current is crucial
for the realization of the Yangian symmetry. In the case discussed in [27] it has been shown
that the flat conserved current can be constructed by improving the Noether current only
for C ≥ 0. On the other hand, the positivity of C might seem strange since the preferred
range of C is −1 ≤ C ≤ 0 in physical setups such as the deformation of the heterotic string
background discussed in [19]. Also in the recent T–duality argument on how to realize a
Yangian symmetry with a squashed sphere target space [28], the range of C is naturally
restricted to −1 ≤ C ≤ 0 . It is therefore an interesting question to consider how the Yangian
symmetry can be realized in this range.
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Here we argue that a Wess–Zumino (wz) term should be added to the sigma model
action. The theory with the wz term can be called the squashed Wess–Zumino–Novikov–
Witten (wznw) model. Our main result is that for an appropriate choice of the normalization
of the wz term (which is constrained by dimensionality ad quantum consistency) and adding
a boundary term it is in general possible to construct a flat conserved current. This is
equivalent to saying that the Yangian algebra can be realized even for −1 ≤ C ≤ 0 .

This letter is organized as follows. In Section 2 we introduce the action of the wznw

model on a three-dimensional squashed sphere. Then we show that a flat conserved current
can be constructed i) for a certain value of the coefficient of the wz term and ii) for general
values by improving the Noether current. In Section 3 the Yangian algebra is computed with
the standard Poisson bracket. In Section 4 the renormalization group flow is discussed by
computing one-loop β-functions. Section 5 is devoted to conclusion and discussion.

2 The flatness condition for the squashed wznw model

Consider the action of a two-dimensional sigma model with squashed sphere target space:

Sσm = − 1
2λ2

∫∫
dtdx

[
(∂µθ)2 + cos2 θ (∂µφ)2 + (1 + C)(∂µψ + sin θ ∂µφ)2] . (2.1)

The base space is a two-dimensional Minkowski spacetime with coordinates xµ = (t, x) and
metric ηµν = (−1,+1) . The parameter λ2 is the bare coupling constant.

It is convenient to introduce the SU(2)L group element

g = eφT1eθT2eψT3 , g ∈ SU(2)L , (2.2)

where the SU(2)L generators TA (A = 1, 2, 3) satisfy the relations

[TA, TB] = ε C
AB TC , Tr(TATB) = −

1
2

δAB , (2.3)

where ε C
AB is the anti-symmetric tensor. By using the left-invariant current Jµ on SU(2)L

given by
Jµ = g−1∂µg , (2.4)

the sigma model action is rewritten as

Sσm =
1

λ2

∫∫
dtdx ηµν

[
Tr(Jµ Jν)− 2C Tr

(
T3 Jµ

)
Tr (T3 Jν)

]
. (2.5)

Next let us introduce the Wess-Zumino (wz) term,

Swz ≡
n

12π

∫ 1

0
ds
∫∫

dtdx εµ̂ν̂ρ̂ Tr(Jµ̂
s J ν̂

s J ρ̂
s ) (n ∈ Z) , (2.6)

where n is an integer. It is given by a three-form defined on a fictitious three-dimensional
base space with coordinates xµ̂ = (xµ, s) . The anti-symmetric tensor εµ̂ν̂ρ̂ is normalized as
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εtxs = +1 . The coordinate s describes an interval, s ∈ [0, 1] . The variable g(xµ, s) ≡ gs(xµ)

interpolates between the unit element and g(x), i.e. g0(x) = 1 and g1(x) = g(x) . The current
Jµ̂
s is defined as Jµ̂

s ≡ g−1
s ∂µ̂gs .

Note that the wz term is the same as in the usual wznw model because of dimensionality
and quantum consistency. In terms of the angle variables, the integrand of the wz term is
proportional to the volume form,

εµ̂ν̂ρ̂ Tr(Jµ̂
s J ν̂

s J ρ̂
s )dt dx ds ∝ εµ̂ν̂ρ̂ cos θs ∂µ̂φs ∂ν̂θs ∂ρ̂ψs dt dx ds . (2.7)

This is simply due to dimensionality. The target space is now three-dimensional and so the
three-form to define the wz term must be proportional to the volume form. Thus the form
of the wz term is essentially fixed by the dimensionality in the present case, up to an overall
constant. This constant has to be discretized in the standard way. At the end of the day, the
wz term turns out to be exactly the same as in the SU(2) wznw model.

The model described by the sum of Sσm and Swz can be called the squashed Wess–
Zumino–Novikov–Witten (wznw) model. The resulting action is given by

SSq = Sσm + Swz , (2.8)

Sσm =
1

λ2

∫∫
dtdx ηµν

[
Tr(Jµ Jν)− 2C Tr

(
T3 Jµ

)
Tr (T3 Jν)

]
, (2.9)

Swz =
n

12π

∫ 1

0
ds
∫∫

dtdx εµ̂ν̂ρ̂ Tr
(

Jµ̂
s J ν̂

s J ρ̂
s

)
, (n ∈ Z) . (2.10)

The corresponding equations of motion have the form

∂µ Jµ − 2C Tr(T3∂µ Jµ)T3 + 2C Tr(T3 Jµ)[T3, Jµ]−
K
2

εµν[Jµ, Jν] = 0 , (2.11)

where Jµ = ηµν Jν and

K ≡ nλ2

8π
. (2.12)

Note that C = 0, K = 1 is the fixed point for the standard wznw model.

For C 6= 0, the Lagrangian has SU(2)L ×U(1)R symmetry. For the SU(2)L part, the
Noether current jµ is given by

jµ = ∂µg · g−1 − 2C Tr(T3 Jµ) gT3g−1 − K εµν ∂νg · g−1 . (2.13)

In terms of the current, the equations of motion take the form

g−1∂µ jµg = 0 , (2.14)

or, equivalently
d ∗ j = 0 . (2.15)
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This shows that as usual, the Noether current is defined up to the Hodge dual of an exact
1-form. Hence we can add an improvement term Iµ:

jµ 7→ jµ + Iµ ; Iµ ≡ A εµν∂ν f , (2.16)

where A is an arbitrary constant and f a scalar function. As pointed out in [27], the function
f must have the form

f = g T3 g−1 (2.17)

in order to satisfy the flatness condition. This improvement term corresponds to a boundary
term of the form

Sbdry =
A
λ2

∫
dtdx εµν∂µ Jν

3 . (2.18)

The resulting improved current j̃µ depends on the three parameters C, K and A and is
given by

j̃µ = jµ + Iµ = ∂µg · g−1 − 2C Tr(T3 Jµ) gT3g−1 − K εµν ∂νg · g−1 + A εµν∂ν(gT3g−1) . (2.19)

In order to define an infinite family of conserved charges we require the improved
current j̃ to be flat. Because of the SU(2) symmetry, the flatness condition reduces to a single
condition on the three parameters:

εµν(∂µ j̃ν − j̃µ j̃ν) =
(

C− CK2

1 + C
− A2

)
εµν Tr(T3[Jµ, Jν])gT3g−1 = 0 . (2.20)

It is interesting to consider separately the two cases A = 0 and A 6= 0, with and without
the improvement term:

1. For A = 0, supposing that C ≥ −1 , we obtain the condition

C = K2 − 1 . (2.21)

Thus, as opposed to the case without a wz term [27], a flat conserved current can
be constructed even for negative values of C. This condition is reminiscent of the
one discussed in [19], but it is not exactly the same since the model at hand is not
conformal.

2. For A 6= 0, it is possible to construct a flat conserved current if A is taken to be

A2 = C
(

1− K2

1 + C

)
. (2.22)

In this expression we have to restrict the range of C to C > −1 . Since K is non-
vanishing, a negative value of C is possible. The equation is of second order in C and
can be solved algebraically. The solutions are given by

C±A (λ) =
1
2

[
A2 − 1 + K2 ±

√
4A2 + (A2 − 1 + K2)2

]
. (2.23)

In the following we will keep the three constant parameters C , K and A , but assume
either of the above conditions to be satisfied. When referring to the current, we will always
mean the improved current and omit the tilde for simplicity.
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3 The Yangian algebra

So far we have constructed a flat conserved current for SU(2)L by imposing appropriate
conditions on the parameters. Given this, it is always possible to construct an infinite number
of non-local conserved charges by following the prescription in [6]. For example, the Noether
charge QA

(0) and the first non-local charge QA
(1) are given by

QA
(0) ≡

∫
dx jA

t (x) , (3.1)

QA
(1) ≡ −

∫
dx jA

x (x) +
1
4

∫∫
dxdy ε(x− y) ε A

BC jB
t (x)jC

t (y) , (3.2)

where

ε(x− y) =

{
+1 if x > y

−1 if x < y.
(3.3)

The conservation law for QA
(1) is a consequence of the flatness condition.

The Poisson brackets of the charges can be found via the current algebra. Imposing
the flatness condition in Eq. (2.22), the currents form an algebra in terms of the standard
Poisson bracket for the dynamical variables. It reads:

{jA
t (x), jB

t (y)}P = εAB
C jC

t (x) δ(x− y) − 2KδAB∂xδ(x− y) , (3.4a)

{jA
t (x), jB

x (y)}P = εAB
C jC

x (x) δ(x− y) +
(

1 + C +
K2

1 + C

)
δAB∂xδ(x− y) , (3.4b)

{jA
x (x), jB

x (y)}P = −
(

C +
K2

1 + C

)
εAB

C jC
t (x) δ(x− y) − 2KεAB

C jC
x (x) δ(x− y)

− 2KδAB∂xδ(x− y) .
(3.4c)

Note that the result of [27] is reproduced for K = 0 (no wz term). For C = 0 (no squashing)
and K = 1, the right-moving current jR ≡ (jt + jx)/2 vanishes (i.e. jt = −jx) and only the
algebra for the left-moving current jL ≡ (jt − jx)/2 = jt remains.

The current algebra (3.4) leads to the following (Yangian) algebra for the charges:

{QA
(0), QB

(0)}P = εAB
C QC

(0) , (3.5a)

{QA
(0), QB

(1)}P = εAB
C QC

(1) , (3.5b)

{QA
(1), QB

(1)}P = εAB
C

[
QC

(2) +
1
12

QC
(0)(Q(0))

2 + 2KQC
(1) −

(
C +

K2

1 + C

)
QC

(0)

]
, (3.5c)

where QA
(2) is the second non-local charge defined as

QA
(2) ≡

1
12

∫∫∫
dx dy dz ε(x− y) ε(y− z) δBC

[
jA
t (x) jB

t (y) jC
t (z)− jB

t (x) jA
t (y) jC

t (z)
]

+
1
2

∫∫
dxdy ε(x− y) ε A

BC jB
t (x) jC

x (y) . (3.6)
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It is straightforward to check that the SU(2)L Serre relations are satisfied:

{{Q+
(1), Q−

(1)}P, Q3
(1)}P =

1
4

Q3
(0)(Q

+
(1)Q

−
(0) −Q−

(1)Q
+
(0)) , (3.7a)

{{Q3
(1), Q±

(1)}P, Q±
(1)}P =

1
4

Q±
(0)(Q

3
(1)Q

±
(0) −Q±

(1)Q
3
(0)) , (3.7b)

{{Q+
(1), Q−

(1)}P, Q±
(1)}P ± 2{{Q3

(1), Q±
(1)}P, Q3

(1)}P

=
1
4

Q±
(0)(Q

+
(1)Q

−
(0) −Q−

(1)Q
+
(0))±

1
2

Q3
(0)(Q

3
(1)Q

±
(0) −Q±

(1)Q
3
(0)) ,

(3.7c)

where
j±µ ≡ j1µ ± ij2µ . (3.8)

Thus in the squashed wznw model, the SU(2)L Yangian symmetry is realized as an infinite-
dimensional symmetry.

In fact it is possible to rewrite the Yangian algebra in a standard form by using the
fact that higher charges are defined up to Q(0) and shifting the first and second charges as
follows:

Q̃(1) = Q(1) − K Q(0) , (3.9)

Q̃(2) = Q(2) − A2 Q(0) . (3.10)

4 The β-function of the squashed wznw model

The model described by the action SSq in Eq. (2.8) is in general not conformal even though,
as we have shown in the previous section, it preserves a Yangian symmetry. In this section
we study the running of the squashing parameter C and the coupling constant λ and discuss
the relation between the condition obtained in the previous section and the renormalization
group (RG) flow.

As it is already the case for the standard wznw model, the qualitative behavior can
be understood semiclassically at one-loop level∗. Consider the action in Eq. (2.9). First
decompose the SU(2) group element g into a classical solution g0 and a quantum fluctuation
ξ as follows:

g = g0 eλξ ξ ∈ Lie[SU(2)] ; (4.1)

then expand the left-invariant current J with respect to λ ,

J = g−1dg

= e−λξ(g−1
0 dg0)eλξ + λ

∫ 1

0
dt e−tλξ(dξ)etλξ

= J0 + λ (dξ + [J0, ξ]) +
λ2

2
(− [ξ, dξ] + [[J0, ξ] , ξ]) +O

(
λ3) ,

(4.2)

∗The rg flow is the Bianchi ix Ricci flow in the axisymmetric case with a wz term. As such it was already
analyzed in [32, 33].
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where J0 = g−1
0 dg0 . By rewriting the fluctuation ξ as

ξ = ξ1T1 + ξ2T2 +
1√

1 + C
ξ3T3 (4.3)

and introducing the new vector notation ~ξ = (ξ1, ξ2, ξ3) , the action at second order in the
fluctuation is given by

Squad =
∫∫

dtdx
[
−1

2
ηµν∂µ

~ξ · ∂ν
~ξ + ~J0µ ·~vµ +

C
2
~J0µM

µν~J0ν

]
, (4.4)

where the following quantities have been introduced:

~J0µ =

J1
0µ

J2
0µ

J3
0µ

 , (4.5)

~vµ =


− 1

2

(√
1 + Cηµν − λ2n

8π
√

1+C
εµν

) (
ξ2∂νξ3 − ξ3∂νξ2)

1
2

(√
1 + Cηµν − λ2n

8π
√

1+C
εµν

) (
ξ1∂νξ3 − ξ3∂νξ1)

− 1
2

(
(1− C)ηµν − λ2n

8π εµν

) (
ξ1∂νξ2 − ξ2∂νξ1)

 , (4.6)

Mµν = ηµν

 −ξ2ξ2 ξ1ξ2 − 1
2

√
1 + C ξ1ξ3

ξ1ξ2 −ξ1ξ1 − 1
2

√
1 + C ξ2ξ3

− 1
2

√
1 + C ξ1ξ3 − 1

2

√
1 + C ξ2ξ3 ξ1ξ1 + ξ2ξ2

+

+
λ2 n εµν

16π
√

1 + C

 0 0 ξ1ξ3

0 0 ξ2ξ3

ξ1ξ3 ξ2ξ3 0

 .

(4.7)

The divergent part in the one-loop effective action can be evaluated as follows:

eiW[g0] = eiSSq[g0]
∫

[dξ] eiSquad[g0;ξ]

= eiSSq[g0]
∫
[dξ] exp

{
− i

2

∫
d2x ηµν∂µ

~ξ · ∂ν
~ξ

}
×
[

1 + i
∫

d2x~J0µ·~vµ(x)− 1
2

∫
d2x

∫
d2y~J0µ·~vµ(x)~J0ν·~vν(y)

+i
C
2

∫
d2x~J0µM

µν~J0ν(x) +O
(
ξ3)]

= eiSSq[g0]

×
{

1 +
i

16π

[
1− C− 1

1 + C

(
λ2n
8π

)2
]

log
Λ2

µ2

∫
d2xηµν

[
J1
0µ J1

0ν + J2
0µ J2

0ν

]
+

i
16π

[
(1 + C)2 −

(
λ2n
8π

)2
]

log
Λ2

µ2

∫
d2xηµν J3

0µ J3
0ν + finite

}
, (4.8)
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where we have used the two-point function:〈
ξ A(x)ξB(y)

〉
= −

∫ d2k
(2π)2 e−ik·(x−y) 1

k2 . (4.9)

From the explicit expression we can read off the one-loop effective coupling constant and
the squashing parameter:

λ2
R = λ2 +

λ4

8π

(
1− C− 1

1 + C

(
λ2n
8π

)2
)

log
Λ2

µ2 , (4.10)

CR = C− λ2

4π
C(1 + C) log

Λ2

µ2 , (4.11)

where Λ and µ are the ultraviolet (UV) and the infrared (IR) cut-off, respectively. By deriving
with respect to µ we obtain the one-loop β-functions for λ2

R and CR:

µ
∂λ2

R
∂µ

= −λ4
R

4π

{
1− CR −

1
1 + CR

(
λ2

Rn
8π

)2}
, (4.12)

µ
∂CR

∂µ
=

λ2
R

2π
CR (1 + CR) . (4.13)

Note that the coefficient of the wz term is quantized since SU(2) is a compact group.

Before discussing the RG flow described by (4.12) and (4.13) , let us recall the condition
we obtained from the flatness of the SU(2)L Noether current. By writing K explicitly in terms
of the coupling constant λ , the flatness condition for the conserved current in Eq. (2.22) can
be rewritten as

C− C
1 + C

(
nλ2

8π

)2

− A2 = 0 , (4.14)

and C can be expressed as a function of λ for fixed values of A as in Eq. (2.23):

C±A (λ) =
1
2

[
(A2 − 1) +

(
nλ2

8π

)2
]
±

√√√√A2 +
1
4

(
A2 − 1 +

(
nλ2

8π

)2
)2

. (4.15)

It is interesting to discuss the RG flow with respect to the flatness condition (4.14). A
typical example (n = 20) is represented in Fig. 4. There is a unique IR fixed point on the line
C = 0 for λR = 8π/n, which is the same as in the usual SU(2) wznw model. As n increases,
the fixed point approaches λ2 = 0 on the line C = 0 . It is worth noting that the critical
surface is defined by C > −1 and the universality class is characterized by the unique IR
fixed point. In other words, the flow remains in the same universality class as the SU(2)
wzw model. The locus C = −1 deserves some special attention. As already shown in [19], it
corresponds to a decompactification limit in which the squashed three-sphere degenerates to
the direct product S2 × S1. In this case, the action Sσm in Eq. (2.5) describes the well-studied
non-linear sigma model on the coset SU(2)/U(1) ∼ S2, also known as the O(3) model.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

3

A2 > 0

A2 > 0

A2 < 0

A2 < 0

A2 < 0

C

λ2

Figure 1: RG flow for n = 20 . The vertical axis shows C and the horizontal one λ2 . The
unique IR fixed point on the line C = 0 is the undeformed SU(2) wznw model. The red line
depicts C±[0], the green line C±[1], the cyan line C±[−i/2]. The flow is not defined in the
grey region C < −1.

The (λ2, C) plane is separated into four regions by red lines corresponding to C = C±0 (λ)

(this is the locus where the flatness condition is satisfied without improvement term Iµ). In
these regions, A2 ≷ 0. The green line in Fig. 4 corresponds to the locus {C±1 } (i.e. A2 = 1),
while the cyan lines represent {C±−i/2} (i.e. A2 = −1/4) . Those are typical examples and, by
varying the value of A2 , the green and cyan lines cover all of either regions.

Up to this point we have implicitly considered A2 > 0 since we interpreted it as resulting
from the boundary term contribution in Eq. (2.18). The RG flow analysis suggests that this
condition is too strong and that it is possible to analytically continue to A2 < 0. In fact, this
is natural from the point of view of the O(3) sigma model at C = −1 (which is by itself the
analytical continuation of our Lorentzian worldsheet) where the boundary contribution is
interpreted as a Hopf (instanton) term. Moreover, the conserved charges depend only on A2

and no imaginary term is generated by the continuation.
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5 Conclusion and Discussion

In this letter we have discussed the Yangian symmetry of the squashed wznw model. The
wz term is fixed by dimensionality up to an overall coefficient. For a special value of this
coefficient, a flat conserved current can be constructed directly. For general values, it is
possible to construct a flat conserved current using a current improvement term.

Although we have discussed only the case of the squashed sphere, it is straightforward
to carry out the same analysis for warped AdS spaces via double Wick rotations. It would
also be interesting to consider a generalization of the present analysis to higher-dimensional
cases such as squashed S7, possibly using arguments similar to the ones given in [34].

Another avenue of research is to include world-sheet fermions. For symmetric spaces,
the relation between world-sheet fermions and non-local charges are well studied (for
example, see [4, 35] and related work in [31, 36–38]). Similarly, we expect in our case that it
is possible to find a flat conserved current (and a Yangian algebra) by including appropriate
world-sheet fermions. Of course, it would be even more interesting to study space-time
fermions by introducing deformations of super Lie groups as target spaces.

The next natural step consists in understanding the physical implications of the Yangian
symmetry that we have described. In particular it will be interesting to see whether the
existence of the infinite charges implies complete integrability in the sense of Liouville.
In fact, since the squashed sigma model is thought to be a continuum limit of the xxz

model [39] (even though the Yangian symmetry is closely related to the xxx model), it is
possible that we have found a form of “partial” integrability, related to a “subclass” of the
soliton solutions in the squashed sigma model.
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