Kyoto University Research Info	
Title	<article> Life-span of Chimpanzee Beds at the Mahale Mountains National Park, Tanzania</article>
Author(s)	Ihobe, Hiroshi
Citation	Pan Africa News (2005), 12(1): 10-12
Issue Date	2005-06
URL	http://hdl.handle.net/2433/143448
Right	Copyright © Pan Africa News.
Туре	Article
Textversion	publisher

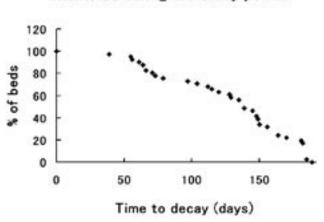
Fig. 1 Decay curve for beds monitored during the study period

<ARTICLE>

Life Span of Chimpanzee Beds at the Mahale Mountains National Park, Tanzania

Hiroshi Ihobe Sugiyama Jogakuen University

INTRODUCTION


Population estimates of wild chimpanzees have been conducted by a variety of methods. Many researchers have adopted nest- or bed-count methods to estimate chimpanzee populations due to the difficulty of making direct observations of unhabituated chimpanzees^{1, 2, 3, 4, 5}.

Ghiglieri¹ developed a chimpanzee population estimation method in which some parameters, such as average life span of beds, are assumed to be different at each study site and thus not obtained simply by bed censuses. Tutin and Fernandez² modified Ghiglieri's formula to take into account the non-random distribution of beds. However, this method also requires the average life span of beds. Hashimoto³ as well as Plumptre and Reynolds⁴ developed a method based on newly built beds. This method does not require average life span of beds but does require repeated censuses. Also, all three methods require presumptions such as the proportion of bed-building chimpanzees, rate of reuse of beds, and day-bed production to precisely estimate chimpanzee populations.

This paper presents the preliminary results of a study on the life span of beds at the Mahale Mountains National Park, which was made to examine the variations among the study sites.

Table 1. Definitions of age-classes of beds.

Ageclass	lass Definition			
Fresh	Vegetation green			
Recent	Vegetation dry and changing color			
Old	Vegetation dead but beds still intact			
Rotting	Bed beginning to disintegrate			

METHODS

The Mahale Mountains National Park is located on the eastern shore of Lake Tanganyika. The chimpanzees in the Park have been studied since 1965⁶. The vegetation type in the study area was semi-deciduous or semi-evergreen gallery forest and *Brachystegia* woodland. The rainy season is from October to May, and the dry season is from June to September.

The field work was conducted from August to December 1995. Forty-three beds constructed on known dates by habituated M group chimpanzees were monitored about once a week to determine the life span of beds. Tree species, estimated height, and the presence of shade for each bed were recorded. All of the beds monitored were constructed in August.

Age-class of beds was defined according to Tutin and Fernandez², as shown in Table 1. I considered the life span of each bed to be the period from the date of construction to the date midway between the last weekly inspection when it was recognizable and the first when it was not.

RESULTS and DISCUSSION

Out of 43 beds, two beds (4.7%) were assumed to be reused by the chimpanzees. These beds were excluded from the calculation of life span. Mean and SD of life span of 41 beds were 130.7 days and 45.7 days, respectively. The life span of beds ranged from 30 to 189 days.

Figure 1 shows a decay curve for beds monitored during the study period. Plumptre and Reynolds⁴ reported that the decay of beds in their study approximated an exponential decay curve, but this phenomenon was not found in this study. Plumptre and Reynolds⁴ suggested that the decay rate should be calculated while assuming exponential decay, since this is not likely to be greatly affected by a small number of beds that

	Table 2.	Tree specie	es of censuse	d chimpanzee	beds.
--	----------	-------------	---------------	--------------	-------

Local name	Scientific name	Family name	Number of beds
Lulumasha*	Pycnanthus angolensis	Myristicaceae	21
Kahwibiki	Xylopia parviflora	Annonaceae	7
Mbul a*	Parinari curatellifolia	Rosaceae	3
Mulale	?	?	3
Bulonje	Dracaena reflexa	Agavaceae	1
Ihambwa*	Ficus vallis-choudae	Moraceae	1
Ihoko	Lobelia stricklandae	Lobeliaceae	1
Ikolyoko*	Voacanga lutescens	Apocynaceae	1
Ikubila*	Ficus capensis	Moraceae	1
Kakubabolo*	Sterculia tragacantha	Sterculiaceae	1
Mul yansekesi*	Afrosersalisia cerasifera	Sapotaceae	1
Mkamba*	Chlorophora excelsa	Moraceae	1
Mtelele*	Stereospermum kunthianum	Bignoniaceae	1
Total			43

*: Their products (fruits, leaves or piths) were eaten by chimpanzees.

Table 3. Comparison of life span of chimpanzee beds between two tree species.

Local name	Scientific name	Number of	Mean	Range
		beds	(Days)	(days)
Lulumasha	Pycnanthus angolensis	21	136	56-189
Kahwibili	Xylopia parviflora	7	126	61-170

Difference between species was not significant (Mann-Whitney's U-Test, $n_1=21$, $n_2=7$, z=0.58, p=0.56, 2-tailed).

last a very long time; however, the present study did not support this assumption.

Monitored beds were usually constructed in trees, the products (fruits, leaves or piths) of which the chimpanzees fed on (Table 2). Almost half of the monitored beds were constructed in *Pycnanthus angolensis* trees. The M group chimpanzees frequently fed on the fruits of this tree during the study period.

The difference in mean life span of beds between two tree species (*Pycnanthus angolensis* and *Xylopia parviflora*) was not significant (Table 3). The difference in mean life span of beds among different levels of shade at the beds was also insignificant for all beds and for beds constructed in *Pycnanthus angolensis* trees (Table 4).

Table 5 summarizes the mean life span of chimpanzee beds at several study sites. Mean life span of beds in this study is slightly longer than that in the work of Ghiglieri¹ or Tutin and Fernandez² but slightly shorter than that of Skorupa cited in Plumptre and Reynolds⁴.

Plumptre and Reynolds⁴ used a different definition of the decay of beds: if the bed had lost all of its leaves (even though dead twigs might be present), it was not counted as a bed. Using this definition, the mean life span of beds in the present study is slightly longer than that in their work. Plumptre and Reynolds⁴ reported that Budongo forest is drier than Kibale forest or the forests in Gabon, and thus it is likely that the leaves that formed the beds dried up and fell off more quickly. They also found that mean dry season survival time of beds was significantly shorter than mean wet season survival of beds. On the other hand, Wrogemann⁷ found that bed decay was significantly slower in dry seasons than in wet seasons in Gabon. McGrew, Baldwin and Tutin⁸ placed the Kasoje area in the next-drier position to Budongo forest on a wet-dry spectrum. Mean life span of beds in the present study is slightly longer than that in the Budongo forest. Consequently, bed decay is not affected simply by season or rainfall.

Presence of shades	Number of	Mean	Range
	beds	(Days)	(days)
(a) all beds*			
Present	24	133	55-189
Absent	17	127	39-185
(b) Beds in <i>Pycnanthus angolensis</i> **			
Present	16	139	56-189
Absent	5	126	64-182

Table 4. Comparison of life span of chimpanzee beds according to the presence of shade.

*: Difference according to presence of cover was not significant (Mann-Whitney's U-Test, ni=24, n2=17, z=-0.93, p=0.35, 2-tailed). **: Difference according to presence of cover was not significant (Mann-Whitney's U-Test, ni=16, n2=5, U=37.5, p>0.05, 2-tailed).

Study	Number	Mean	Range	Mean*	Range*	Source
site	of beds	(days)	(Days)	(Days)	(days)	
Mahale	41	131	30-189	49	18-110	This study
Budongo	96			45	10-161	Plumptre & Reynolds (1996)
Kibale	28	111	15-202			Ghiglieri (1984)
Kibale		144				Skorupa (1988) cited in
						Plumptre & Reynolds (1996)
Gabon	49	118	35-151			Tutin & Fernandez (1984)

Table 5. Comparison of life span of chimpanzee beds among several study sites.

*: These values were defined by Plumptre & Reynolds (1996).

ACKNOWLEDGEMENTS

The field work was financed by the Monbusho International Scientific Research Program (07041138 to Toshisada Nishida). The research was facilitated by the Tanzania Commission for Science and Technology (COSTECH), the Serengeti Wildlife Research Institute (SWRI), the Tanzania National Parks (TANAPA), the Mahale Mountains Wildlife Research Centre (MMWRC), and the Mahale Mountains National Park (MMNP). Bunde Athumani and Makelele Masayuke assisted in the census. Michael A. Huffman, Noriko Itoh, Toshisada Nishida, Kohshi Norikoshi, and Hitoshi Sasaki made contributions in the field. Fumio Fukuda and Toshimichi Nemoto helped me in various ways to complete the research. To these people and institutions, I give my deepest gratitude.

REFERENCES

- 1. Ghiglieri MP. 1984. *The Chimpanzees of Kibale Forest*, Columbia University Press, New York.
- 2. Tutin CEG and Fernandez M. 1984. Nationwide census of gorilla (*Gorilla g. gorilla*) and chimpanzees (*Pan t. troglodytes*) populations in Gabon. *Am. J. Primatol.*, 6:313-336.
- 3. Hashimoto C. 1995. Population census of the chimpanzees in the Kalinzu Forest, Uganda: Comparison between methods with nest counts.

Primates, 36: 477-488.

- 4. Plumptre AJ and Reynolds V. 1996. Censusing chimpanzees in the Budongo Forest, Uganda. *Int. J. Primatol.*, 17: 85-99.
- 5. Ihobe H. 1995. The diurnal primate fauna and population densities of tschego chimpanzees in southwestern Congo. *African Study Monographs*, 16: 35-44.
- 6. Nishida T. 1990. *The Chimpanzees of the Mahale Mountains*, University of Tokyo Press, Tokyo.
- 7. Wrogemann D. 1992. *Wild chimpanzees in Lope, Gabon: Census method and habitat use*, Unpublished Ph.D. thesis, Bermen University, Germany.
- 8. McGrew WC, Baldwin PJ and Tutin CEG. 1981. Chimpanzees in a hot, dry and open habitat: Mt. Assrik, Senegal, West Africa. *J. Human Evol.*, 10: 227-244.