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Abstract 

Airborne hyperspectral remote sensing was adapted to establish a general-purpose model for 

quantifying nitrogen content of rice plants at the heading stage using three years of data. There was a 

difference in dry mass and nitrogen concentration due to the difference in the accumulated daily 

radiation (ADR) and effective cumulative temperature (ECT). Because of these environmental 

differences, there was also a significant difference in nitrogen content among the three years. In the 

multiple linear regression (MLR) analysis, the accuracy (coefficient of determination: R
2
, root mean 

square of error: RMSE and relative error: RE) of two-year models was better than that of single-year 

models as shown by R
2
≥0.693, RMSE≤1.405 gm

-2
 and RE≤9.136%. The accuracy of the three-year 

model was R
2
=0.893, RMSE=1.092 gm

-2
 and RE=8.550% with eight variables. When each model was 

verified using the other data, the range of RE for two-year models was similar or increased compared 

with that for single-year models. In the partial least square regression (PLSR) model for the validation, 

the accuracy of two-year models was also better than that of single-year models as R
2
≥0.699, 

RMSE≤1.611 gm
-2

 and RE≤13.36%. The accuracy of the three-year model was R
2
=0.837, 

RMSE=1.401 gm
-2

 and RE=11.23% with four latent variables. When each model was verified, the 

range of RE for two-year models was similar or decreased compared with that for single-year models. 

The similarities and differences of loading weights for each latent variable depending on hyperspectral 

reflectance might have affected the regression coefficients and the accuracy of each prediction model. 

The accuracy of the single-year MLR models was better than that of the single-year PLSR models. 

However, accuracy of the multi-year PLSR models was better than that of the multi-year MLR models. 

Therefore, PLSR model might be more suitable than MLR model to predict the nitrogen contents at 

the heading stage using the hyperspectral reflectance because PLSR models have more sensitive than 

MLR models for the inhomogeneous results. Although there were differences in the environmental 

variables (ADR and ECT), it is possible to establish a general-purpose prediction model for nitrogen 

content at the heading stage using airborne hyperspectral remote sensing. 
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1. Introduction 

Agronomically, there are three growth stages in rice: vegetative, reproductive pre-heading, and 

reproductive post-heading. The vegetative stage refers to the period from germination to the initiation 

of panicle; the pre-heading period from panicle initiation to heading; and the post-heading period from 

heading to maturity (Yoshida, 1981). Therefore, it is important to study the growth and nitrogen 

content status at the panicle initiation, heading and maturity stages for precision agriculture, which is a 

management practice and a framework within which agricultural managers can more accurately 

understand and control what happens in their farms (Blackmore, 1994). The growth of rice plants, and 

the quality and quantity of rice grains are extremely sensitive to nitrogen fertilizer and climatic 

conditions such as the intensity and duration of sunshine, air and water temperature, and the available 

water supply (Inoue et al., 1963). The amount of nitrogen content at the heading stage is mainly 

affected by the amount of nitrogen fertilizer at topdressing, which is calculated based on the amount of 

nitrogen content at the panicle initiation stage and the uptake of nitrogen from the soil (Ryu et al., 

2009). There have been the several studies on the growth and nitrogen content status in the vegetative 

and reproductive pre-heading stages with the controlled application timing and amount of nitrogen 

fertilizer application, which was used to artificially control the quality and quantity of rice grain 

(Takahashi et al., 2000; Casanova et al., 2000; Ryu et al., 2010b). However, the quality and quantity of 

rice grains are closely related to the growth and nitrogen content status at the heading stage (Ntanos 

and Koutroubas, 2002). Thus, it is also important to identify the growth and nitrogen content status of 

rice plants at the heading stage. Moreover, it has also been confirmed that variable rate fertilizer 

application is adoptable for controlling the growth and nitrogen content status of rice plants uniformly. 

As one way of identifying the growth and nitrogen status of rice plants, remote sensing has great 

potential because it enables wide-area, non-destructive, and real-time acquisition of information on 

ecophysiological plant conditions (Inoue, 2003; Chang et al., 2005). 

A great deal of research effort has been directed towards the assessment of crop yield and eco-

physiological variables using remote sensing in optical, thermal, and microwave wavelength domains 

together with modeling approaches (Inoue et al., 2008). With remote sensing from satellites, however, 

the cloud coverage ratio (CCR) causes limitations because thick clouds frequently prohibit normal 

data acquisition in the early to mid-summer rainy season in monsoon Asia (Inoue et al., 2002; 

Shibayama et al., 2009).  
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Moreover, broadband data from multi spectral sensors often lose critical information that is available 

in specific narrow bands (Blackburn, 1998) and has proven difficult to discriminate the variation in 

vegetation composition (Lewis et al., 2001). Recent advances in ground-based, airborne 

hyperspectral sensing indicates that the selection of new wavebands has been carried out in a number 

of cases focusing on how to find out the most sensitive wavebands related to biophysical, 

physiological or biochemical characteristics (Zarco-Tehada et al., 2001; Thenkabail et al., 2000; Evri 

et al., 2008).  

Research on hyperspectral remote sensing for rice plants has been separated into two groups: (1) 

narrow-band vegetation indices and (2) multivariate analysis (Inoue and Penuelas, 2001). In the case 

of rice plants, the simple ratio of two narrow bands was studied to detect the biophysical, 

physiological or biochemical characteristics (Casanova et al., 1998; Kimura et al., 2004; Wang et al., 

2007; Lee et al., 2008; Stroppiana et al., 2009), to estimate the gross ecosystem production (Inoue et 

al., 2008; Micol et al., 2010) and to discriminate and detect disease (Liu et al., 2008; Yang, 2010). 

Multivariate analysis models provided flexibility in choosing individual narrow bands and improved 

the models’ ability to estimate plant growth, as compared with those estimated from spectral indices 

and a single narrow band (Yang and Chen 2004; Yi et al., 2007). Therefore, multivariate analysis, 

multiple linear regression (MLR), principal components analysis (PCA) and partial least square 

regression (PLSR) was applied to estimate the biophysical, physiological or biochemical 

characteristics of rice plants. Nguyen and Lee (2006) established the variation of crop growth and 

nitrogen status within a field using PLSR. Chen et al., (2003) compared the precision of the model for 

chlorophyll content between vegetation indices and MLR. Yi et al., (2007) compared the precision of 

the estimation model for nitrogen concentration depending on several multivariate analyses. Ryu et 

al., (2005, 2007) also evaluated a nitrogen content prediction model using airborne hyperspectral 

remote sensing at the panicle initiation and heading stage via MLR and PLSR. However, these 

models were mainly established based on the data of the mixed vegetation stages and/or the fixed 

vegetation stage with a single year data. Moreover, the characteristics of vegetation growth are easily 

influenced by the differences in phonological stages, environmental conditions, location and cultural 

practices (Thenkabail et al., 2000; Ryu et al., 2009).  

In this study, airborne hyperspectral remote sensing was applied to analyze the nitrogen content of 

rice at the heading stage using three years of data. The objectives of this research were: (1) to 

investigate the vegetation growth of rice at the heading stage; (2) to establish a nitrogen content 

prediction model using any combination of the three-year data via MLR and PLSR analysis; (3) to 

verify such models using the remaining data; and (4) to establish a general-purpose prediction model 

for nitrogen contents at the heading stage. 
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2. Materials and methods 

2.1. Experimental field and management 

A test field (0.5 ha with 50m × 100m) in the Takatsuki Experimental Farm of the Graduate School 

of Agriculture Kyoto University in Takatsuki City, Osaka Prefecture, Japan (135°38´E, 34°51´N, 10m 

above sea level) was used for the experiments. The test crop was Oryza sativa L., cv. HINO-HIKARI 

and the soil of field was classified as Gray Lowland soil (Yanai et al., 2000). Over three decades, the 

average annual temperature, amount of rainfall and annual sunshine hours were 15.5 °C, 1362 mm, 

and 1893 hours (JMA, 2007).  

Pre-germinated seeds were sown on seedling trays and 29-31-day-old seedlings were transplanted 

into the field at space intervals of 0.30m×0.33m (Inamura et al., 2003). Amounts of nitrogen and 

potassium fertilizer (17% N and 17% K2O, NK fertilizer) were applied in the range 0-85 kgha
-1

 for 

each plot (5m×10m with 100 plots) as the basal dressing and topdressing. In the case of phosphorus 

(17.5% P2O5), 30 kgha
-1

 of the fertilizer was also applied uniformly as a basal dressing.  

 

2.2. Hyperspectral remote sensing 

Hyperspectral Images (Pasco Co., Ltd., Tokyo, Japan) were taken around eleven o’clock with the 

airborne hyperspectral sensor, AISA Eagle (Specim, Oulu, Finland) on 26
th
 August 2004, 3

rd
 

September 2005, and 4
th
 September 2006. The ground spatial resolution was 2.25 m

2
 with an altitude 

of 1400m (Hache et al. 2005). The grey reflectance panels were set on the sides of the field and the 

reflectance of each plot (50 m
2
) was calculated using not the total area of each plot (18 pixels with 

40.5m
2
) but the inner part (4 pixels with 9m

2
). Using the Environment for Visualizing Images software, 

ENVI version 4.2 (ITT Visual Information Solutions, Boulder, USA), reflectance of rice plants was 

calculated by dividing the radiance of each plot by the radiance of the reflectance panels (Ryu et al., 

2009).  

 

2.3. Measurement of vegetation data 

Vegetation data at the heading stage were quantified at forty plots with dry mass, nitrogen 

concentration and nitrogen content. Each plot consisted of two sub-sampling points and four rice 

plants at each sub-sampling point were picked without their roots. The samples were well mixed and 

partitioned into two parts as one-quarter and three-quarters. The one-quarter sample was separated into 

leaves, autumn leaves, stems and shoots to calculate their ratio (Ryu et al., 2010a). Both sub-samples 

were dried at 80 °C for more than 72 hours in a ventilated oven and then weighed (Nakano and Morita, 

2008). The dry mass of leaves, autumn leaves, stems and shoots for the three-quarters was calculated 

using the ratio of them from the one-quarter. The nitrogen concentration for the leaves and stems of 

one-quarter samples was measured three times using an NC analyzer, NC-900 (Sumica Bunseki 

Center Co., Ltd., Tokyo, Japan).  
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The nitrogen content was calculated as the product of the dry mass per unit area and the mean of 

nitrogen concentration. Vegetation data for each plot was calculated from the average of two sets of 

sub-sampled data.  

 

2.4. Statistical analysis 

Descriptive statistics were calculated over the three years of vegetation data and reflectance. MLR 

analysis was performed using the step-wise method with SPSS version 13 (SPSS Inc., Chicago, USA). 

PLSR analysis was also performed using the full-cross validation method with Unscrambler version 

9.6 (CAMO software AS, Oslo, Norway). Each model that was established by MLR and PLSR 

analysis was validated by the other years’ data to identify differences between models and to check the 

possibility of a general-purpose prediction model. The precision of the model and validated model was 

quantified with the coefficient of determination (R
2
) and the root mean squared error (RMSE) and the 

relative error (RE), as shown in Eq. (1) and Eq. (2) (Yi et al., 2007).  

 

 

n

yy
RMSE

n

i
i 

 1

2
ˆ

       (1) 

 

 

n

yy

y
RE

n

i
i 

 1

2
ˆ

100
       (2) 

 

where iŷ  and iy  are the estimated and measured value of the ith sample; n is the number of 

samples; y  is the average of measured value . 

 

3. Results and discussion 

3.1. Field management 

Crop managements and weather conditions from seedling to sampling at the heading stage over 

three years are shown in Table 1. The sampling date at the heading stage in 2004 was different 

compared with that in 2005 and 2006. Nevertheless as heading date of HINO-HIKARI in this region 

was generally in the late August (Urata and Nishigaki, 2001), weather conditions for remote sensing 

were not acceptable in 2005 and 2006. Moreover, although the accumulated vegetation day-period in 

2005 and 2006 was longer than that in 2004, the accumulated daily radiation from transplanting to 

sampling in 2005 and 2006 was less than 70% of that in 2004.  

The weather conditions from transplanting to heading stage were compared (Fig. 1) because the 

amount of nitrogen accumulated by rice plants increases depending on the temperature and radiation 

intensity (Ta and Ohira, 1982; Angus et al., 1990). 
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Table 1 Crop management and weather conditions at the test field from 2004 to 2006. 

Management date 2004 2005 2006 

Seedling 14 May 17 May 17 May 

Basal dressing 4 June 27 May 29 May 

Transplanting 14 June 15 June 15 June 

Sampling at the panicle initiation stage 3 August 5 August 12 August 

Topdressing 10 August 10 August 13 August 

Airborne hyperspectral remote sensing 26 August 3 September 4 September 

Sampling at the heading stage 26 August 5 September 8 September 

Weather conditions 2004 2005 2006 

Accumulated vegetation day-period
*a

 72 80 81 

Effective cumulative temperature [°C]
 *b

 917 996 1002 

Accumulated daily radiation [MJm
-2

] 1095 764 759 
*a

 Day from transplanting to sampling 
*b

 Sum of the daily average temperature minus 15°C from transplanting to sampling) 

 

A difference in the accumulated daily radiation (ADR) between 2004 and other years appeared just 

after the transplanting. A difference in the effective cumulative temperature (ECT) between 2004 and 

the other years was found at the beginning of July in 2005 and in late June of 2006. This means that 

the vegetation conditions in 2004 were different from those conditions in other years.  

 

 

Fig. 1 Effective cumulative temperature (ECT) and accumulated daily radiation (ADR) of each year. 
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3.2. Vegetation data 

After the hyperspectral airborne images were taken, the vegetation data at the heading stage were 

quantified on 26
th
 August in 2004, 5

th
 September in 2005 and 8

th
 September in 2006, as shown in Table 

1. Although the dry mass of shoots in 2004 was less those one half of that in 2005 and 2006, the dry 

mass of leaves in 2004 was around twice those in 2005 and 2006 (Table 2). The difference in the dry 

mass of shoots might be influenced by the difference in the vegetation date from transplanting to 

sampling. Moreover, the days from emergence to heading might have been prolonged because of 

comparatively lower temperatures in 2005 and 2006 (Yoshida et al., 2008). The difference in the dry 

mass of leaves might also have been influenced by weather conditions because the reduction of daily 

radiation from panicle initiation to anthesis drastically affected above ground dry mass production 

(Yoshida and Parao, 1976). The ratio of dry mass in leaves to dry mass in autumn leaves was 6.1% in 

2004, 11.7% in 2005 and 32.0% in 2006. The reason that the ratio in 2006 was higher than that in 

other years might reflect the influence of late remote sensing in 2006. Although the nitrogen 

concentration of the stems was different among three years data, that for the leaves was significantly 

different between 2005 and the other years. The nitrogen content of leaves in 2004 was similar than 

the total nitrogen content in 2005 and around one and half times the total nitrogen in 2006. Although 

the nitrogen content of shoots was not included in the total, dry mass and nitrogen content of leaves 

and stems in 2006 was lower than not only those in 2004 but also those in 2005. This might reflect the 

influence of weather conditions that indicate lower accumulated temperature and daily radiation (Islam 

and Morison, 1992) for 2006, as shown in Fig. 1 and Table 1. It might be necessary to measure the 

nitrogen concentration of shoots to predict accurately the amount of nitrogen content at the heading 

stage.   

 

Table 2 Descriptive statistics for vegetation data on rice at the heading stage from 2004 to 2006. 

Years 2004  2005  2006  

n (Sampling date) 40 (26 August) 40 (5 September) 38 (8 September) 

Dry mass [g m
-2

] 

Shoots 123 ± 17.6
a
 264 ± 21.7

b
 300 ± 41.0

c
 

Autumn leaves 33.6 ± 18.0
 a
 33.1 ± 18.0

 a
 72.9 ± 16.5

 b
 

Stems 651 ± 62.7
 a
 569 ± 43.6

 b
 443 ± 67.4

 c
 

Leaves 553 ± 53.9
 a
 284 ± 23.2

 b
 226 ± 31.7

 c
 

Nitrogen concentration [%] 
Stems 0.53 ± 0.08

 a
 0.67 ± 0.09

 b
 0.47 ± 0.05

 c
 

Leaves 1.86 ± 0.22
 a
 2.28 ± 0.17

 b
 1.85 ± 0.18

 a
 

Nitrogen content [g m
-2

] 

Stems 3.43 ± 0.66
 a
 3.80 ± 0.54

 b
 2.09 ± 0.42

 c
 

Leaves 10.3 ± 1.75
 a
 6.47 ± 0.81

 b
 4.19 ± 0.84

 c
 

Total 13.7 ± 2.39
 a
 10.3 ± 1.32

 b
 6.28 ± 1.13

 c
 

Mean ± Standard deviation 

(a, b, c) The same letters are not significantly different at 1 % level 
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3.3. Analysis of the hyperspectral reflectance 

The hyperspectral reflectance of rice plants at the heading stage was similar over three years (Fig. 2). 

The reflectance increased in the near blue (450 nm), green (550 nm) and near infra-red (NIR) region 

and the increased pattern of reflectance in the heading stage was similar to that in the panicle initiation 

stage (Ryu et al., 2009). The reflectance in the visible region (from 400 nm to 700 nm) in 2005 was 

higher than that in the other years. This difference may be influenced by how many plots were already 

sampled at the panicle initiation stage. There were eighteen plots in 2004, thirty plots in 2005 and ten 

plots in 2006. Although the vegetation was increased from the panicle initiation to heading stages, 

there was a difference in the sampled area (0.79m
2 
for each plot) as 14.26m

2
 in 2004, 23.76m

2
 in 2005 

and 7.92m
2
 in 2006. One of the reasons that the reflectance in visible region in 2005 increased 

comparing with the other years might be influenced by the difference in the soil background (Kimura 

et al., 2004). The other reason might be due to the nitrogen concentration of leaves and stems in 2005, 

as shown in Table 2. As the increase of chlorophyll concentration causes increased reflectance in the 

visible regions and the movement of the red edge to longer wavelengths (Rock et al., 1988; 

Demetriades-shad et al., 1990), the position of the red edge in 2005 (around 720nm) was different 

from that in others (around 700nm). Therefore, not only the difference in the number of the sampled 

plots at the panicle initiation stage but also that in the nitrogen concentration might be simultaneously 

affected by the reflectance at the heading stage in 2005. 

 

 

Fig. 2 Hyperspectral reflectance of rice plants at the heading stage for three years. 
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3.4. Multiple linear regression (MLR) 

3.4.1. MLR modeling 

MLR analysis with the stepwise method was calculated using the reflectance and the measured 

nitrogen contents (Table 3).  

 

Table 3 Results of the MLR analysis with stepwise method using any combination of the three-year 

data. 

 2004 (n=40) 2005 (n=40) 2006 (n=38) 

R
2
(Adj R

2
) 0.510(0.483) 0.742(0.704) 0.691(0.673) 

RMSE 3.081 0.660 0.621 

RE 22.47 6.429 9.893 

Constant 18.37 -67.13 3.617 

Variables R710 -91.97 (-0.720) 
*a

 R719 -86.85 (-0.799) R719 -50.11 (-1.074) 

 R984 17.20 (0.330) R828 42.12 (0.595) R422 98.67 (0.461) 

   R481 1466 (2.871)   

   R473 -1481 (-2.942)   

   R414 263.8 (0.560)   

FCV 

RMSE 1.784 0.792 0.679 

RE 13.01 7.710 10.81 

 2004-2005 2004-2006 2005-2006 Total 

R
2
(Adj R

2
) 0.700(0.693) 0.941(0.934) 0.893(0.888) 0.901(0.893) 

RMSE 1.405 1.013 0.762 1.092 

RE 11.72 10.04 9.153 10.76 

Constant 23.96 -22.28 2.240 17.90 

Variables 

R710 -90.20 (-0.827) R398 -55.35 (-0.395) R911 20.33 (0.685) R728 -67.86 (-0.793) 

R984 13.70 (0.201) R473 523.9 (0.829) R728 -45.90 (-0.516) R490 247.0 (1.669) 

  R737 -173.8 (-2.130) R414 62.34 (0.227) R993 10.27 (0.259) 

  R819 121.7 (1.562) R947 -7.014 (-0.376) R938 5.678 (0.116) 

  R728 106.1 (1.234)   R947 -8.622 (-0.377) 

  R684 -297.7 (-0.430)   R892 52.01 (1.009) 

  R783 -105.8 (-1.184)   R883 -27.45 (-0.619) 

  R874 45.48 (0.817)   R439 -220.7 (-1.218) 

FCV 

RMSE 1.470 1.152 0.815 1.198 

RE 12.26 11.41 9.790 11.80 

Adj R
2
, Adjusted R

2
; RMSE, Root mean square of error [gm

-2
]; RE, Relative error [%]; FCV, Full-

cross validation. ,  
*a

: Standardized Coefficients 
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The accuracy of the single-year model was R
2
≥0.673, RMSE≤0.660 gm

-2
 and RE≤9.893%, except the 

2004 model. The accuracy of the 2004 model was less (R
2
=0.483, RMSE=3.081 gm

-2
 and 

RE=22.47%). When the two-year data models were established (2004-2005, 2004-2006 and 2005-

2006), accuracy of models was R
2
≥0.888, RMSE≤1.013 gm

-2
 and RE≤9.153%, except the 2004-2005 

model. One of the reasons that the 2004 and the 2004-2005 models had lower accuracy might be the 

number of suitable variables and their position. When each model was validated by full-cross 

validation, the accuracy was RMSE≤1.784 gm
-2

 and RE≤13.01% for the single-year models and 

RMSE≤1.470 gm
-2

 and RE≤12.93% for the multi-year models. When the total model was established 

using three years data, the accuracy was R
2
=0.893, RMSE=1.092 gm

-2
 and RE=10.76% with eight 

variables. In the case of the total model, the accuracy for validation was RMSE=1.198 g m
-2 

and 

RE=11.80%. Although the accuracy of the models was variable, the multi-year model included with 

the total model might be useful for predicting the nitrogen content at the heading stage. Moreover, the 

red edge having a sharp order-of-magnitude increase in leaf reflectance between approximately 700 

and 750 nm wavelength (Seager et al., 2005) might be important for estimating the nitrogen content 

at the heading stage because all models had more than one variable in the red-edge region and 

fluorescence bands belonging to chlorophyll-a are observed with maxima at 690 and 735 nm 

(Lichtenthaler, 1988).  

 

 
Fig. 3 Comparison of the standardized regression coefficient for each MLR model. 

 

The variables for each MLR model were compared to identify important variables (Fig. 3). The 

selected variables were centralized in the blue, red-edge regions and widely decentralized in the NIR 

regions.  
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Although the standardized regression coefficients in the NIR regions were mainly in positive values, 

those in red-edge were in negative values. However, the standardized regression coefficients in the 

blue regions coexisted in positive and negative values. The origin of blue fluorescence is still under 

discussion, but evidence is accumulating that associates it with non-photosynthetic parts of the plant 

tissue including cellular wall components or precursors, skin waxes and vacuolar metabolites (Moya et 

al., 1992). Moreover, there have been the several reports mentioning the importance of the blue 

regions in estimating plant growth (Chappelle et al., 1991; Stroppiana et al. 2009). 

 

3.4.2. Verification of MLR model 

Each MLR model was verified using the other year data (Table 4). When the 2004 model was 

verified using the nitrogen content in 2005 and 2006, the accuracy was RMSE≤2.63 gm
-2

 and 

RE≤25.6%. In the case of the 2005 model, the accuracy decreased as RMSE≥6.59 gm
-2

 and RE≥105%. 

When the 2006 model was verified, the accuracy was RMSE=7.22 gm
-2

 and RE=52.6% for the data in 

2004 and RMSE=1.27 gm
-2

 and RE=12.3% for the data in 2005. One of the reasons that the accuracy 

of the 2005 model decreased might be due to the difference in the reflectance between 2005 and the 

other years, as shown in Fig. 2. The reason that the accuracy of the 2006 model decreased for the data 

in 2004 might be due to the variable in the blue region that was selected as a variable in the 2006 

model but not in the 2004 model, as shown in Table 3.  

 

Table 4 Results of the verified error for each MLR model. 

MLR model 
Data 

2004 (40)
a
 2005 (40) 2006 (38) 

2004 (2)
b
 

RMSE
c
 · 2.63 gm

-2
 1.45 gm

-2
 

RE
d
 · 25.6% 23.1% 

2005 (5) 
RMSE 16.3 gm

-2
 · 6.59 gm

-2
 

RE 119% · 105% 

2006 (2) 
RMSE 7.22 gm

-2
 1.27 gm

-2
 · 

RE 52.6% 12.3% · 

2004-2005 (2) 
RMSE · · 2.58 gm

-2
 

RE · · 41.1% 

2004-2006 (8) 
RMSE · 19.1 gm

-2
 · 

RE · 186% · 

2005-2006 (4) 
RMSE 6.59 gm

-2
 · · 

RE 48.1% · · 
a
 Number of samples, 

b
 Number of variables, 

c
 RMSE mean square of error,  

d
 Relative error. 

 



 

 12 

When the two-year models were verified using the other year data, the accuracy was RMSE=2.58 

gm
-2

 and RE=41.1% for the 2004-2005 model, RMSE=19.1 gm
-2

 and RE=186% for the 2004-2006 

model and RMSE=6.59 gm
-2

 and RE=48.1% for the 2005-2006 model. The reason that the accuracy 

of the 2004-2006 model for the nitrogen content in 2005 decreased might also be influenced by the 

difference in the reflectance between 2005 and the other years. The accuracy of the validated multi-

year models was not stable because the accuracy of those models included not only a similarity of 

selected variables but also a difference of selected variables. Therefore it might be not suitable to 

predict the nitrogen content at the heading stage by the other year model when the selected variables 

are not similar to each other. 

 

3.5. Partial least squares regression (PLSR) 

3.5.1. PLSR modeling 

PLSR analysis with full-cross validation was calculated using the reflectance and the measured 

nitrogen contents (Table 5). The accuracy of the single-year model was R
2
≥0.762, RMSE≤1.042 gm

-2
 

and RE≤6.682% for the calibration.  

 

Table 5 Results of the PLSR analysis with full-cross validation using any combination of the three-

year data. 

 
2004 (n=40) 2005 (n=40) 2006 (n=38) 

Cal. Val. Cal. Val. Cal. Val. 

PCs 8 6 8 

Slope 0.805 0.614 0.763 0.609 0.850 0.745 

Offset 2.672 5.163 2.436 4.010 0.940 1.659 

R
2
 0.805 0.448 0.762 0.490 0.850 0.634 

RMSE 1.042 1.853 0.633 0.954 0.432 0.697 

Bias -8.6e-07 -0.124 -1.8e-06 -0.010 1.2e-06 0.058 

RE 6.598 13.51 6.161 9.285 6.882 11.10 

 
2004-2005 2004-2006 2005-2006 Total 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

PCs 6 3 3 4 

Slope 0.812 0.745 0.891 0.867 0.871 0.863 0.874 0.853 

Offset 2.252 3.040 1.100 1.224 1.070 1.131 1.275 1.485 

R
2
 0.812 0.699 0.891 0.850 0.872 0.845 0.874 0.837 

RMSE 1.113 1.418 1.372 1.611 0.837 0.923 1.227 1.401 

Bias -2.4e-08 -0.024 5.6e-07 -0.008 -8.7e-07 -0.008 6.6e-07 -0.006 

RE 9.279 11.83 13.59 15.96 10.05 11.08 12.08 13.80 

PCs, Number of latent variables; RMSE, Root mean square of error [gm
-2

]; RE, Relative error [%]. 
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However, the accuracy of the validation model was R
2
≥0.448, RMSE≤1.853 gm

-2
 and RE≤13.51%. 

These differences in the accuracy between the calibration and validation models might be influenced 

by the over-fitting of the calibration model. When the two-year data models were established, the 

accuracy of the calibration models was R
2
≥0.812, RMSE≤1.372 gm

-2
 and RE≤13.59%. The accuracy 

of the validation model was R
2
≥0.845, RMSE≤1.611 gm

-2
 and RE≤15.96%, except the 2004-2005 

model. One of the reasons that the 2004-2005 model had lower accuracy might be due to the slope and 

offset between calibration and validation. It might also be due to the difference and similarity of 

nitrogen content between 2004 and 2005 because a non-linear relationship between reflectance and 

nitrogen content might exist (Valkan Bilgili et al., 2010). When the total model was established using 

three years data, the accuracy was R
2
=0.837, RMSE=1.401 gm

-2
 and RE=13.80% with four latent 

variables. Although the accuracy of the PLSR models was variable, the multi-year model included 

with the total model might be useful to predict the nitrogen content at the heading stage, the same as 

the result of the MLR analysis. 

The regression coefficients for each PLSR model were compared to identify important variables 

(Fig. 4). The regression coefficients in the visible region for the single-year models were variable 

compared with those for the multi-year models, except the 2004-2005 model which had a peak in the 

green and red regions. The regression coefficient for the 2004 model had a different tendency 

compared to that of the others. This might be due to the difference in the vegetation growth, as shown 

in Table 2. The red-edge region was also selected as an important variable (Curran et al., 1991) as 

shown in the results of MLR analysis. However, the regression coefficients in the red-edge region for 

the multi-year models were decreased compared with those for the single-year models.  

 

Fig. 4. Comparison of the regression coefficients for each PLSR model. 
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Moreover, the patterns of the regression coefficients for the multi-year models depending on the 

reflectance were similar, except the 2004-2005 model. Therefore, to what extent each variable can 

explain the reflectance and nitrogen was investigated. 

The percentages of the explained X and Y variables were compared depending on the number of 

latent variables (Table 6). It was possible to explain more than 86% of X variables (the hyperspectral 

reflectance) and more than 77% of Y variables (the nitrogen content). However, in the case of the 

multi-year models, it was possible to explain more than 86% of X variables and 81% of Y variables. 

Moreover, it was possible to explain more than 86% of X variables and 74% of Y variables with only 

three latent variables. This means that three latent variables from hyperspectral reflectance could 

explain at least 74% of the nitrogen content of rice plants at the heading stage (Takahashi et al., 2000). 

Although the first latent variable in the 2005 model explained only 8% of the hyperspectral 

reflectance, it explained 52% of the nitrogen content at the heading stage. This might be due to the 

difference in the reflectance between 2005 and the other years, as mentioned before. 

 

Table 6 Percentages of the explained X and Y variables depending on the number of latent variables 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 Total PC1-PC3 

2004 
x 43 32 8 4 4 1 3 1 96 83 

y 30 22 7 7 5 7 1 2 81 59 

2005 
x 8 58 11 2 4 4   87 77 

y 52 3 6 12 3 1   77 61 

2006 
x 35 22 13 6 7 3 5 2 93 70 

y 40 20 11 4 3 4 1 2 85 71 

2004-2005 
x 92 3 2 1 1 0   99 97 

y 42 24 8 3 3 1   81 74 

2004-2006 
x 85 5 2      92 92 

x 67 19 3      89 89 

2005-2006 
x 77 3 6      86 86 

x 74 11 3      88 88 

Total 
x 66 25 3 1     95 94 

x 47 22 16 4     89 85 

PCs, latent variables in order. 

 

Therefore, the loading weights of latent variables depending on the reflectance for each PLSR 

model were compared (Fig. 5). The number of latent variables was compared up to the third one, 

because the latent variables of the 2004-2006 and 2005-2006 models had only three latent variables. 
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In the NIR region, there was a difference in the loading weights of the first latent variable between 

the single-year models and the multi-year models, except the 2005-2006 model (Fig. 5a). Moreover, 

the loading weights of the 2004-2006 and the total models were similar from visible to NIR regions. 

 

 

(a) Loading weights of 1
st
 latent variable 

 

(b) Loading weights of 2
nd

 latent variable 

 

(c) Loading weights of 3
rd

 latent variable 

Fig. 5 Comparison of the loading weights for each PLSR model  

depending on the main latent variables. 
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In the case of the second latent variable (Fig. 5b), there was a difference in the loading weights in the 

NIR region between the single-year and the multi-year models, except the 2005 model. However, the 

loading weights of the third latent variable in the NIR region were not different compared with that 

for the first and second latent variables. There was less variation of loading weights in the visible and 

red-edge regions than that in the NIR region. The variation of loading weights was more changeable 

from 900 nm to 1000 nm, the same as the regression coefficients in Fig. 4. The variation was 

evidently influenced by the water vapor absorption (Green et al., 1998). The similarities and 

differences of loading weights for each model depending on hyperspectral reflectance might have 

affected the regression coefficients and the accuracy of each model. 

 

3.5.2. Verification of PLSR model 

Each PLSR model was verified using the other year data (Table 7). When the 2004 model was 

verified using the data in 2005 and 2006, the accuracy was RMSE≥6.75 gm
-2

 and RE≥107%. In the 

case of the 2005 model, the accuracy was RMSE≥6.30 gm
-2

 and RE≥75.6%. When the 2006 model 

was verified using the other year data, the accuracy was RMSE=8.52 gm
-2

 and RE=62.2% for the 2004 

data, and RMSE=1.69 gm
-2

 and RE=16.5% for the 2005 data. One of the reasons for the decrease in 

the accuracy of the single-year models might be due to the difference in the regression coefficient, as 

shown in Fig. 4. 

 

Table 7 Results of the verified error for each PLSR model. 

PLSR model 
Data 

2004 (40)
a
 2005 (40) 2006 (38) 

2004 (8)
b
 

RMSE
c
 · 20.8 gm

-2
 6.75 gm

-2
 

RE
d
 · 203% 107% 

2005 (6) 
RMSE 10.4 gm

-2
 · 6.30 gm

-2
 

RE 75.6% · 100% 

2006 (8) 
RMSE 8.52 gm

-2
 1.69 gm

-2
 · 

RE 62.2% 16.5% · 

2004-2005 (6) 
RMSE · · 6.04 gm

-2
 

RE · · 96.1% 

2004-2006 (3) 
RMSE · 2.68 gm

-2
 · 

RE · 26.1% · 

2005-2006 (3) 
RMSE 6.71 gm

-2
 · · 

RE 48.9% · · 
a
 Number of samples 

b
 Number of latent variables 

c
 Root mean square of error 

d
 Relative error 

 



 

 17 

Moreover, it was also influenced by the difference in the reflectance and vegetation over three years. 

When the two-year models were verified using the other year data, the accuracy was RMSE=6.04 

gm
-2

 and RE=96.1% for the 2004-2005 model, RMSE=2.68 gm
-2

 and RE=26.1% for the 2004-2006 

model and RMSE=6.71 gm
-2

 and RE=48.9% for the 2005-2006 model. Although there was little 

difference in RMSE between the 2004-2005 and 2005-2006 models, RE for the 2004-2005 model 

was twice than that for the 2005-2006 model. It might be influenced by the variation of nitrogen 

content, because the nitrogen content in 2006 showed less variation than that in 2004. As a result of 

the verification, it might be possible to decrease the error when the model is estimated using the 

multi-year data. 

 

3.5.2. Comparison of MLR and PLSR models 

The accuracy of the MLR and PLSR models was compared. There was a different tendency in the 

important variables between the MLR and PLSR models. Although the important variables were 

selected in the near blue, red-edge and NIR regions in the MLR models (Fig. 3), there were no 

important variables in the near blue in the PLSR models, except the 2004 PLSR model (Fig. 4). In the 

single-year MLR and PLSR models, the accuracy of the verified 2004 model between the MLR 

(Table 4) and PLSR (Table 7) models had a different tendency even though the accuracy of the other 

models was similar. The RE of the 2004 PLSR model was more than four times that of the 2004 

MLR model. One of the reasons might be the possibility of over-fitting for the 2004 PLSR model, as 

shown in Table 5. Moreover, the pattern of regression coefficient between 2004 and the other years 

was different from 700 nm to 900 nm. This might reflect an influence not of the loading weights from 

the first to third latent variables but those from the fourth to eighth latent variables, as shown in Fig. 5 

and Table 6.  

In the case of the multi-year MLR and PLSR models, the nitrogen content in 2006 was 

overestimated by the 2004-2005 models not only MLR but also PLSR (Fig. 6). However, the nitrogen 

content in 2005 was overestimated by the 2004-2006 MLR model but underestimated by the 2004-

2006 PLSR model. In the case of the nitrogen content in 2004, it was underestimated by the 2005-

2006 models not only in MLR but also in PLSR. In the 2004-2006 MLR model, the accuracy was not 

suitable for verifying the nitrogen content in 2005. Although the position of the variables between the 

2005 MLR model and the 2004-2006 MLR model was not different, the variables were concentrated 

in the blue region in the 2005 model but those were in the red-edge and NIR regions in the 2004-

2006 MLR model, as shown in Table 3. The pattern of the regression coefficients between the 2004-

2006 PLSR model and the 2005 PLSR model was different as shown in Fig. 4. This might be due to 

the difference in the loading weights in not the third latent variable but in the first and second 

variables as shown in Fig. 5. 
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(a) Verified 2006 data using the 2004-2005 model  

    

(6) Verified 2005 data using the 2004-2006 model 

    

(c) Verified 2004 data using the 2005-2006 model 

Fig. 6. Comparison of the error between MLR (left) and PLSR (right) models. 

 

When the single-year MLR models were verified using the other year data, RMSE was from 1.27 

gm
-2

 to 16.3 gm
-2

 and RE was from 12.3% to 119%. In the case of the single-year PLSR models, 

RMSE was from 1.69 gm
-2

 to 20.8 gm
-2

 and RE was from 16.5% to 203%.  
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The accuracy of the single-year MLR models was better than that of the single-year PLSR models. 

When the multi-year MLR models were verified using the other year data, RMSE was from 2.58 gm
-2

 

to 19.1 gm
-2

 and RE was from 41.1% to 186%. In the case of the multi-year PLSR models, RMSE 

was from 2.68 g m
-2

 to 6.71 g m
-2

 and RE was from 26.1% to 96.1%. The accuracy of the multi-year 

PLSR models was better than that of the multi-year MLR models. Therefore, it might be suitable to 

predict the nitrogen contents at the heading stage using the multi-year PLSR model because PLSR 

models have more sensitive than MLR models for the inhomogeneous results. However, it might be 

necessary to accumulate the reflectance and the nitrogen content of rice plants at the heading to 

increase the accuracy of models.  

 

3.6. General-purpose prediction model 

The validated total model of MLR and PLSR was compared (Fig. 7). The nitrogen content in 2005 

might play an important role; had the 2005 data not existed, the 2004 and 2006 data would have been 

completely separated into two groups. The accuracy was similar to each other as RMSE=1.198 gm
-2

, 

RE=11.80% for the MLR model and RMSE=1.401 gm
-2

, RE=13.80% for the PLSR model. However 

PLSR model might be more suitable than MLR model in order to predict the nitrogen contents at the 

heading stage using the hyperspectral reflectance because not only the robust of PLSR models but 

also co-linearity in MLR models (Wold et al., 2001). Moreover, PLSR models have more sensitive 

than MLR models for the inhomogeneous results as shown in the results of verification using multi-

year models. It might be one of the reasons that PLSR models are better than MLR models when the 

biophysical, physiological or biochemical characteristics are estimated by hyperspectral reflectance.  

 

  

(a) MLR analysis                       (b) PLSR analysis 

Fig. 7. General-purpose prediction model of MLR and PLSR analysis for nitrogen content at the 

heading stage. 
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Therefore, it is important to cumulate the nitrogen content and the hyperspectral reflectance at the 

heading stage to establish a general-purpose prediction model. Even though there were differences in 

the environmental variables; for weather conditions and amount of nitrogen fertilizer, it was possible 

to establish a general-purpose nitrogen content prediction model using airborne hyperspectral remote 

sensing. 

There were still several problems to increasing the precision of the model. The reflectance of rice 

plants taken by the airborne hyperspectral sensor consisted of a mixture of pixels with rice plants and 

the others, because of its spatial resolution. A ground-based hyperspectral image might be suitable to 

clearly analyze the absolute reflectance of the objective and compare it with a mixed reflectance 

(Park et al., 2007; Okamoto et al., 2007). Moreover, a coordinated program may be needed in which 

understanding of the interaction between radiation and foliar chemistry can progress from leaf model 

to canopy model to field experiment (Curran, 1989). It would also be necessary to validate the 

general-purpose prediction model using data from different locations, seasonal stages and vegetation 

conditions (Tian et al., 2005; Ryu et al., 2009). When the general-purpose protein prediction model is 

established, it might be possible to harvest the rice plants depending not only on the quantity but also 

on the quality of rice (Ryu et al., 2010b).  

 

4. Summary and conclusions 

Airborne hyperspectral remote sensing was adapted to establish a general-purpose prediction model 

for the nitrogen content of rice plants at the heading stage using three years of data. There was a 

difference in the accumulated daily radiation (ADR) and the effective cumulative temperature (ECT) 

between 2004 and other years. Because of the difference in dry mass and nitrogen concentration, there 

was also significant difference in nitrogen content among the three years. The reflectance of rice plants 

at the heading stage was influenced by the difference in the number of the sampled plots at panicle 

initiation stage and the nitrogen concentration.  

In the MLR analysis, it was possible to explain the nitrogen content using hyperspectral reflectance 

as more than 51% of it by the single-year models and 70% of it by the multi-year models. The 

accuracy of the total model was R
2
=0.893, RMSE=1.092 gm

-2
 and RE=9.153% with eight variables. 

The accuracy of the validated models was not stable because the similarity and difference in the 

selected variables between each model. The selected important variables were centralized in the blue, 

red-edge regions and widely decentralized in the NIR region. 

In the PLSR model, it was possible to explain the nitrogen content using hyperspectral reflectance 

as more than 76% of it by the single-year models and 81% of it by the multi-year models. The 

accuracy of the total model was R
2
=0.837, RMSE=1.401 gm

-2
 and RE=11.23% with four latent 

variables. The accuracy of the validated models was not stable but better than that of MLR models.  
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The similarities and differences of loading weights for each model depending on hyperspectral 

reflectance might have affected the regression coefficients and the accuracy of each model.  

The accuracy of the single-year MLR models was better than that of the single-year PLSR models. 

However, the accuracy of the multi-year PLSR models was better than that of the multi-year MLR 

models. PLSR model might be more suitable than MLR model to predict the nitrogen contents at the 

heading stage using the hyperspectral reflectance because not only the robust of PLSR models but 

also the sensitivity for the inhomogeneous results. Even though there were differences in the 

environmental variables (CDR and ECT), it was possible to establish a general-purpose prediction 

model for the nitrogen content at the heading stage using airborne hyperspectral remote sensing. 
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