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Abstract

The FR-operator is an operator that can completely describe the frequency domain

nature of sampled-data systems. This thesis deals with three topics involving the

use of the FR-operator for understanding the frequency-domain characteristics of

sampled-data systems: (i) computation of the frequency response gain of sampled-

data systems; (ii) sensitivity and complementary sensitivity reduction problems of

sampled-data systems; and (iii) frequency response of sampled-data systems using

a time-sharing multirate sample-hold scheme.

First, we review the notion of the FR-operator and provide a definition of the

frequency response of sampled-data systems. We also introduce some useful prop-

erties of FR-operators. Based on these fundamental results, we provide an exact

computation method for the frequency response gain under the assumption that

P11(s) = 0 in the generalized plant setting.

In approaching topic (i), we derive a bisection method for computing the fre-

quency response gain of sampled-data systems that do not necessarily satisfy the

condition P11(s) = 0. We first give the notation used and provide some useful results

for the infinite-dimensional congruent transformation of operators. Next, by using

these results, we consider the decision of whether the frequency response gain at a

given angular frequency is smaller than a given positive number γ. We show that this

decision is reduced to the problem of counting the number of negative eigenvalues

of a certain block-diagonal, self-adjoint infinite-dimensional matrix. Related issues

are also presented, including a lifting-based algorithm for the bisection method, a

one-dimensional search algorithm, relations to the several methods of solving the

H∞ problem of sampled-data systems, and possible applications of the congruent

transformation to systems and control theory.

Moving on to topic (ii), we clarify several relationships between the SR/CSR

problems of a given sampled-data system and those of its ‘hold equivalent’ dis-

cretized system (called the naively discretized system), where SR and CSR stand

for sensitivity reduction and complementary sensitivity reduction. First, after sum-

marizing the results for inner-outer factorization as well as the Nevanlinna problem

and its solution, we consider the SR/CSR problems of naively discretized systems
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and show several interesting results for the best achievable performances in these

problems by using the coprime factorization approach. Next, we introduce the

doubly sensitivity-preserving (DSP) discretized system and show that the SR/CSR

problems of sampled-data systems can be equivalently reduced to those of the DSP

discretized system. Based on this result, we show the relationships between the

SR/CSR problems of sampled-data systems (which are equivalent to those of DSP

discretized systems) and the corresponding problems of the naively discretized sys-

tems. A quantitative relationship between the best achievable performances of the

SR and CSR problems of sampled-data systems is also clarified.

Finally, for topic (iii), we give the FR-operator-based representation for the

frequency-domain characteristics of sampled-data systems using a time-sharing mul-

tirate sample-hold scheme. First, we introduce the time-sharing multirate sample-

hold scheme together with our motivation for introducing such a control scheme.

Next, using the notion of FR-operators, we provide a frequency domain representa-

tion of a sampled-data system using the time-sharing multirate sample-hold scheme

and, moreover, derive some methods for computing the frequency response gain of

the sampled-data system. Finally, we show that such a sample-hold scheme can be

applied to solving the reliable stabilization problem, which is known to be a hard

problem under the use of LTI controllers.
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Notations and Definitions

R Set of real numbers.

Rn Set of real vectors of size n.

Rn×m Set of real matrices of size n×m.

L2[0, τ) Set of square Lebesgue-integrable functions on [0, τ).

l2 Set of square summable sequences.

0 Zero matrix of appropriate size.

In Identity matrix of size n. The subscript n is omitted

when the size is not relevant or can be determined from

the context.

I Identity on l2.

AT Transpose of the matrix A.

A∗ Complex conjugate transpose of the matrix A.

A−1 Inverse of the matrix A.

σi(A) The ith largest singular value of the matrix A.

trace (A) Trace of the matrix A.

X (̃s) XT (−s).

X (̃z) XT (z−1).

Z[X(s)] z-transform of X(s).

D Open unit disc in the complex plane.

D̄ Closed unit disc in the complex plane.

R Set of rational functions analytic on D̄, or set of matrices

whose every entry belongs to R .[
A B

C D

]
Transfer matrix C(sI − A)−1 + D (continuous-time sys-

tem), or transfer matrix C(zI −A)−1 + D (discrete-time

system).

Fl

([
P11(·) P12(·)
P21(·) P22(·)

]
, Q(·)

)
The lower linear fractional transformation given by

P11(·) + P12(·)Q(·)(I − P22(·)Q(·))−1
P21(·).

v
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Chapter 1

Introduction

A control system using a digital controller is called a digital control system. In

most cases, the plant to be controlled is a continuous-time system, whereas a digital

controller is a discrete-time system. Therefore, a digital control system is a hybrid

system that involves both continuous-time and discrete-time signals. In dealing with

such a digital control system, the system obtained by the following procedure has of-

ten been introduced. The continuous-time outputs are replaced with discrete-time

outputs produced by sampling the original continuous-time outputs; at the same

time, the continuous-time inputs are replaced with signals produced by holding

discrete-time inputs. If we observe the behavior of the system only at the sampling

instants and do not take into account the behavior between the sampling instants

(i.e., the “intersample behavior”), we can regard the system as a discrete-time sys-

tem. Such a discrete-time system has been exploited for analysis and synthesis of

digital control systems. However, such an approach to digital control systems causes

serious problems, as explained below.

In Chen and Francis [16], the optimal tracking problem for step input was con-

sidered. It was shown that the above approach to a digital control system attains

complete tracking at the sampling instants but sometimes causes considerable in-

tersample ripple. Another example was given by Hara et al. [38], who showed

that a robust stability margin against the plant uncertainty estimated by the above

discrete-time system leads to a “too optimistic” result. These two problematic re-

sults can be attributed to an inappropriate perspective on digital control systems.

In considering the optimal tracking problem, the original digital control system was

handled only in an approximate manner by completely ignoring the intersample

behavior of the digital control system. In estimating the robust stability margin

against plant uncertainty, the above handling of the digital control system regards

the uncertainty of a continuous-time plant as a cascade connection of a hold circuit,

an uncertain discrete-time system, and a sampler due to the introduction of ficti-
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tious hold and sampling devices. However, such an uncertainty does not reflect the

actual uncertainty of the continuous-time plant. Therefore, in order to resolve the

above problems, we have to deal with digital control systems as they are, that is,

we should not use an approximative discrete-time system obtained by introducing

fictitious sample and hold devices but we should take into account, directly and

exactly, the intersample behavior of the original digital control system. When we

deal with digital control systems from this standpoint, we refer to the digital control

system as a sampled-data system. This thesis is devoted to studying sampled-data

systems, particularly from the frequency-domain point of view.

The notion of the frequency response plays an important role in various areas of

science and engineering such as physics, chemistry, signal processing, communica-

tions, and system control. In system and control engineering, the Bode plot obtained

by plotting the frequency response gains against frequencies provides many insights

to engineers for understanding the exact frequency-domain characteristics of a given

system. Furthermore, the frequency response has close relationships to many con-

trol problems such as the sensitivity reduction problem, the robust stability problem,

the filtering problem, and, more generally, H2 and H∞ problems [17]. Therefore,

the frequency response is also utilized as a useful tool for formulating and solving

practical problems in designing control systems.

For continuous-time systems and discrete-time systems, the notion of the fre-

quency response is well-established, and it has been exploited for analysis and syn-

thesis of control systems. On the other hand, for sampled-data systems, the notion

of the frequency response taking into account the intersample behavior and influ-

ence of aliasing exactly was not well-established for a long time. The reason is as

follows: In the classical theory of sampled-data control, e.g., Jury [54], it is well-

known that the frequency-separation property is lost when the intersample behavior

is taken into account. Specifically, a sampled-data system maps a single sinusoidal

input exp(jϕt) to a continuous-time output consisting of many sinusoidal compo-

nents exp(j(ϕ + mωs)t); m = 0,±1, · · · in the steady-state, where ωs := 2π/τ is

the sampling angular frequency under the given sampling period τ . Due to this

“multi-frequency response” nature, it has been difficult to define a single function of

ϕ that completely describes the frequency-domain characteristics of sampled-data

systems. Another important reason making an exact understanding of sampled-

data systems difficult is that they become periodically time-varying even if both the

continuous-time plant and the discrete-time controller are time-invariant, and thus,

we cannot define a transfer function as in the cases of continuous-time systems and

discrete-time systems.

In addressing the problem of defining the frequency response of sampled-data
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systems that completely describes the intersample behavior and the influence of

aliasing, Yamamoto and Khargonekar [81] and Araki et al. [8] provided interesting

methods based on the lifting approach and the FR-operator approach, respectively.

In Yamamoto and Khargonekar [81], a function space model of a given sampled-

data system via lifting is employed, that is, a continuous-time signal is regarded as

a sequence of functions defined on [0, τ), and the sampled-data system is regarded

as a mapping defined on the set of sequences of functions. The lifting technique

enables us to view the sampled-data system as a time-invariant discrete-time system,

and thus the notion of the transfer function Q(z), which is an operator defined

on infinite-dimensional function space, can be introduced even for sampled-data

systems as in the case of discrete-time systems. Furthermore, it was shown that

Q(ejϕτ ) can be regarded as the frequency response operator of the sampled-data

system and that the frequency response gain at angular frequency ϕ is defined as

the norm of Q(ejϕτ ) induced on L2[0, τ), i.e., ‖Q(ejϕτ )‖. The lifting approach was

first introduced by Yamamoto [79], and it has been applied to various problems

of sampled-data systems, e.g., the tracking problem by Yamamoto [80], the H∞

problem by Bamieh and Pearson [10], Toivonen [74] and Hayakawa et al. [40], and

the H2 problem by Bamieh and Pearson [9], to name a few.

An alternative approach for defining the frequency response gain of sampled-data

systems was developed by Araki et al. [8]. To resolve the problem due to the “multi-

frequency response” nature described above, Araki et al. [8] introduced the set Xϕ

of all signals that consist of sinusoidal components exp(j(ϕ+mωs)t); m = 0,±1, · · ·
and that have finite power. They showed that a stable sampled-data system with a

strictly proper pre-filter before the sampler can map Xϕ into Xϕ in the steady-state.

This means that the frequency-separation property is recovered in a generalized

sense, if all signals of Xϕ are treated as a group. Based on this result, the sampled-

data system is associated with an operator from Xϕ to Xϕ. The operator is referred

to as the FR-operator, and its matrix expression denoted by Q(jϕ) is called the

FR-matrix, where FR stands for Frequency Response. Since Xϕ can be related

with l2 in an isometrically isomorphic fashion, Q(jϕ) is regarded as a mapping

on l2. Accordingly, the frequency response gain at angular frequency ϕ is defined

as the norm of Q(jϕ) induced on l2, i.e., ‖Q(jϕ)‖l2/l2 . In Yamamoto and Araki

[78], the relationships between the frequency response operator Q(ejϕτ ) and the

FR-matrix Q(jϕ) are clarified, and it is shown that the frequency response gain

defined by Q(ejϕτ ) and that by Q(jϕ) coincide with each other. The FR-operator

was first introduced by Araki and Ito [7], and it has been applied to fundamental

problems of sampled-data systems such as the H2 problem by Hagiwara and Araki

[31], a Nyquist-type stability condition by Hagiwara and Araki [33], and the absolute
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stability by Hagiwara and Araki [30].

In addition to the above two approaches, there are some important approaches

that can deal with sampled-data systems taking the intersample behavior into ac-

count. In Hara and Kabamba [37] and Kabamba and Hara [57], the hybrid state-

space representation was introduced to describe sampled-data systems. The hybrid

state involves the state of the continuous-time plant and that of the discrete-time

controller, and thus it contains both the continuous-time signal and the discrete-time

signal. The most important contribution of these works is that they were the first to

provide a method for solving the H∞ problem of sampled-data systems by showing

that the H∞ problem of sampled-data systems can be equivalently reduced to that

of discrete-time systems. Sivashankar and Khargonekar [69] and Sun et al. [72]

introduced a system whose state varies discontinuously at sampling instants. The

system is referred to as a jump system, and it has been applied to the H∞ problem

of sampled-data systems. The jump system was also used to solve the H2 problem

of sampled-data systems by Ichikawa and Katayama [42]. An interesting feature of

the jump-system-based approach is that it directly solves problems by using ma-

trix Riccati equations obtained by the continuous-time plant data, which contrasts

with other existing approaches in which the problems of sampled-data systems are

reduced to those of equivalent discrete-time systems. More interestingly, Sun et

al. [72] showed that this approach enables us to design not only a discrete-time

controller but also a hold function.

All of the above approaches enable us to deal with sampled-data systems taking

into account the intersample behavior and the influence of aliasing directly and

exactly, and thus they have provided us with many fruitful results on analysis and

synthesis of sampled-data systems. However, several important problems still remain

unsolved for sampled-data systems. Among these problems, this thesis is devoted

to investigating three issues:

(i) Computation of the frequency response gain of sampled-data systems.

(ii) Sensitivity and complementary sensitivity reduction problems of sampled-data

systems.

(iii) Frequency response of sampled-data systems using a time-sharing multirate

sample-hold scheme.

Since these three problems are closely related to the frequency-domain characteris-

tics of sampled-data systems, it is appropriate to use a frequency-domain approach.

In this thesis, we apply the FR-operator simply because some arguments presented

here (particularly in Chapter 4) seem to belong to a class for which intuitive ideas
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can work out relatively more easily within such an approach. Therefore, we have

decided to unify the discussions in this thesis to use of the FR-operator approach,

but this certainly does not imply that parallel arguments are difficult to develop for

the lifting approach. Indeed, a lifting-based counterpart to the FR-operator-based

bisection algorithm for computing the frequency response gain of sampled-data sys-

tems can be obtained in a similar manner as shown in Sec. 3.3.1 and Ito et al.

[48].

In the following, we describe the above three issues in detail.

Computation of the frequency response gain of sampled-data systems.

As mentioned above, both the frequency response operator Q(ejϕτ ) given by Ya-

mamoto and Khargonekar [81] and the FR-matrix Q(jϕ) given by Araki et al. [8]

are infinite-dimensional operators, and thus the computation of the frequency re-

sponse gain of sampled-data systems is a nontrivial matter.

A general computation method for the frequency response gain of sampled-data

systems was first given in Yamamoto [77] and in Yamamoto and Khargonekar [81].

This method computes the frequency response gain γϕ at the angular frequency ϕ by

searching for the maximum value γ such that a γ-dependent generalized eigenvalue

problem has an eigenvalue ejϕτ . In spite of its theoretical significance, it is necessary

to check whether ejϕτ is exactly equal to an eigenvalue for each step of the search

with respect to γ. However, there is no obvious way to carry out such a check in a

numerically reliable fashion. A few other methods are able to compute the frequency

response gain approximately (e.g., Araki et al. [8], Hara et al. [39], Yamamoto et

al. [82], Yamamoto et al. [83]), but they require us to compute the norm of a

huge matrix as we increase the degree of the approximation, and this is undesirable

from the viewpoints of computational load and numerical reliability; to satisfy those

requirements, a bisection algorithm for computing the frequency response gain of

sampled-data systems would be highly desirable. However, the previous attempts to

derive such an algorithm (e.g., Hagiwara et al. [29], Hara et al. [39]) have been only

partially successful because their methods require certain conditions, which are often

overly restrictive. Therefore, deriving a complete bisection algorithm without any

restrictive conditions has been one of the most important open problems in modern

sampled-data control theory. As one of the major contributions of this thesis, we

propose for the first time a bisection algorithm for computing the frequency response

gain of sampled-data systems without any restrictive conditions. This enables us

to compute the frequency response gain of sampled-data systems with any desired

accuracy, and thus we can completely grasp the frequency-domain characteristics of

a given sampled-data system.
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Essentially, deriving a bisection algorithm is reduced to deciding whether the fre-

quency response gain at each frequency is smaller than a given positive number γ. In

this thesis, we exploit useful properties of the infinite-dimensional congruent trans-

formation (i.e., the Schur complement arguments and the Sylvester law of inertia) to

reduce this binary decision to the task of counting up the number of negative eigen-

values of a certain block-diagonal self-adjoint operator. This operator consists of two

γ-dependent blocks: a finite-dimensional matrix block and an infinite-dimensional

matrix block. The former can be computed with the finite-dimensional state-space

matrices of the sampled-data system by an exponentiation formula, and thus its

negative eigenvalues are easy to count. On the other hand, regarding the infinite-

dimensional matrix block, we can derive an exact and effective method for counting

up the number of negative eigenvalues in the block. Consequently, we can readily

obtain a bisection algorithm for the computation of the frequency response gain. We

also provide possible applications of infinite-dimensional congruent transformation

to various areas of system and control theory.

The above bisection method was first reported in [45]. Further studies on the

bisection algorithm and the related issues were reported in [47]. These studies have

been published in [48].

Sensitivity and complementary sensitivity reduction problems of sampled-

data systems.

Our investigations into the sensitivity reduction (SR) and complementary sensitivity

reduction (CSR) problems of sampled-data systems are motivated by the recent

studies on the problem of what determines the best achievable performance of a

control system. For example, the H2 tracking performances of continuous-time

systems, discrete-time systems, and sampled-data systems were studied in Chen

and Toker [14], Okajima et al. [66], and Chen et al. [15], respectively, and these

works derived elegant analytic solutions of the best achievable performance of control

systems.

On the other hand, concerning the SR/CSR problems of sampled-data systems,

analytic solutions of the best achievable performance have not yet been derived. Of

course, we could obtain the best achievable performance of SR/CSR problems of

sampled-data systems numerically by formulating the problem as the H∞ problem

of sampled-data systems and by applying a well-established solving method (e.g.,

Kabamba and Hara [57], Bamieh and Pearson [10], Hayakawa et al. [40], Mirkin

and Tadmor [64]). However, such a numerical method would not provide us with a

clear insight into what determines the best achievable performance of sampled-data

systems.
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For the SR/CSR problems of the discrete-time system obtained by the ‘hold

equivalent’ discretization of the original sampled-data system, pioneering work was

done by Sung and Hara [73], where several interesting results were derived, in-

cluding integral constraints on the sensitivity and complementary sensitivity and

lower bounds of the best achievable performance for the SR and CSR problems.

The results of the integral constraint on the sensitivity and the lower bound of the

best achievable performance for the SR problem were extended to multiple-input

multiple-output cases by Hara and Sung [36]. Several results of these works were

obtained by a “transfer matrix-based approach,” in which the coprime factorization

and problem formulation via the Nevanlinna problem, as well as its solution us-

ing the Pick matrix, play fundamental roles. For obtaining the analytic solutions of

the SR/CSR problems of sampled-data systems, the transfer matrix-based approach

would also be appropriate, but such an approach has not been developed because the

infinite-dimensionality nature of sampled-data systems would make such a strategy

extremely difficult.

In this thesis, in order to overcome the difficulty due to the infinite-dimensionality

nature of sampled-data systems, we first show that, as far as the SR and CSR

problems are concerned, we can have a discretization method to reduce them to

equivalent discrete-time problems. This gives a discretized system that we call the

doubly sensitivity-preserving (DSP) discretized system, which can be used for both

the SR and CSR problems of sampled-data systems. For the derivation of the

DSP discretized system, the FR-operator approach would be helpful. Through a

comparison between the sensitivity transfer matrix of a discrete-time system and

the sensitivity FR-operator of a sampled-data system, we can infer the condition

that should be satisfied by a DSP discretized system. This is one of the advantages

of the FR-operator approach.

On the other hand, we refer to the discretized system obtained by ‘hold equiv-

alent’ discretization as the naively discretized system. In this thesis, we consider

the SR/CSR problems of sampled-data systems by applying the transfer-matrix-

based approach to the DSP discretized system and clarify important relationships

between the DSP discretized system and the naively discretized system. The con-

tribution of this part is not only clarifying the relationships between the SR/CSR

problems of sampled-data systems and those of the naively discretized systems but

also providing a fundamental basis for dealing with SR/CSR problems of sampled-

data systems. The method presented in this part will be useful for further study on

the best achievable performance of sampled-data systems.

The notion of DSP discretized systems and that of the aliasing factors were first

introduced in [41]. The properties of aliasing factors and their relationships to the
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best achievable performance were reported in [50] and [51]. The studies related to

these topics have been published in [52] and [53].

Frequency response of sampled-data systems using time-sharing multi-

rate sample-hold scheme.

It is well known that non-standard sample-hold schemes, such as generalized holds/samplers

and multirate holds/samplers, make it possible for us to solve various problems that

are difficult or impossible to solve by the standard sample-hold scheme using the

zero-order hold and the ideal sampler. For example, the following problems have

been shown to be easily solved under mild conditions by using non-standard sample-

hold schemes: strong stabilization, simultaneous stabilization, exact model match-

ing, exact linearization, and adaptive control (e.g., Araki [2], Araki and Hagiwara

[3], Araki and Hagiwara [4], Araki et al. [5], Chammas and Leondes [13], Hagi-

wara and Araki [26], Hagiwara and Araki [27], Hagiwara et al. [32], Kabamba [55],

Kabamba and Yang [56], Khargonekar et al. [58], Khargonekar and Poolla [59],

Ortega and Kreisselmeyer [67]). However, the frequency-domain characteristics of

sampled-data systems using such non-standard sample-hold schemes have not been

fully studied due to the lack of a useful tool for completely describing the frequency

domain nature of these systems.

One of the main contributions of this thesis is to provide a fundamental tool

for studying frequency-domain characteristics of sampled-data systems using non-

standard sample-hold schemes. In particular, by applying the FR-operator-based

approach, we provide a frequency domain representation for the sampled-data sys-

tem using a “time-sharing multirate sample-hold scheme.” This scheme is a special

kind of control scheme that uses a multirate sample-hold scheme, where “multirate”

implies that the sampler and the hold operate with different periods and “time-

sharing” implies that the manipulation of the plant input and the detection of the

plant output work at separate time intervals. We also provide a bisection method for

computing the frequency response gain of sampled-data systems using a time-sharing

multirate sample-hold scheme. The derivation is based on the infinite-dimensional

congruent transformation approach used in the study of issue (i). A computation

method based on the norm-equivalent discrete-time system is also provided for a

class of sampled-data systems.

Since the time-sharing multirate sample-hold scheme can be regarded as an ex-

tension of existing multirate control schemes, the technique used for deriving the

frequency-domain representation of the sampled-data system using the time-sharing

multirate sample-hold scheme can also be applied in deriving the frequency-domain

representation of sampled-data systems using existing multirate control schemes.
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Through pursuing our study of issue (iii) in this way, we provide a fundamental ba-

sis to consider the frequency-domain characteristics of sampled-data systems using

non-standard sample-hold schemes.

As an application of the time-sharing multirate sample-hold scheme, we consider

the reliable stabilization problem, in which we are to find a set of controllers that

stabilize a given plant when they all act together, as well as when any one of them

fails. It was shown in Vidyasagar and Viswanadham [76] and Minto and Ravi [62]

that when linear time-invariant (LTI) controllers are employed, strong stabilizabil-

ity (e.g., Vidyasagar [75]) of the plant is necessary for reliable stabilization under

a two-controller configuration. Concerning the reliable stabilization using LTI con-

trollers under a configuration using more than two controllers, neither solvability

conditions nor design methods have been obtained so far. We show that the reliable

stabilization problem under an N -controller configuration with N ≥ 2 is solvable

and that controllers achieving reliable stabilization can be designed provided that

the time-sharing multirate sample-hold scheme is employed.

The notion of the time-sharing sample-hold scheme was first introduced in [43],

and its application to reliable stabilization was reported in [44]. The studies related

to this topic have been published in [46] and [49].

This thesis is organized as follows:

In Chapter 2, following the arguments in Araki et al. [8], we review the notion

of the FR-operator, and provide a definition of the frequency response of sampled-

data systems. We also introduce useful properties of FR-operators. Based on these

fundamental results, we provide an exact computation method for the frequency

response gain under the assumption that P11(s) = 0 in the generalized plant setting.

The technique used for the derivation of the method is fundamental to deriving

related results in the later chapters.

In Chapter 3, we derive a bisection method for computing the frequency response

gain of sampled-data systems that do not necessarily satisfy the condition P11(s) = 0.

We first give the notation used and provide some useful results for the infinite-

dimensional congruent transformation of operators. Next, by using these results, we

show that the decision of whether the frequency response gain at a given angular

frequency is smaller than a given positive number γ is reduced to the problem of

counting the number of negative eigenvalues of a certain block-diagonal self-adjoint

infinite-dimensional matrix. Related issues are also presented, including a lifting-

based algorithm for the bisection method, a one-dimensional search algorithm, the

relationship to the several methods for solving the H∞ problem of sampled-data

systems, and possible applications of the congruent transformation to systems and

control theory. Finally, we evaluate the proposed method through a comparison
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with existing methods.

In Chapter 4, we consider the sensitivity reduction (SR) and complementary

sensitivity reduction (CSR) problems of sampled-data systems by using the notion

of FR-operators. First, after summarizing the results on inner-outer factorization

and the Nevanlinna problem and its solution, we consider the SR/CSR problems of

naively discretized systems and show several interesting results for the best achiev-

able performance in these problems by using the coprime factorization approach.

Next, we introduce the doubly sensitivity-preserving discretized system, abbrevi-

ated as DSP discretized system, and show that the SR/CSR problems of sampled-

data systems can be equivalently reduced to those of the DSP discretized system.

Based on this result, we show the relationship between the SR/CSR problems of

sampled-data systems (equivalent to those of DSP discretized systems) and the cor-

responding problems of the naively discretized systems. The relationship between

the best achievable performances of the SR and CSR problems of sampled-data

systems is also clarified.

In Chapter 5, we give the FR-operator-based representation for the frequency-

domain characteristics of sampled-data systems using the time-sharing multirate

sample-hold scheme. First, we introduce the time-sharing multirate sample-hold

scheme together with the motivation for introducing such a control scheme. Next,

using the notion of FR-operators, we provide a frequency-domain representation

of the sampled-data system using the time-sharing multirate sample-hold scheme

and derive methods for computing the frequency response gain of such a system.

Finally, we show that this sample-hold scheme can be applied to solving the reliable

stabilization problem, where the result for decomposition of a matrix into the sum of

stability matrices plays a key role in deriving the solvability condition of the reliable

stabilization problem.

Chapter 6 offers our conclusions, where we summarize the results obtained in

this thesis and discuss future topics.



Chapter 2

Frequency Response and

FR-Operator of Sampled-data

Systems

The purpose of this chapter is to provide several fundamental notions for develop-

ing frequency domain theory of sampled-data systems that enables us to deal with

intersample behavior and the influence of aliasing directly and exactly. The notions

introduced in this chapter play significant roles, and are frequently used throughout

this dissertation. Among them, the frequency response of sampled-data system is an

important notion as well as useful tool, since it has close relationships, e.g., to the

H2 and H∞ problems of sampled-data systems, the robust stability problem against

LTI perturbations, and the digital re-design of continuous-time controllers. Such a

notion has been introduced with the lifting approach by Yamamoto and Khargonekar

[81], and independently with an FR-operator approach by Araki et al. [8]. In both

approaches, an operator that completely characterizes the frequency-domain nature

of sampled-data systems is introduced, and hence, by using the operator, we can

develop a frequency domain theory that completely reflects the intersample behavior

and the influence of aliasing. In this thesis, we apply FR-operator approach.

Following the arguments in [8], this chapter introduces the notion of the FR-

operator, and provides a definition of the frequency response of sampled-data sys-

tems. We also clarify the useful properties of FR-operators. Here, we only state

these results without proofs; for the detailed proofs and derivations, see the earlier

study [8]. This chapter also provides a method for computing the frequency response

gain of a class of sampled-data systems proposed by Hagiwara et al. [29]. The tech-

nique used for the derivation of the method is fundamental for deriving other related

results appearing in the later chapters, and thus we provide the detailed derivation

for the computation method. Numerical examples are also studied.

11
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2.1 Basic Concept behind Defining the Frequency

Response of Sampled-data Systems

In this section, we state the basic idea for defining the frequency response gain

of sampled-data systems. Before considering sampled-data systems, however, we

briefly summarize the frequency response of continuous-time systems. It is well

known that when we input the sinusoidal signal exp(jϕt) to a stable finite-dimensional

linear time-invariant (FDLTI) continuous-time system with the transfer matrix G(s),

we obtain the sinusoidal output G(jϕ) exp(jϕt) in the steady state. This implies

that a stable FDLTI continuous-time system maps a sinusoidal input with frequency

ϕ to a sinusoidal output with the same single frequency ϕ, and no other sinusoidal

component appears in the output. This property of a sinusoidal component of the

input affecting only the sinusoidal component of the output with the same fre-

quency, while not affecting other sinusoidal components of the output, is referred to

as the frequency-separation property. Based on this property, we can define the

frequency response of a stable FDLTI continuous-time system by the way in which

a single sinusoidal component of the input is transferred to a sinusoidal component

of the output having the same frequency. The frequency-separation property is also

satisfied by stable FDLTI discrete-time systems, and we can define the frequency

response of such systems in a similar manner.

Now, let us begin our consideration of the frequency response of sampled-data

systems. In the classical theory of sampled-data control [54], it is well known that

the frequency-separation property is lost when the intersample behavior is taken

into account, i.e., a sampled-data system maps a single sinusoidal input exp(jϕt) to

a continuous-time output consisting of an infinite number of sinusoidal components

exp(jϕt+jmωst) (m = 0,±1, · · · ) in the steady-state (Figure 2.1), where ωs := 2π/τ

Figure 2.1: Output of a sampled-data system for single sinusoidal input.
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is the sampling angular frequency and τ is the sampling period. Due to this “multi-

frequency response” nature, it has been difficult to define a single function of ϕ that

completely describes the frequency-domain characteristics of sampled-data systems.

To solve the above difficulty, we consider the set Xϕ of all signals that consist

of an infinite number of sinusoidal components exp(jϕmt) (m = 0,±1, · · · ), where

ϕm = ϕ + mωs, and that have finite power, i.e.,

Xϕ :=
{

x(t) | x(t) =
∞∑

m=−∞
xm exp(jϕmt),

∞∑
m=−∞

‖xm‖2 < ∞
}

. (2.1)

The range of ϕ is restricted to ϕ ∈ I0 := ( −ωs/2, ωs/2 ]. It was previously shown [8]

that a stable sampled-data system with a strictly proper pre-filter before the sampler

maps Xϕ into Xϕ in the steady-state (Figure 2.2). This means that the frequency-

separation property is recovered, in a generalized sense, if all of the signals in Xϕ

are treated as a group. Based on this result, we associate an operator Q(jϕ) from

Xϕ to Xϕ with the sampled-data system, and then the operator describes all of the

characteristics of the sampled-data system in the frequency domain. We refer to

this operator as an FR-operator, where FR stands for “frequency response”.

The fact that a sampled-data system maps Xϕ into Xϕ implies that the infinite-

dimensional vector x =
[
· · · , xT

−1, x
T
0 , xT

1 , · · ·
]T

∈ l2, which consists of the coefficient

vectors of the input signal x(t) ∈ Xϕ, is mapped to y =
[
· · · , yT

−1, y
T
0 , yT

1 , · · ·
]T

∈ l2,

which consists of the coefficient vectors of the output signal y(t) ∈ Xϕ. The mapping

from x ∈ l2 to y ∈ l2 is expressed by using an infinite-dimensional matrix Q(jϕ) as

y = Q(jϕ)x. We refer to the infinite-dimensional matrix Q(jϕ) as an FR-matrix

of the system or the matrix expression of the FR-operator Q(jϕ). Using the FR-

matrix Q(jϕ), the frequency response gain of the sampled-data system at angular

Figure 2.2: Output of a sampled-data system for multi sinusoidal input Xϕ.
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frequency ϕ is defined as the l2-induced norm of Q(jϕ), i.e., ‖Q(jϕ)‖l2/l2 [8].

By using the notion of FR-operators, we can develop a frequency domain theory

for sampled-data systems that takes into account the intersample behavior. The

specific form of the FR-matrix Q(jϕ) under the generalized plant setting and the

related issues involving the definitions of the frequency response gain and the H∞

norm of the sampled-data system are presented in Sec. 2.2 and Sec. 2.3, respectively.

2.2 FR-Operator Representation of Sampled-data

Systems

In this section, we introduce the FR-operator representation of the sampled-data

system expressed by a generalized plant. It is well known that an expression us-

ing a generalized plant is very useful for dealing with various problems of modern

control theory, such as H2 and H∞ design problems, multi-objective control design

problems, and robust stability analysis.

Consider the sampled-data system shown in Figure 2.3, where solid lines stand

for continuous-time signals and dashed lines represent discrete-time signals. Here,

P is an FDLTI continuous-time system called the generalized plant, which expresses

not only actual systems but also virtual systems representing weighting functions.

The continuous-time signals z, y, w, and u are referred to as the controlled output,

measured output, exogenous input, and control input, respectively, and we denote

their Laplace transforms by Z(s), Y (s), W (s), and U(s), respectively. These signals

are related by[
Z(s)

Y (s)

]
= P (s)

[
W (s)

U(s)

]
, P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
, (2.2)

where P (s) is the transfer matrix of the generalized plant P , and Pij(s)’s are compo-

nent blocks of P (s) divided according to the sizes of the signals z, y, w and u. Cd is

an FDLTI discrete-time controller whose pulse transfer matrix is given by Cd(z). S
is the ideal sampler with sampling period τ , which works according to yd[k] = y(kτ).

H is a generalized hold, which works according to u(kτ + t) = h(t)ud[k] (t ∈ [0, τ)),

where h(t) is referred to as the hold function. The transfer matrix H(s) of the

generalized hold is defined as H(s) =
∫ τ

0
h(t)e−stdt.

The FR-matrix Q(jϕ) from w to z is represented as follows [8, 29]:

Q(jϕ) = P11(jϕ) +
1

τ
P12H(jϕ)Λ(ejϕτ )P21(jϕ), (2.3)

where

P11(jϕ) = block diag[· · · , P11(jϕ−1), P11(jϕ0), P11(jϕ1), · · · ], (2.4)
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Figure 2.3: Sampled-data control system under generalized plant setting.

P12H(jϕ) =




...

P12(jϕ−1)H(jϕ−1)

P12(jϕ0)H(jϕ0)

P12(jϕ1)H(jϕ1)
...




, (2.5)

P21(jϕ) =
[
· · · P21(jϕ−1) P21(jϕ0) P21(jϕ1) · · ·

]
, (2.6)

Λ(ejϕτ ) = Cd(e
jϕτ )

(
I −Π22(e

jϕτ )Cd(e
jϕτ )

)−1
, (2.7)

Π22(e
jϕτ ) =

1

τ

∞∑
m=−∞

P22(jϕm)H(jϕm) = Z
[
P22(s)H(s)

]
z=ejϕτ

, (2.8)

ϕm = ϕ + mωs (m = 0,±1, · · · ), ωs =
2π

τ
, (2.9)

and Z stands for the z-transform.

Since the FR-matrix Q(jϕ) is an infinite-dimensional matrix, the computation of

‖Q(jϕ)‖l2/l2 would seem very difficult. For the computation of the l2-induced norm

of FR-matrices, we give an approximation method via finite-dimensional trunca-

tion in Sec. 2.3. The exact method for a special case (P11(s) = 0) and a bisection

method for the fully generalized case are discussed in Sec. 2.4 and in Chapter 3,

respectively. In Sec. 4.1, the sensitivity FR-operator and the complementary sensi-

tivity FR-operator are defined for closed-loop sampled-data systems, and the exact

methods for computing their l2-induced norms are derived in Sec. 4.3.
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2.3 Fundamental Properties of FR-Operators

In this section, we present several fundamental properties of FR-operators and give

the definitions of the frequency response gain and the H∞ norm of the sampled-data

system shown in Figure 2.3. The derivations of the properties are essentially the

same as the ones presented in the earlier work [8], and so they are omitted.

First, we begin with the following property by which the FR-matrix Q(jϕ) is

bounded on l2.

Theorem 2.1 Suppose that P11(s) and P12(s) are proper, P21(s) and P22(s) are

strictly proper, and P11(s), P12(s) and P21(s) have no poles at s = j(ϕ+mωs) (m =

0,±1, · · · ). Assume that Λ(z) is proper and has no poles at z = ejϕh. Let Q(jϕ) be

given by (2.3), and z = Q(jϕ)w. Then, the inequality

‖z‖l2 ≤ K‖w‖l2 (2.10)

holds for some nonnegative constant K independent of w.

From Theorem 2.1, we can regard the sampled-data system of Figure 2.3 as a linear

bounded operator on l2. Thus, using the FR-matrix Q(jϕ), we define the frequency

response gain of the sampled-data system of Figure 2.3 at angular frequency ϕ as

‖Q(jϕ)‖l2/l2 . The H∞ norm of the sampled-data system is defined by ‖Q(jϕ)‖∞ :=

maxϕ ‖Q(jϕ)‖l2/l2 .

Remark 2.1 An alternative way to define the frequency response gain of sampled-

data systems was proposed by Yamamoto and Khargonekar [81], where the frequency

response gain is defined as the induced norm of the L2[0, τ)-bounded operator ob-

tained by a lifting technique [80]. Later work [78] showed that the frequency re-

sponse gain defined by Yamamoto and Khargonekar [81] and that defined by the

FR-operator are equivalent.

Next, we introduce a property that validates the approximation method for fre-

quency response gain computation by the FR-matrix via finite-dimensional trunca-

tion.

Theorem 2.2 Suppose that P11(s) and P12(s) are proper, P21(s) and P22(s) are

strictly proper, and P11(s), P12(s) and P21(s) have no poles at s = j(ϕ+mωs) (m =

0,±1, · · · ). Assume that Λ(z) is proper and has no poles at z = ejϕh. Let Q(jϕ) be

given by (2.3). Then, for any ε > 0, there exists an integer N0 such that N ≥ N0

implies that
∣∣∣∣‖Q(jϕ)‖l2/l2 − ‖Q[N ](jϕ)‖

∣∣∣∣ < ε, (2.11)
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where Q[N ](jϕ) is given by

Q[N ](jϕ) = P11[N ](jϕ)

+
1

τ
{P12H}[N ](jϕ)

(
I − Cd(e

jϕτ )Π22(e
jϕτ )

)−1
Cd(e

jϕτ )P21[N ](jϕ), (2.12)

P11[N ](jϕ) = block diag[P11(jϕ−N), · · · , P11(jϕ0), · · · , P11(jϕN)], (2.13)

{P12H}[N ](jϕ) =




P12(jϕ−1)H(jϕ−N)
...

P12(jϕ0)H(jϕ0)
...

P12(jϕ1)H(jϕN)




, (2.14)

P21[N ](jϕ) =
[
P21(jϕ−N) · · · P21(jϕ0) · · · P21(jϕN)

]
, (2.15)

and ‖Q[N ](jϕ)‖ is the matrix norm (the maximum singular value) of the finite-

dimensional matrix Q[N ](jϕ). Furthermore, when P11(s), P12(s) and P21(s) do not

have poles on the imaginary axis and (I − Cd(z)Π22(z))−1 Cd(z) does not have poles

on the unit circle, the above N0 can be chosen independent of ϕ, that is, ‖Q(jϕ)‖l2/l2

is approximated by ‖Q[N ](jϕ)‖ uniformly with respect to ϕ.

Theorem 2.2 implies that ‖Q(jϕ)‖l2/l2 = limN→∞ σ̄(Q[N ](jϕ)), where σ̄ denotes the

maximum singular value.

Finally, we present the property of the H∞ norm of sampled-data systems defined

by the FR-matrix. This is related to the bounded operators on L2 associated with

internally stable sampled-data systems. Before presenting the results, we introduce

the definitions of the internal stability and the L2-stability of the sampled-data

system shown in Figure 2.3.

Let the continuous-time vector xsd(t) be given by

xsd(t) =

[
x(t)

ξ[k]

]
(kτ ≤ t < (k + 1)τ), (2.16)

where x(t) and ξ[k] are the state vector of the continuous-time generalized plant P

and that of the discrete-time controller Cd, respectively. Then, the sampled-data

system is said to be internally stable if for every initial time t0 (0 ≤ t0 < τ) and

initial state xsd(t0) we have xsd(t) → 0 as t →∞ when w(t) ≡ 0 [16].
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The sampled-data system is said to be L2-stable if the sampled-data system maps

every input w(t) ∈ L2 to the output z(t) ∈ L2. It was also previously shown [16]

that if the sampled-data system is internally stable, it is also L2-stable. (This can be

proved by using the lifting technique [80].) Accordingly, a linear bounded operator

L : L2 ∈ w(t) 7→ z(t) ∈ L2 can be associated with the sampled-data system of

Figure 2.3 when the sampled-data system is internally stable.

Now, we turn back to the relationship between the L2-stability and the H∞ norm

of sampled-data systems.

Theorem 2.3 Consider the sampled-data system of Figure 2.3. Suppose that

P11(s) and P12(s) are proper, P21(s) and P22(s) are strictly proper, and P11(s),

P12(s) and P21(s) have no poles on the imaginary axis. Assume also that the

sampled-data system is internally stable. Then, the induced norm of the operator

L : L2 ∈ w(t) 7→ z(t) ∈ L2 associated with the sampled-data system of Figure 2.3 is

given by

‖L‖L2/L2 = ‖Q(jϕ)‖∞. (2.17)

Theorem 2.3 can be interpreted as the counterpart to the well-known fact that, for

an FDLTI continuous-time system, its L2-induced norm and H∞ norm coincide.

2.4 Direct Norm Computation of Finite-rank FR-

Operators

As seen from (2.3) to (2.6), FR-matrix Q(jϕ) is an infinite-dimensional matrix, and

thus the computation of the frequency response gain, i.e., ‖Q(jϕ)‖l2/l2 , would seem

very difficult. In Sec. 2.3, we suggested a computation method for ‖Q(jϕ)‖l2/l2 that

utilizes Theorem 2.2, but that method is based on the finite-dimensional truncation

of the FR-matrix, and thus we only obtain approximated values.

In this section, following the earlier work [29], we show that it is possible to com-

pute frequency response gains exactly when the generalized plant shown in Figure 2.3

satisfies the condition that P11(s) = 0. It should be noted that when P11(s) = 0,

the FR-matrix becomes a finite-rank matrix as seen from (2.3), although the ma-

trix itself is infinite-dimensional. This fact is frequently used for solving various

problems of sampled-data systems such as frequency response gain computation for

a special class of sampled-data systems and the sensitivity reduction problems of

sampled-data systems.
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2.4.1 Norm equivalent discrete-time system

The exact computation method is obtained by showing that there is an equiva-

lent discrete-time system whose frequency response gain coincides with that of the

sampled-data system for each angular frequency ϕ. The derivation of the equiva-

lent system uses only such elementary frequency-domain notions as (conventional)

z-transform, pulse transfer function, and impulse modulation formula, while numer-

ical computation can be carried out using state-space equations.

Here, we deal with the internally stable sampled-data system shown in Figure 2.3

and suppose that the state-space representation of the generalized plant P (s) and

the hold function h(t) of the generalized hold H are given, respectively, by the

following equations1:

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
=




A B1 B2

C1 D11 D12

C2 0 0


 , h(t) = CH exp(AHt)BH . (2.18)

Here, we have assumed that D21 = 0 and D22 = 0 so as to satisfy the conditions

of Theorems 2.1-2.3, in which the strictly properness of P21(s) and P22(s) is as-

sumed. These assumptions are naturally satisfied because a strictly proper pre-filter

is usually placed before the sampler.

Under the assumption that P11(s) = 0, the condition

D11 = 0, C1A
kB1 = 0 (k = 0, 1, · · · ) (2.19)

holds, and the FR-matrix Q(jϕ) shown in (2.3) can be rewritten as

Q(jϕ) =
1

τ
P12H(jϕ)Λ(ejϕτ )P21(jϕ), (2.20)

where P12H(jϕ), P21(jϕ), and Λ(ejϕτ ) are given, respectively, by (2.5), (2.6), and

(2.7) with Π22 := SP22H, i.e.,

Π22(z) = Z
[
P22(s)H(s)

]
=

[
Â B2d

C2 0

]
, (2.21)

where

Â = exp(Aτ), B2d =

∫ τ

0

exp {A(τ − t)}B2CH exp(AHt)BHdt. (2.22)

1Here,

[
A B

C D

]
implies that the transfer matrix C(sI − A)−1B + D for continuous-time

systems, or transfer matrix C(zI −A)−1B + D for discrete-time systems.
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Now, let us focus on the relation ‖Q(jϕ)‖l2/l2 = limN→∞ σ̄(Q[N ](jϕ)), where

Q[N ](jϕ) is given by

Q[N ](jϕ) =
1

τ
{P12H}[N ](jϕ)Λ(ejϕτ )P21[N ](jϕ), (2.23)

when P11(s) = 0. Since Q[N ](jϕ) is a finite-dimensional matrix, we have

σ̄
(
Q[N ](jϕ)

)
= λ1/2

max

(
Q∗

[N ](jϕ)Q[N ](jϕ)
)

= λ1/2
max

(
1

τ
P ∗

21[N ](jϕ)Λ∗(ejϕτ ){P12H}∗[N ](jϕ) · 1

τ
{P12H}[N ](jϕ)Λ(ejϕτ )P21[N ](jϕ)

)
,

(2.24)

where ∗ denotes complex conjugate transposition of a complex matrix, and λmax is

the maximum eigenvalue of a Hermite matrix. Since the (nonzero) eigenvalues of the

product of two matrices are invariant to a change in the order of their multiplication,

we obtain

σ̄
(
Q[N ](jϕ)

)

= λ1/2
max

(
P21[N ](jϕ)

1

τ
P ∗

21[N ](jϕ)Λ∗(ejϕτ ){P12H}∗[N ](jϕ)
1

τ
{P12H}[N ](jϕ)Λ(ejϕτ )

)
.

(2.25)

Here, note that the eigenvalues of a matrix are continuous with respect to its entries,

since the coefficients of the characteristic polynomial are continuous with respect

to the entries and the roots of the polynomial are continuous with respect to its

coefficients. From this, together with (2.25), we obtain

‖Q(jϕ)‖l2/l2 = lim
N→∞

σ̄
(
Q[N ](jϕ)

)

= lim
N→∞

λ1/2
max

(
P21[N ](jϕ)

1

τ
P ∗

21[N ](jϕ)Λ∗(ejϕτ ){P12H}∗[N ](jϕ)
1

τ
{P12H}[N ](jϕ)Λ(ejϕτ )

)

= λ1/2
max

(
lim

N→∞
P21[N ](jϕ)

1

τ
P ∗

21[N ](jϕ)Λ∗(ejϕτ ){P12H}∗[N ](jϕ)
1

τ
{P12H}[N ](jϕ)Λ(ejϕτ )

)

= λ1/2
max

(
1

τ
P21(jϕ)P21

∗(jϕ)Λ∗(ejϕτ )
1

τ
P12H

∗(jϕ)P12H(jϕ)Λ(ejϕτ )

)
. (2.26)

Here, note that 1
τ
P21(jϕ)P21

∗(jϕ) and 1
τ
P12H

∗(jϕ)P12H(jϕ) are finite-dimensional

matrices, which can be rewritten, respectively, as

1

τ
P21(jϕ)P21

∗(jϕ) =
1

τ

∞∑
m=−∞

P21(jϕm)P21(jϕm)∗, (2.27)

1

τ
P12H

∗(jϕ)P12H(jϕ) =
1

τ

∞∑
m=−∞

(P12(jϕm)H(jϕm))∗ (P12(jϕm)H(jϕm)) .

(2.28)
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Now, from the impulse modulation formula [54], we have

1

τ
P21(jϕ)P21

∗(jϕ) = Z
[
P21(s)P21 (̃s)

]
z=ejϕτ

, (2.29)

1

τ
P12H

∗(jϕ)P12H(jϕ) = Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]
z=ejϕτ

, (2.30)

where, for continuous-time systems, X (̃s) is defined as X (̃s) := XT (−s). Here,

note that if there exist discrete-time time transfer matrices Π21(z) and Π12(z) sat-

isfying

Π21(z)Π21 (̃z) = Z
[
P21(s)P21 (̃s)

]
, (2.31)

Π12 (̃z)Π12(z) = Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]
, (2.32)

where X (̃z) is defined as X (̃z) := XT (z−1) for discrete-time systems, (2.26) can

be rewritten as

‖Q(jϕ)‖l2/l2 = λ1/2
max

(
Π21(jϕ)Π∗

21(jϕ)Λ∗(ejϕτ )Π∗
12(jϕ)Π12(jϕ)Λ(ejϕτ )

)

= λ1/2
max

(
Π∗

21(e
jϕτ )Λ∗(ejϕτ )Π∗

12(e
jϕτ )Π12(e

jϕτ )Λ(ejϕτ )Π21(e
jϕτ )

)

= σ̄
(
Q̂(ejϕτ )

)
, (2.33)

where Q̂(ejϕτ ) = Π12(e
jϕτ )Λ(ejϕτ )Π21(e

jϕτ ). Consequently, the frequency response

gain ‖Q(jϕ)‖l2/l2 can be computed as the maximum singular value of the pulse

transfer matrix Q̂(z) evaluated at z = ejϕτ , provided that there exist discrete-time

transfer matrices Π21(z) and Π12(z) satisfying the conditions (2.31) and (2.32), re-

spectively. As we shall see in Sec. 2.4.2 and Sec. 2.4.3, the state space representations

of Π21(z) and Π12(z) are given, respectively, by the following equations,

Π21(z) :=

[
Â W

C2 0

]
, (2.34)

Π12(z) :=

[
Â B2d

V1 V2BH

]
, (2.35)

where W , V1, and V2 are any matrices such that

WW T =

∫ τ

0

exp(At)B1B
T
1 exp(AT t) dt, (2.36)

[
V T

1

V T
2

] [
V1 V2

]

=

∫ τ

0

exp




[
A B2CH

0 AH

]T

t




[
CT

1

CT
HDT

12

] [
C1 D12CH

]
exp

([
A B2CH

0 AH

]
t

)
dt.

(2.37)
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Figure 2.4: Discrete-time system Q̂(z) with the same frequency response gain

Now, let us introduce

Π(z) :=




Â W B2d

V1 0 V2BH

C2 0 0


 . (2.38)

Then, from (2.19), (2.21), (2.34), (2.35), (2.36), and (2.37), it is easy to verify that

Π(z) =

[
0 Π12(z)

Π21(z) Π22(z)

]
. (2.39)

The reason for Π11(z) = V1(zI − Â)−1W = 0 is due the fact that V1Â
kW = 0

(k = 0, 1, · · · ), which is obtained by (2.19), (2.36), and (2.37). From (2.39), together

with (2.7), Q̂(z) is nothing but the pulse transfer matrix from ŵ to ẑ of the discrete-

time system shown in Figure 2.4 (i.e., Q̂(z) = Fl(Π(z), Cd(z)), where Fl denotes

the lower linear fractional transformation. For the definition, see Notations and

Definitions). In this way, we finally obtain the following theorem, which gives a

method to compute the frequency response gains.

Theorem 2.4 Consider the sampled-data system shown in Figure 2.3. Suppose

that P11(s) = 0. Then, the frequency response gain ‖Q(jϕ)‖l2/l2 coincides with

σ̄(Q̂(ejϕτ )) for every ϕ, where Q̂(z) is the pulse transfer matrix from ŵ to ẑ of the

discrete-time system of Figure 2.4.

2.4.2 Derivation of the state-space representation of Π21

In this subsection, we show that a state space representation of Π21(z) that satisfies

(2.31) is given by (2.34) and (2.36). We begin with the following results, which

are very useful for deriving state-space representations of equivalent discrete-time

systems. These results are frequently used in the later sections.
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Lemma 2.1 Let the state-space representations of the continuous-time transfer ma-

trices G(s), G1(s), and G2(s) be given, respectively, by

G(s) =

[
A B

C D

]
, G1(s) =

[
A1 B1

C1 D1

]
, G2(s) =

[
A2 B2

C2 D2

]
. (2.40)

Then,

G (̃s) =

[
−AT −CT

BT DT

]
=

[
−AT CT

−BT DT

]
, (2.41)

G1(s)G2(s) =




A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2


 =




A2 0 B2

B1C2 A1 B1D2

D1C2 C1 D1D2


 . (2.42)

Lemma 2.2 Let A and C be square matrices. Then,

exp

([
A B

0 C

]
τ

)
=

[
exp(Aτ)

∫ τ

0
exp {A(τ − t)}B exp(Ct)dt

0 exp(Cτ)

]
, (2.43)

=

[
exp(Aτ)

∫ τ

0
exp(At)B exp {C(τ − t)} dt

0 exp(Cτ)

]
, (2.44)

exp

([
A 0

B C

]
τ

)
=

[
exp(Aτ) 0∫ τ

0
exp {C(τ − t)}B exp(At)dt exp(Cτ)

]
, (2.45)

=

[
exp(Aτ) 0∫ τ

0
exp(Ct)B exp {A(τ − t)} dt exp(Cτ)

]
. (2.46)

Lemma 2.3 Let A and C be invertible matrices. Then,

[
A B

0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
,

[
A 0

B C

]−1

=

[
A−1 0

−C−1BA−1 C−1

]
. (2.47)

Lemma 2.4

Z
[
C(sI − A)−1B

]
= C

{
I − exp(Aτ)z−1

}−1
B. (2.48)

Z
[
C(sI − A)−1Be−τs

]
= C

{
I − exp(Aτ)z−1

}−1
Bz−1. (2.49)

Z
[
C(sI − A)−1Beτs

]
= C

{
I − exp(Aτ)z−1

}−1
Bz, when CB = 0. (2.50)
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Concerning Lemmas 2.1 and 2.2, see e.g., Chen and Francis [16]. The equalities in

Lemma 2.3 are verified easily. Here, we only show Lemma 2.4.

Proof of Lemma 2.4: Note that the z-transform of X(s) is defined by Z
[
X(s)

]
=∑∞

k=0 x(kτ)z−k, where x(t) is the inverse Laplace transform of X(s). Also note that

the inverse Laplace transform of C(sI−A)−1eas is given by CeA(t+a)Bu(t+a) where

u(t) is the unit step function. By this, we obtain

Z
[
C(sI−A)−1B

]
=

∞∑

k=0

C exp(Akτ)Bz−k

=
∞∑

k=0

C
{
exp(Aτ)z−1

}k
B = C

{
I − exp(Aτ)z−1

}−1
B, (2.51)

Z
[
C(sI−A)−1Be−τs

]
=

∞∑

k=1

C exp(A(kτ − τ))Bz−k

=
∞∑

k=1

C
{
exp(Aτ)z−1

}k−1
Bz−1 = C

{
I − exp(Aτ)z−1

}−1
Bz−1. (2.52)

When CB = 0, we obtain

Z
[
C(sI−A)−1Beτs

]
=

∞∑

k=0

C exp(A(kτ + τ))Bz−k =
∞∑

k=−1

C exp(A(kτ + τ))Bz−k

=
∞∑

k=−1

C
{
exp(Aτ)z−1

}k+1
Bz = C

{
I − exp(Aτ)z−1

}−1
Bz. (2.53)

This completes the proof.

Now, we show that Π21(z) given by (2.34) and (2.36) satisfies Π21(z)Π21 (̃z) =

Z
[
P21(s)P21 (̃s)

]
. From (2.41) and (2.42), we have

P21(s)P21 (̃s) =

[
A B1

C2 0

]
·
[
−AT CT

2

−BT
1 0

]
=




A −B1B
T
1 0

0 −AT CT
2

C2 0 0


 . (2.54)

From (2.44), we have

exp

([
A −B1B

T
1

0 −AT

]
τ

)
=

[
exp(Aτ) − ∫ τ

0
exp(At)B1B

T
1

{−AT (τ − t)
}

dt

0 exp(−AT τ)

]
(2.55)

=

[
Â −WW T Â−T

0 Â−T

]
, (2.56)
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where Â and W are given by (2.22) and (2.36), respectively. Thus, from Lemmas 2.3

and 2.4, we obtain

Z
[
P21(s)P21 (̃s)

]
=

[
C2 0

] {[
I 0

0 I

]
−

[
Â −WW T Â−T

0 Â−T

]
z−1

}−1 [
0

CT
2

]
(2.57)

=
[
C2 0

] [
I − Âz−1 WW T Â−T z−1

0 I − Â−T z−1

]−1 [
0

CT
2

]
(2.58)

= −C2(I − Âz−1)−1WW T Â−T z−1(I − Â−T z−1)−1CT
2 (2.59)

= C2(zI − Â)−1WW T (z−1I − ÂT )−1CT
2 . (2.60)

This implies that Z
[
P21(s)P21 (̃s)

]
= Π21(z)Π21 (̃z).

2.4.3 Derivation of the state-space representation of Π12

In this subsection, we show that a state space representation of Π12(z) that satisfies

(2.32) is given by (2.35) and (2.37). We begin with the following lemma.

Lemma 2.5 Suppose that X(s) = C(sI − A)−1B with CB = 0 and that Y (eτs) is

a matrix of the form Y (eτs) = Y0 + Y1/e
τs = Y0 + e−τsY1. Then,

Z
[
Y (̃eτs)X(s)Y (eτs)

]
= Y (̃z)Z

[
X(s)

]
Y (z). (2.61)

Proof of Lemma 2.5: By Lemma 2.4, the left-hand side of (2.61) is rewritten as

Z
[
Y (̃eτs)X(s)Y (eτs)

]
= Z

[
(Y T

0 + eτsY T
1 )X(s)(Y0 + e−τsY1)

]

= Z
[
Y T

0 X(s)Y0

]
+ Z

[
Y T

0 X(s)Y1e
−τs

]
+ Z

[
Y T

1 X(s)Y0e
τs

]
+ Z

[
Y T

1 X(s)Y1

]

= Y T
0 Z

[
X(s)

]
Y0 + Y T

0 Z
[
X(s)

]
Y1z

−1 + Y T
1 Z

[
X(s)

]
Y0z + Y T

1 Z
[
X(s)

]
Y1

= (Y T
0 + zY T

1 )Z
[
X(s)

]
(Y0 + z−1Y1) = Y (̃z)Z

[
X(s)

]
Y (z). (2.62)

This completes the proof.

Now, let us consider the transfer matrix H(s) of the generalized hold H with the

hold function h(t) = CH exp(AHt)BH . This is given by

H(s) =

∫ τ

0

CH exp(AHt)BH exp(−st)dt = CH(sI − AH)−1(I − ÂHe−τs)BH

=

[
AH I

CH 0

]
Hd(e

τs), (2.63)

where

ÂH = exp(AHτ), Hd(e
τs) = (I − ÂHe−τs)BH . (2.64)
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Therefore, from (2.42), P12(s)H(s) is rewritten as

P12(s)H(s) =

[
A B2

C1 D12

]
·
[

AH I

CH 0

]
Hd(e

τs) =

[
A12 B12

C12 0

]
Hd(e

τs), (2.65)

where

A12 =

[
A B2CH

0 AH

]
, B12 =

[
0

I

]
, C12 =

[
C1 D12CH

]
. (2.66)

Thus, from (2.41), (2.42), and Lemma 2.5, Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]
becomes

Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]
= Z

[
H d̃(e

τs)

[
−AT

12 −CT
12

BT
12 0

] [
A12 B12

C12 0

]
Hd(e

τs)

]

=Z


H d̃(e

τs)



−AT

12 −CT
12C12 0

0 A12 B12

BT
12 0 0


Hd(e

τs)


=H d̃(z)Z



−AT

12 −CT
12C12 0

0 A12 B12

BT
12 0 0


Hd(z),

(2.67)

where

Hd(z) = (I − ÂHz−1)BH , H d̃(z) = HT
d (z−1) = BT

H(I − ÂT
Hz). (2.68)

In a similar manner to the derivation of (2.60) from (2.54), we obtain

Z



−AT

12 −CT
12C12 0

0 A12 B12

BT
12 0 0


 = BT

12(z
−1I − ÂT

12)
−1V T V (zI − Â12)

−1B12, (2.69)

where Â12 = exp(A12τ), and V =
[
V1 V2

]
is a matrix satisfying the condition

V T V =
∫ τ

0
exp(AT

12t)C
T
12C12 exp(A12t)dt. Note that the latter equality is nothing

but (2.37).

Now, we evaluate (zI−Â12)
−1B12Hd(z). From (2.66), together with Lemmas 2.2

and 2.3, we have

(zI − Â12)
−1B12Hd(z)

=

{
zI −

[
Â

∫ τ

0
exp{A(τ − t)}B2CH exp(AHt)dt

0 ÂH

]}−1 [
0

(I − ÂHz−1)BH

]

=

[
∗ (zI − Â)−1

∫ τ

0
exp{A(τ − t)}B2CH exp(AHt)dt(zI − ÂH)−1

0 (zI − ÂH)−1

] [
0

(I − ÂHz−1)BH

]

=

[
(zI − Â)−1

∫ τ

0
exp{A(τ − t)}B2CH exp(AHt)dtz−1BH

z−1BH

]
= z−1

[
(zI − Â)−1B2d

BH

]
,

(2.70)
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where B2d is given by (2.22). Thus, from (2.67), (2.69), and (2.70), we obtain

Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]

=
[
BT

2d(z
−1I − ÂT )−1 BT

H

] [
V T

1

V T
2

] [
V1 V2

] [
(zI − Â)−1B2d

BH

]
, (2.71)

which implies Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]
= Π12 (̃z)Π12(z).

2.5 Numerical Examples

In this section, we compute the frequency response gain of a sampled-data system

by using the exact method presented in Sec. 2.4 and the approximation method

presented in Sec. 2.3.

Let us consider the sampled-data system of Figure 2.5, where S is the ideal sam-

pler with sampling period τ and H is the zero-order hold. The system is expressed

by the generalized plant setting by taking P11(s) = 0, P12(s) = 1, P21(s) = 1/(s+1),

P22(s) = 0, and Cd(z) = 1. Since P11(s) = 0, we can apply the exact computation

method presented in Sec. 2.4. The generalized plant P (s) can be expressed by the

following state-space representation:

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
=




A B1 B2

C1 D11 D12

C2 0 0


 =



−1 1 0

0 0 1

1 0 0


 . (2.72)

First, by applying the exact computation method using the norm-equivalent

discrete-time system, we compute the frequency response gain for τ = 0.5, 1, 2

(up to the Nyquist frequencies), together with the frequency response gain of the

continuous-time system 1/(s+1). The result is shown in Figure 2.6. From this figure,

we can observe that the frequency response gain approaches that of the continuous-

time system 1/(s + 1) as the sampling period decreases, although the frequency

response gains at around the Nyquist frequencies do not decrease by 20dB/decade

due to the aliasing effect.

Next, we compute the frequency response gain of the sampled-data system of

Figure 2.5 for τ = 2 by the approximation method using the finite-dimensional

-
w 1

s + 1
- S - H -

z

Figure 2.5: Sampled-data system for numerical examples.
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truncation of N = 1, 5, 25. The results are shown in Figure 2.7. From this figure,

as stated in Theorem 2.2, we can observe that the approximated frequency response

gains obtained by truncating the FR-matrix approach the exact value as the size of

the finite-dimensional matrix increases.

10
-3

10
-2

10
-1

10
0

10
1

-25

-20

-15

-10

-5

0

5

Frequency [rad/sec]

G
a
i
n
 
[
d
B
]

continuous-time system
sampled-data system ( τ=0.5)
sampled-data system ( τ=1)
sampled-data system ( τ=2)

Figure 2.6: Frequency response gain of the sampled-data system of Figure 2.5 and

that of continuous-time system 1/(s + 1).

2.6 Summary

In this chapter, we introduced the notion of an FR-operator, which enables us to

develop the frequency domain theory of sampled-data systems while taking into

account intersample behavior and the influence of aliasing. After introducing the

FR-operator, we provided definitions of the frequency response gain and the H∞

norm of sampled-data systems. Furthermore, we presented several properties of FR-

operators, which involve the l2-boundedness of the FR-operator, an approximative

method for frequency response gain computation via finite-dimensional truncation,

and the relationship between the L2-induced norm and the H∞ norm of sampled-

data systems. The last property implies that the FR-operator satisfies the basic

relation between the time-domain and the frequency-domain characterizations and

can be regarded as the exact sampled-data counterpart of the frequency transfer
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Figure 2.7: Frequency response gain and its approximations via finite-dimensional

truncations.

matrix of a continuous-time system. Other related issues, such as the extension of

the FR-operator to the Laplace domain and the relation to Goodwin and Salgado’s

method of defining the frequency response of sampled-data systems [24], can be

found in the earlier work mentioned above [8].

This chapter has also provided an exact and direct method for computing the

frequency response gain of a class of sampled-data systems satisfying the condition

that P11(s) = 0 under the generalized plant setting. The key result we obtained

is that, under the condition P11(s) = 0, there exists an ‘equivalent discrete-time

system’ whose frequency response gain coincides with that of the given sampled-data

system for every frequency. The technique used for the derivation of the method is

fundamental for deriving other related results appearing in the later chapters, such as

a bisection algorithm for computing the frequency response gain of general sampled-

data systems (without the condition P11(s) = 0), which is presented in Chapter 3,

and an analysis of the sensitivity and complementary sensitivity reduction problems

of sampled-data systems, which are presented in Chapter 4.





Chapter 3

Norm Computation of

FR-Operators via

Infinite-Dimensional Congruent

Transformation

In Chapter 2, we defined the frequency response of sampled-data systems as the l2-

induced norm of the infinite-dimensional matrix called FR-matrix, and we presented

an exact computation method under the assumption that P11(s) = 0 in the general-

ized plant setting. In this chapter, we derive fully generalized method for computing

the frequency response gain of sampled-data systems. The method is based on the

bisection algorithm, that is, the algorithm decides whether the frequency response

gain at each angular frequency is smaller than a given positive number γ. The bisec-

tion method is derived from the useful properties of infinite-dimensional congruent

transformation, i.e., Schur complement arguments and Sylvester’s Law of Inertia.

The techniques used for the derivation of the state-space representation of the norm-

equivalent discrete-time systems, which are used in Secs. 2.4.2 and 2.4.3, are also

used to derive explicit formulae for the matrices required for the bisection method.

In this chapter, we first give the notation used and provide some useful funda-

mental results for the infinite-dimensional congruent transformation of operators.

Next, by using these results, we show that the decision of whether the frequency

response gain is smaller than a given positive number γ is reduced to the problem of

counting the number of negative eigenvalues of a certain block-diagonal self-adjoint

matrix consisting of two γ-dependent blocks: a finite-dimensional matrix block and

an infinite-dimensional matrix block. As shown in the later sections, the numbers of

negative eigenvalues of these two matrices are easy to count, and thus the frequency

response gain of sampled-data systems can be easily computed by this algorithm.
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Related issues are also presented, including a lifting-based algorithm for the bisec-

tion method, one-dimensional search algorithm, the relation to the several methods

of solving the H∞ problem of sampled-data systems, and possible applications of

the congruent transformation to systems and control theory. Finally, we evaluate

the proposed method through a comparison with existing methods.

3.1 Properties of Infinite-Dimensional Congruent

Transformation

In this section, we give the notation used in this chapter and prepare some useful

results for computing the frequency response gain of sampled-data systems.

Let M be a separable Hilbert space. The class of linear self-adjoint compact

operators on M is denoted by W . For X ∈ W , it is well-known [65] that (i) every λ

in the spectrum is a real number, and is in fact an eigenvalue provided that λ 6= 0,

(ii) the eigenvalues are at most countably infinite2, and (iii) 0 is the only possible

point of their accumulation. For a linear compact operator X on M, σi(X) denotes

the i-th largest singular value of X, which is given by the square root of the i-

th largest eigenvalue of X∗X. The class of operators of the form γI − X (X ∈
W , γ is a positive number) is denoted by N . Note that every linear self-adjoint

operator on a finite-dimensional space M belongs to N , even with a prescribed

value of γ, and this fact will serve us throughout the chapter. If the underlying

space M is infinite-dimensional, on the other hand, every Y ∈ N can be expressed

uniquely as Y = γI −X, and thus it is noncompact but has the property that (iv)

every λ in the spectrum is a real number, and is in fact an eigenvalue provided that

λ 6= γ, which corresponds to the property (i). It also has the above property (ii).

Furthermore, it has the property that (v) the number of its negative eigenvalues,

as well as the multiplicity of the zero eigenvalue, is finite, which corresponds to the

property (iii). For Y ∈ N , N(Y ) denotes the pair of integers (z, n), where z and n

are the multiplicity of the zero eigenvalue and the number of the negative eigenvalues

of Y , respectively. We define (z1, n1) + (z2, n2) := (z1 + z2, n1 + n2), and it readily

follows that N

([
Y 1 0

0 Y 2

])
= N(Y 1) + N(Y 2) if

[
Y 1 0

0 Y 2

]
∈ N . For Y ∈ N , Y is

said to be positive definite [65] (and we denote it Y > 0) if 〈Y x, x〉 > 0 for every

nonzero x ∈M, where 〈x, y〉 denotes the inner product of x, y ∈M.

Now, we begin with the following lemma which is an operator version of Sylvester’s

Law of Inertia under congruent transformations.

2Throughout this chapter, the eigenvalues are counted according to their multiplicities.
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Lemma 3.1 Suppose that Y ∈ N and that X is an invertible operator on M. If

X∗Y X ∈ N , then N (Y ) = N (X∗Y X).

From this lemma, the following lemma is immediate, which is an operator version

of the Schur complement arguments.

Lemma 3.2 Suppose that

[
Q S

S∗ R

]
∈ N and suppose that Q and R are invertible

when their inverses are referred to. Then,

N

([
Q S

S∗ R

])
= N

([
Q− S R−1S∗ 0

0 R

])
= N

([
Q 0

0 R− S∗Q−1S

])
.

(3.1)

We also have the following lemmas.

Lemma 3.3 Suppose Y ∈ N . Then, Y > 0 if and only if all eigenvalues of Y are

positive (i.e., N(Y ) = (0, 0)).

Lemma 3.4 Let X =

[
0 A

A∗ 0

]
, where A is an n-dimensional invertible matrix.

Then, N(X)=(0, n).

The proofs of the above lemmas are given below.

Proof of Lemma 3.1: Let Y = γI − Z where γ > 0 and Z ∈ W . The spec-

tral decomposition theorem ensures that there exists a complete orthonormal set

{e1, e2, · · · } consisting of the eigenvectors of Z, such that for any x ∈ M, Zx can

be expressed as

Zx =
∞∑
i=1

λi〈x, ei〉ei, (3.2)

where λi is the eigenvalue of Z corresponding to ei (Corollary 8.16 of [85]). We first

show that the above spectral decomposition can be extended to Y ∈ N . Since {ei}
is a complete orthonormal set, we have

x =
∞∑
i=1

〈x, ei〉ei. (3.3)

From (3.2) and (3.3), we obtain

Y x = (γI − Z)x = γ

∞∑
i=1

〈x, ei〉ei −
∞∑
i=1

λi〈x, ei〉ei

=
∞∑
i=1

(γ − λi)〈x, ei〉ei, (3.4)
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which implies that the spectral decomposition is also possible for Y ∈ N .

Now, we return to the proof of Lemma 3.1. Since Y ∈ N and X∗Y X ∈
N by assumption, it follows from the above arguments that there exist complete

orthonormal sets {e1, e2, · · · } and {f1, f2, · · · } consisting of the eigenvectors of Y and

X∗Y X, respectively, such that for any x ∈ M, Y x and X∗Y Xx can be expressed

respectively as

Y x =
∞∑
i=1

µi〈x, ei〉ei, (3.5)

X∗Y Xx =
∞∑
i=1

νi〈x, fi〉fi, (3.6)

where µi is the eigenvalue of Y corresponding to ei, and νi is the eigenvalue of X∗Y X

corresponding to fi. Let s and t be the numbers of negative eigenvalues of Y and

X∗Y X, respectively. Here, we aim to show s = t. To this end, suppose that s < t.

Note that the convergences of (3.5) and (3.6) are unconditional, i.e., these lim-

its are invariant under reordering of the terms. (See Corollary 5.17.11 of [65].)

Therefore, we can assume without loss of generality that µ1, · · · , µs < 0 while

µs+i ≥ 0 (i ≥ 1), and ν1, · · · , νt < 0 while νt+i ≥ 0 (i ≥ 1). Also, consider the

following linear equation for [a1, · · · at]
T .



〈Xf1, e1〉 · · · 〈Xft, e1〉

...
...

〈Xf1, es〉 · · · 〈Xft, es〉







a1

...

at


 = 0. (3.7)

Then, as an under-determined equation, there exists a nontrivial solution [a1, · · · , at]
T

to (3.7). Let z =
∑t

j=1 ajfj. Since

〈z, fi〉 = 〈
t∑

j=1

ajfj, fi〉 =





ai 1 ≤ i ≤ t

0 t < i,
(3.8)

it follows from (3.6) that

X∗Y Xz =
∞∑
i=1

νi〈z, fi〉fi =
t∑

i=1

νiaifi.

Therefore, again from (3.8), we have

〈X∗Y Xz, z〉 =
t∑

i=1

νiai〈fi, z〉 =
t∑

i=1

νi|ai|2 < 0. (3.9)



35

On the other hand, for 1 ≤ i ≤ s, 〈Xz, ei〉 =
∑t

j=1 aj〈Xfj, ei〉 = 0 by (3.7). This

together with (3.5) implies

Y Xz =
∞∑
i=1

µi〈Xz, ei〉ei =
∞∑

i=s+1

µi〈Xz, ei〉ei. (3.10)

Therefore, we have

〈Y Xz,Xz〉 =
∞∑

i=s+1

µi〈Xz, ei〉〈ei, Xz〉 =
∞∑

i=s+1

µi|〈Xz, ei〉|2 ≥ 0. (3.11)

This together with (3.9) contradicts 〈X∗Y Xz, z〉 = 〈Y Xz, Xz〉. Therefore, s ≥ t.

We can establish s ≤ t in a similar manner, and thus we obtain s = t.

Finally, we have to show that the multiplicity of the zero eigenvalue is invariant

under infinite-dimensional congruent transformations. However, this is immediate

since we can readily see that the dimension of the eigenspace corresponding to the

zero eigenvalue is invariant. This completes the proof.

Proof of Lemma 3.2: Suppose that Y =

[
Q S

S∗ R

]
= γI −

[
Q̌ Š

Š∗ Ř

]
and X =

[
I 0

−R−1S∗ I

]
where

[
Q̌ Š

Š∗ Ř

]
∈ W . Then,

X∗Y X =

[
Q− S R−1S∗ 0

0 R

]
= γI −

[
Q̌ + ŠR−1Š∗ 0

0 Ř

]
.

Similarly, by letting X =

[
I −Q−1S

0 I

]
, we obtain

X∗Y X =

[
Q 0

0 R− S∗Q−1S

]
= γI −

[
Q̌ 0

0 Ř + Š∗Q−1Š

]
.

Therefore, from Lemma 3.1, the proof becomes complete if we show that Q̌ ∈ W ,

Ř ∈ W , ŠR−1Š∗ ∈ W , and Š∗Q−1Š ∈ W . However, this is immediate since[
Q̌ Š

Š∗ Ř

]
∈ W if and only if Q̌ ∈ W , Ř ∈ W , and Š is compact.

Proof of Lemma 3.3: By definition, Y > 0 if and only if 〈Y x, x〉 > 0 for every

non-zero x ∈ M. However, since 〈Y x, x〉 =
∑∞

i=1 µi|〈x, ei〉|2 by (3.5), we can see

that Y > 0 if and only if µi > 0 (∀i). This completes the proof.

Proof of Lemma 3.4: X =

[
0 A

A∗ 0

]
is similar to −X since −X = J−1XJ where

J =

[
I 0

0 −I

]
. Therefore, the set of eigenvalues of X and that of −X coincide,

including multiplicities. By this, together with the assumption that A is invertible,

we obtain N(X) = (0, n).
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3.2 Bisection-Based Norm Computation of FR-

Operators

In this section, by exploiting the useful lemmas shown in Sec. 3.1, we provide a

bisection-based method for computing the frequency response gain of the sampled-

data system in Figure 2.3. Here, we are interested in checking whether

‖Q(jϕ)‖l2/l2 < γ (3.12)

for a given γ. Regarding the problem of checking whether (3.12) is true, we introduce

the following assumption without loss of generality.

D11 = 0. (3.13)

This is because an appropriate J-unitary transformation can always reduce the

problem of checking (3.12) to that of checking an inequality of the same form but

with D11 = 0. Concerning the existence of such a J-unitary transformation, see

Hagiwara et al. [29] and Zhou et al. [86] for more details. The condition (3.13)

guarantees the compactness of the FR-operator P11(jϕ) and, consequently, that of

Q(jϕ). This enables us to employ the lemmas of Sec. 3.1. Note that ‖Q(jϕ)‖l2/l2 is

equal to the maximum singular value σ1

(
Q(jϕ)

)
.

3.2.1 Criterion based on the numbers of negative eigenval-

ues of operators

Now, we proceed to the topic of deriving a bisection algorithm for computing the

frequency response gain at given angular frequency ϕ. In the following, we assume

that γ > 0 does not coincide with a singular value of P11(jϕ). Since only 0 is

the accumulation point of the singular values of P11(jϕ), this assumption will be

satisfied for almost every γ.

Regarding (3.12), we can readily show that this condition is equivalent to the

following condition by using the Schur complement arguments (Lemma 3.2).

[
γI −Q∗(jϕ)

−Q(jϕ) γI

]
> 0 (3.14)

By substituting (2.3) into (3.14), the above condition can be restated as K(ϕ, γ) > 0,
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where

K(ϕ, γ) :=

[
γI −P11

∗(jϕ)

−P11(jϕ) γI

]
− 1

τ

[
P21

∗(jϕ) 0

0 P12H(jϕ)Cd(e
jϕτ )

]

×
[

0 I −Π22(e
jϕτ )Cd(e

jϕτ )

I − C∗
d(ejϕτ )Π∗

22(e
jϕτ ) 0

]−1 [
P21(jϕ) 0

0 C∗
d(ejϕτ )P12H

∗(jϕ)

]
.

(3.15)

Here, note that I − Π22(e
jϕτ )Cd(e

jϕτ ) is invertible because the feedback system is

assumed to be internally stable. By this, together with Lemmas 3.3 and 3.4, we can

readily see that the condition K(ϕ, γ) > 0 is equivalent to the condition

N







K(ϕ, γ) 0

0

[
0 I −Π22(e

jϕτ )Cd(e
jϕτ )

I −Π∗
22(e

jϕτ )C∗
d(ejϕτ ) 0

]




 = (0, l),

(3.16)

where l denotes the number of the output y of P22(s), i.e., y ∈ Rl. This condition

in turn is equivalent to the condition

N







[
γI −P ∗

11(jϕ)

−P 11(jϕ) γI

]
0

0 F (ϕ, γ)





 = (0, l) (3.17)

by (3.15) and Lemma 3.2, where the finite-dimensional matrix F (ϕ, γ) is given by

F (ϕ, γ) :=

[
0 I −Π22(e

jϕτ )Cd(e
jϕτ )

I − C∗
d(ejϕτ )Π∗

22(e
jϕτ ) 0

]

− 1

τ

[
P21(jϕ) 0

0 C∗
d(ejϕτ )P12H

∗(jϕ)

][
γI −P11

∗(jϕ)

−P11(jϕ) γI

]−1

×
[
P21

∗(jϕ) 0

0 P12H(jϕ)Cd(e
jϕτ )

]
. (3.18)

Summarizing the above, we can obtain the following theorem.

Theorem 3.1 Suppose that γ is not a singular value of P11(jϕ). Then, the following

four statements are equivalent, where l is the number of outputs of P22(s), and ν is

the number of singular values of P11(jϕ) larger than γ.

(i) ‖Q(jϕ)‖l2/l2 < γ (3.19)
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(ii) N (K(ϕ, γ)) + N

([
0 I −Π22(e

jϕτ )Cd(e
jϕτ )

I − C∗
d(ejϕτ )Π∗

22(e
jϕτ ) 0

])

= (0, l) (3.20)

(iii) N

([
γI −P11

∗(jϕ)

−P11(jϕ) γI

])
+ N (F (ϕ, γ)) = (0, l) (3.21)

(iv) N (F (ϕ, γ)) = (0, l − ν) (3.22)

By Theorem 3.1, whether the condition (3.12) holds can be checked by counting

the number of singular values of P11(jϕ) larger than γ, the number of negative

eigenvalues of the finite-dimensional matrix F (ϕ, γ), and the multiplicity of the zero

eigenvalue of F (ϕ, γ). For the computation of the first number, we can apply the

bisection algorithm that will be developed in Sec. 3.2.2; for the second and third

numbers, the computation of F (ϕ, γ) will be described in Sec. 3.2.3. Accordingly,

we can readily obtain a complete bisection algorithm.

Remark 3.1 In Theorem 3.1, the size of the square matrix F (ϕ, γ) is twice the

number of the outputs of P22(s). The dual form to Theorem 3.1, in which the size

of F (ϕ, γ) is twice the number of the inputs of P22(s), can be obtained in a similar

way.

Before closing this subsection, let us note that Theorem 3.1 can be extended to

a result that can be used to compute other singular values (not only the maximum

singular value) of sampled-data systems by a bisection search. To do this, it is

sufficient to know the open interval
(
σi+1

(
Q(jϕ)

)
, σi

(
Q(jϕ)

))
in which a given γ

is included. Now, suppose that σi+1

(
Q(jϕ)

)
< γ < σi

(
Q(jϕ)

)
. We can see that

this condition is equivalent to the condition N(K(ϕ, γ)) = (0, i). Therefore, we can

readily obtain the following result in a similar way to Theorem 3.1.

Theorem 3.2 Suppose that γ is not a singular value of P11(jϕ). Then, the following

four statements are equivalent for all non-negative integers i, where σ0(·) is defined

to be infinity, l is the number of outputs of P22(s), and ν is the number of singular

values of P11(jϕ) larger than γ.

(i) σi+1

(
Q(jϕ)

)
< γ < σi

(
Q(jϕ)

)
(3.23)

(ii) N (K(ϕ, γ)) + N

([
0 I −Π22(e

jϕτ )Cd(e
jϕτ )

I − C∗
d(ejϕτ )Π∗

22(e
jϕτ ) 0

])

= (0, l + i) (3.24)



39

(iii) N

([
γI −P11

∗(jϕ)

−P11(jϕ) γI

])
+ N (F (ϕ, γ)) = (0, l + i) (3.25)

(iv) N (F (ϕ, γ)) = (0, l + i− ν) (3.26)

3.2.2 Computation of negative eigenvalues of the infinite-

rank block-diagonal matrix

In Sec. 3.2.1, we showed that it is possible to check whether the condition ‖Q(jϕ)‖l2/l2 <

γ holds by counting the number of singular values of the block-diagonal matrix

P11(jϕ) larger than γ, the number of negative eigenvalues of the finite-dimensional

matrix F (ϕ, γ), and the multiplicity of the zero eigenvalue of F (ϕ, γ). In this sub-

section, we provide a method for counting the number of singular values of P11(jϕ)

larger than γ.

Note that P11(s) is strictly proper by assumption (3.13). This implies that the

elements P11(jϕn) tend to zero as |n| goes to infinity. Therefore, we can compute

the exact values of all singular values of P11(jϕ) larger than γ by computing the

singular values of the finite-dimensional matrix

P11[N ](jϕ) = blockdiag[P11(jϕ−N), · · · , P11(jϕ), · · · , P11(jϕN)] (3.27)

larger than γ, if N is sufficiently large. One such N is given as follows, as discussed

in Dullerud [18]. Let

Ap =

[
−AT − 1

γ
CT

1 C1

1
γ
B1B

T
1 A

]
(3.28)

and let

µ = max{|λ| : λ is a purely imaginary eigenvalue of Ap}. (3.29)

Then, it is enough to take N such that ϕN > µ and ϕ−N < −µ, which follows from

the well-known results of Boyd et al. [11]. Therefore, it follows that we can obtain

the number of singular values of P11(jϕ) larger than γ by computing the singular

values of the finite-dimensional matrix of (3.27).

3.2.3 Computation of finite-dimensional matrix for norm

computation

In this subsection, we show how to compute the finite-dimensional matrix F (ϕ, γ)

used in the bisection algorithm. Observe that (3.18) can be rewritten as

F (ϕ, γ) =

[
0 I

I 0

]
−

[
I 0

0 C∗
d(ejϕτ )

]
Φγ(e

jϕτ )

[
I 0

0 Cd(e
jϕτ )

]
, (3.30)
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where

Φγ(e
jϕτ ) :=

[
0 Π22(e

jϕτ )

Π∗
22(e

jϕτ ) 0

]
+

1

τ

[
P21(jϕ) 0

0 P12H
∗(jϕ)

]

×
[

γI −P11
∗(jϕ)

−P11(jϕ) γI

]−1 [
P21

∗(jϕ) 0

0 P12H(jϕ)

]
. (3.31)

For the computation of Φγ(e
jϕτ ), we have the following theorem.

Theorem 3.3 Φγ(e
jϕτ ) is the frequency pulse-transfer function of the discrete-time

system given by

Φγ(z) :=




Φγ11 −Φγ11

[
CT

2

0

]
Φγ12BH

[
0 C2

]
0 0

BT
HΓ T

33Φγ21 −BT
HΓ T

33Φγ21

[
CT

2

0

]
BT

HΓ T
33Φγ22BH




, (3.32)

where

[
Φγ11 Φγ12

Φγ21 Φγ22

]
:=




Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ41 Γ42 Γ43


 , (3.33)

and Γij are given by




Γ11 Γ12 Γ13 0

Γ21 Γ22 Γ23 0

0 0 Γ33 0

Γ41 Γ42 Γ43 Γ44


 := exp







−AT −1

γ
CT

1 C1 −1

γ
CT

1 D12CH 0

1

γ
B1B

T
1 A B2CH 0

0 0 AH 0

CT
HBT

2

1

γ
CT

HDT
12C1

1

γ
CT

HDT
12D12CH −AT

H




τ




.

(3.34)

The above equations give a formula for the computation of F (ϕ, γ) via matrix ex-

ponentiation, and thus we can readily count the number of negative eigenvalues of

the finite-dimensional matrix F (ϕ, γ) and the multiplicity of the zero eigenvalue of

F (ϕ, γ).

Remark 3.2 The matrix exponentiation (3.34) can be regarded as a generalization

of (A.3) in Hayakawa et al. [40], where (A.3) is obtained under the zero-order hold

settings with γ = 1 by using a lifting-based method, whereas (3.34) is derived under

the generalized hold settings by using the impulse modulation formula.
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Proof of Theorem 3.3: From the impulse modulation formula, the right-hand

side of (3.31) can be rewritten as follows:

Φγ(e
jϕτ ) =

1

τ

∞∑
m=−∞

[
I 0

0 H∗(jϕm)

]
T (jϕm)

[
I 0

0 H(jϕm)

]

= Z
[[

I 0

0 H (̃s)

]
T (s)

[
I 0

0 H(s)

]]

z=ejϕτ

, (3.35)

where

T (s) :=

[
0 P22(s)

P22 (̃s) 0

]
+

[
P21(s) 0

0 P12 (̃s)

][
γI −P11 (̃s)

−P11(s) γI

]−1[
P21 (̃s) 0

0 P12(s)

]
.

(3.36)

As seen from (3.36), T (s) can be expressed by the lower linear fractional represen-

tation1 given by the following equation:

T (s) = Fl







0 P22(s) P21(s) 0

P22 (̃s) 0 0 P 1̃2(s)

P21 (̃s) 0 0 P11 (̃s)

0 P12(s) P11(s) 0


 ,

1

γ
I




= Fl







Ǎ B̌1 B̌2

Č1 0 ĎT

Č2 Ď 0


 ,

1

γ
I


 ,

where

Ǎ =

[
−AT 0

0 A

]
, B̌1 =

[
−CT

2 0

0 B2

]
, B̌2 =

[
0 −CT

1

B1 0

]
,

Č1 =

[
0 C2

BT
2 0

]
, Č2 =

[
BT

1 0

0 C1

]
, Ď =

[
0 0

0 D12

]
.

The above state space representation is obtained by Lemma 2.1. Using the fact that

Fl







Ǎ B̌1 B̌2

Č1 0 ĎT

Č2 Ď 0


 ,

1

γ
I


 =

[
Ǎ + 1

γ
B̌2Č2 B̌1 + 1

γ
B̌2Ď

Č1 + 1
γ
ĎT Č2

1
γ
ĎT Ď

]
,

1For the definition of the lower linear fractional representation, see Notations and Definitions.
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and rearranging the righthand side leads to

T (s) =




E F1 F2

G1 0 0

G2 0 D


 ,

where

E =

[
−AT − 1

γ
CT

1 C1

1
γ
B1B

T
1 A

]
, F1 =

[
−CT

2

0

]
, F2 =

[
− 1

γ
CT

1 D12

B2

]
,

G1 =
[
0 C2

]
, G2 =

[
BT

2
1
γ
DT

12C1

]
, D =

1

γ
DT

12D12.

Note also that

[
I 0

0 H(s)

]
=




AH 0 I

0 I 0

CH 0 0




[
I 0

0 Hd(e
τs)

]
, (3.37)

and

[
I 0

0 H (̃s)

]
=

[
I 0

0 HT
d (e−τs)

]

−AT

H 0 CT
H

0 I 0

−I 0 0


 , (3.38)

where Hd(e
τs) is given by (2.64). Therefore, we obtain

Φγ(z) = Z
[[

I 0

0 H (̃s)

]
T (s)

[
I 0

0 H(s)

]]

= Z




[
I 0

0 Hd (̃eτs)

]

−AT

H 0 CT
H

0 I 0

−I 0 0







E F1 F2

G1 0 0

G2 0 D







AH 0 I

0 I 0

CH 0 0




[
I 0

0 Hd(e
τs)

]



= Z




[
I 0

0 Hd (̃eτs)

]



E F2CH 0 F1 0

0 AH 0 0 I

CT
HG2 CT

HDCH −AT
H 0 0

G1 0 0 0 0

0 0 −I 0 0




[
I 0

0 Hd(e
τs)

]



=

[
I 0

0 Hd (̃z)

]
Z




E F2CH 0 F1 0

0 AH 0 0 I

CT
HG2 CT

HDCH −AT
H 0 0

G1 0 0 0 0

0 0 −I 0 0




[
I 0

0 Hd(z)

]
, (3.39)
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where we used Lemmas 2.1 and 2.5 together with the fact that G1F1 = 0.

Now, we apply Lemma 2.4 to the Z-transform in (3.39). Let Φγ11, Φγ11, Φγ21,

Φγ22, and ÂH be given by



Φγ11 Φγ12 0

0 ÂH 0

Φγ21 Φγ22 Â−T
H


 = exp







E F2CH 0

0 AH 0

CT
HG2 CT

HDCH −AT
H


 τ


 . (3.40)

Note that (3.40) is nothing but (3.34).

From (3.39) and (3.40), together with Lemma 2.4, we obtain

Φγ(z) =

[
G1 0 0

0 0 −Hd (̃z)

] 



I −




Φγ11 Φγ12 0

0 ÂH 0

Φγ21 Φγ22 Â−T
H


 z−1





−1 


F1 0

0 Hd(z)

0 0


 . (3.41)

Here, note that Hd(z) = (I − ÂHz−1)BH and −Hd (̃z) = BT
HÂT

Hz(I − Â−T
H z−1) by

(2.68). Also note that (1,1), (1,2), (3,1), and (3,2)-components of the matrix inverse

appearing in (3.41) are given by

(1, 1)-component = (I − Φγ11z
−1)−1 (3.42)

(1, 2)-component = (I − Φγ11z
−1)−1Φγ12z

−1(I − ÂHz−1)−1 (3.43)

(3, 1)-component = (I − Â−T
H z−1)−1z−1Φγ21(I − Φγ11z

−1)−1 (3.44)

(3, 2)-component = (I − Â−T
H z−1)−1z−1

{
Φγ21(I − Φγ11z

−1)−1z−1Φγ12

+ Φγ22} (I − ÂHz−1)−1 (3.45)

From these equations, we obtain

Φγ(z)

=

[
G1 0

0 BT
HÂT

H

][
(I − Φγ11z

−1)−1 (I − Φγ11z
−1)−1Φγ12z

−1

Φγ21(I − Φγ11z
−1)−1 Φγ21(I − Φγ11z

−1)−1z−1Φγ12 + Φγ22

][
F1 0

0 BH

]

=

[
G1 0

0 BT
HÂT

H

][
(zI − Φγ11)

−1Φγ11 + I (zI − Φγ11)
−1Φγ12

Φγ21(zI − Φγ11)
−1Φγ11 + Φγ21 Φγ21(zI − Φγ11)

−1Φγ12 + Φγ22

][
F1 0

0 BH

]

=

[
G1 0

0 BT
HÂT

H

]{[
I

Φγ21

]
(zI − Φγ11)

−1
[
Φγ11 Φγ12

]
+

[
I 0

Φγ21 Φγ22

]}[
F1 0

0 BH

]

=

[
G1

BT
HÂT

HΦγ21

]
(zI − Φγ11)

−1
[
Φγ11F1 Φγ12BH

]
+

[
G1F1 0

BT
HÂT

HΦγ21F1 BT
HÂT

HΦγ22BH

]
.

(3.46)

The last equation of (3.46) coincides with (3.32) because ÂH = Γ33, G1 =
[
0 C2

]
,

and F1 =

[
−CT

2

0

]
. This completes the proof of Theorem 3.3.
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3.3 Related Issues and Further Developments

In the preceding sections, we derived a bisection method for computing the frequency

response gain of general sampled-data systems by using the infinite-dimensional con-

gruent transformation. In this section, we consider the following issues related to

our bisection algorithm. In Sec. 3.3.1, we give a bisection algorithm based on a

lifting technique. In Sec. 3.3.2, we derive a one-dimensional search algorithm. We

also give a lifting-based counterpart to the one-dimensional search algorithm and

clarify its relationship to the computation method of Yamamoto and Khargonekar

[81]. In Sec. 3.3.3, we consider the relationship between the solutions of the H∞

problem of sampled-data systems and the lifting-based bisection algorithm presented

in Sec. 3.3.1. Possible applications of the infinite-dimensional congruent transfor-

mation are given in Sec. 3.3.4.

3.3.1 Bisection algorithm based on lifting technique

In this subsection, we give an alternative bisection algorithm, based on lifting, for

computing the frequency response gain of sampled-data systems. Let us consider

the sampled-data system of Figure 2.3, where the state space representation of the

discrete-time controller Cd is given by

Cd(z) =

[
ACd

BCd

CCd
DCd

]
. (3.47)

According to the lifting theory [81], the counterpart to the FR-operator Q(jϕ) is

the frequency response operator Q(ejϕτ ) given by

Q(ejϕτ ) := C(ejϕτI −A)−1B +D, (3.48)

where

A :=

[
Â + B2dDCd

C2d B2dCCd

BCd
C2d ACd

]
(3.49)

=

[
I

0

] [
Â B2d

] [
I 0

DCd
C2d CCd

]
+

[
0 0

BCd
C2d ACd

]
(3.50)

B :=

[
B1

0

]
=

[
I

0

]
B1 (3.51)

C :=
[
C1 + D12DCd

C2d D12CCd

]
=

[
C1 D12

] [
I 0

DCd
C2d CCd

]
(3.52)

D := D11, (3.53)
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with

Â := eAτ , B2d :=

∫ τ

0

eA(τ−σ)h(σ)dσ, C2d := C2 (3.54)

B1 : w(·) 7→
∫ τ

0

eA(τ−σ)B1w(σ)dσ : L2[0, τ) → Rnx (3.55)

C1 : x 7→ C1e
Aθx : Rnx → L2[0, τ) (3.56)

D11 : w(·) 7→ C1

∫ θ

0

eA(θ−σ)B1w(σ)dσ + D11w(θ) : L2[0, τ) → L2[0, τ) (3.57)

D12 : ud 7→ C1

∫ θ

0

eA(θ−σ)B2h(σ)dσud + D12h(θ)ud : Rm → L2[0, τ). (3.58)

and, x ∈ Rnx and ud ∈ Rm.

The frequency response gain at angular frequency ϕ is defined as the norm of

Q(ejϕτ ) induced on L2[0, τ), i.e., ‖Q(ejϕτ )‖ [81]. Note that the way an inverse

appears in (3.48) and the way one appears in (2.3) are parallel. Also note that the

condition D11 = 0 guarantees that D is compact, as is Q(ejϕτ ). Therefore, it is

possible to derive a lifting counterpart to Theorem 3.1 in a similar way as described

in the preceding section.

Theorem 3.4 Suppose that γ is not a singular value of D. Then, the following

four statements are equivalent, where n is the size of the square matrix A and ν̂ is

the number of singular values of D larger than γ.

(i) ‖Q(ejϕτ )‖ < γ; (3.59)

(ii) N
(
K(ejϕτ , γ)

)
+ N

([
0 ejϕτI −A

e−jϕτI −A∗ 0

])
= (0, n); (3.60)

(iii) N

([
γI −D∗

−D γI

])
+ N

(
F̂ (ejϕτ , γ)

)
= (0, n); (3.61)

(iv) N
(
F̂ (ejϕτ , γ)

)
= (0, n− ν̂); (3.62)

where

K(ejϕτ , γ) :=

[
γI −D∗

−D γI

]
−

[
B∗ 0

0 C

][
0 ejϕτI −A

e−jϕτI −A∗ 0

]−1[B 0

0 C∗
]

, (3.63)

F̂ (ejϕτ , γ) :=

[
0 ejϕτI −A

e−jϕτI −A∗ 0

]
−

[
B 0

0 C∗
][

γI −D∗

−D γI

]−1[B∗ 0

0 C

]
. (3.64)
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From Theorem 3.4, we can check the condition (3.59) by (3.61) so that we can readily

obtain a bisection algorithm for the computation of ‖Q(ejϕτ )‖(= ‖Q(jϕ)‖l2/l2).

For the computation of F̂ (ejϕτ , γ), we can exploit the following result:

F̂ (ejϕτ , γ) =

[
0 ejϕτI − Ẽ

e−jϕτI − ẼT 0

]
−

[
B̃ 0

0 C̃T

]
G(γ)

[
B̃T 0

0 C̃

]
, (3.65)

where

G(γ) :=




0 Â B2d

ÂT 0 0

BT
2d 0 0


 +



B1 0

0 C∗
1

0 D∗
12




[
γI −D∗

11

−D11 γI

]−1 [
B∗

1 0 0

0 C1 D12

]
, (3.66)

Ẽ:=

[
0 0

BCd
C2d ACd

]
, B̃:=

[
I

0

]
, C̃:=

[
I 0

DCd
C2d CCd

]
.

The above G(γ) can be computed by

G(γ) =




I 0 0

0 I 0

0 0 BT
HΓ−1

44







Γ21 Γ22 Γ23

I 0 0

Γ41 Γ42 Γ43







Γ11 Γ12 Γ13

0 I 0

0 0 I




−1 


I 0 0

0 I 0

0 0 BH


 , (3.67)

where Γij are given by (3.34). The derivation of the above formula is similar to the

arguments in earlier works [10],[40], and so it is omitted.

For the computation of ν̂, i.e., the number of singular values of D larger than

γ, we have a bisection algorithm for computing the singular values of D = D11.

To show this, we employ a technique similar to that used in Theorems 3.4 and 3.2,

together with the FR-operator P11(jϕ). The counterpart to P11(jϕ) in the lifting

approach is given by

P11(e
jϕτ ) = C1(e

jϕτI − Â)−1B1 + D11. (3.68)

In Yamamoto and Araki [78], it was shown that the frequency response based on the

lifting approach and that based on the FR-operator are isometrically isomorphic.

This means that the singular values of P11(e
jϕτ ) and those of P11(jϕ) all coincide

for each ϕ, that is, the following relation holds for each ϕ and every γ > 0.

N

([
γI −P∗

11(e
jϕτ )

−P11(e
jϕτ ) γI

])
= N

([
γI −P11

∗(jϕ)

−P11(jϕ) γI

]
.

)
(3.69)

Note that a method for computing the right-hand side of (3.69) has been already

given in Sec. 3.2.2, and thus we can compute the left-hand side of (3.69). On the
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other hand, using Lemma 3.2, we can obtain

N







[
γI −P∗

11(e
jϕτ )

−P11(e
jϕτ ) γI

]
0

0

[
0 ejϕτI−Â

e−jϕτI−ÂT 0

]







= N







[
γI −D∗

11

−D11 γI

]
0

0 F̂11(e
jϕτ , γ)







(3.70)

in a similar way to the arguments in Sec. 3.2.1, where the finite-dimensional matrix

F̂11(e
jϕτ , γ) is given by

F̂11(e
jϕτ , γ) :=

[
0 ejϕτI

e−jϕτI 0

]
−G11(γ) (3.71)

G11(γ) :=

[
0 Â

ÂT 0

]
+

[
B1 0

0 C∗
1

][
γI −D∗

11

−D11 γI

]−1 [
B∗

1 0

0 C1

]

=

[
I 0 0

0 I 0

]
G(γ)




I 0

0 I

0 0


 =

[
Γ21 Γ22

I 0

][
Γ11 Γ12

0 I

]−1

. (3.72)

Since we already know the value of the left-hand side of (3.69) as mentioned above,

we can compute the value of the left-hand side of (3.70) by Lemma 3.4. Therefore,

if we focus on the right-hand side of (3.70), by computing the number of negative

eigenvalues of F̂11(e
jϕτ , γ), we can obtain the exact number of negative eigenvalues

of the operator

[
γI −D∗

11

−D11 γI

]
. Since this is true for each γ > 0, we can compute

every singular value of D11(= D) through a bisection search with respect to γ. It is

sufficient to carry out this bisection search at one fixed angular frequency for which

ejϕτI − Â is invertible, since D11 is independent of ϕ.

3.3.2 One-dimensional search algorithm

In this section, we show that another procedure can be obtained from condition (iv)

of Theorem 3.2 for the computation of the frequency response gain ‖Q(jϕ)‖l2/l2 .

Suppose that γ is larger than ‖Q(jϕ)‖l2/l2 , and thus (3.23) holds for i = 0. Also

suppose that

σν+1(P11(jϕ)) < γ < σν(P11(jϕ)) (3.73)

so that there are ν singular values of P11(jϕ) larger than γ. Now, as γ decreases, the

condition (3.23) fails for i = 0 eventually when γ crosses the value of ‖Q(jϕ)‖l2/l2 ,
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and we will have i > 0 instead. On the other hand, the value of ν remains unchanged

as long as γ remains within the range (3.73), and hence by (3.26) the number of

negative eigenvalues of F (ϕ, γ) increases as γ crosses ‖Q(jϕ)‖l2/l2 . This implies that

‖Q(jϕ)‖l2/l2 can be obtained by searching for the largest value of γ across which the

number of negative eigenvalues of F (ϕ, γ) increases as γ decreases. (In other words,

‖Q(jϕ)‖l2/l2 can be obtained by searching for the largest value of γ that satisfies

the condition det (F (ϕ, γ)) = 0.) Fortunately, it readily follows from the structure

of F (ϕ, γ) as shown in (3.18) that the eigenvalues of this matrix are uniformly non-

increasing as γ decreases, provided that γ is within the range of (3.73) (i.e., provided

that γ does not cross a singular value of P11(jϕ)). Therefore, it should be easy to

find, in a numerically reliable fashion, the largest value of γ across which the number

of negative eigenvalues of F (ϕ, γ) increases as γ decreases. This gives an alternative

method for the computation of the frequency response gain ‖Q(jϕ)‖l2/l2 without a

bisection search, which can be carried out without prior knowledge of the singular

values of P11(jϕ).

In a similar manner to the above arguments, we can also obtain the lifting-based

one-dimensional search algorithm for the computation of the frequency response

gain ‖Q(ejϕτ )‖(= ‖Q(jϕ)‖l2/l2) from the lifting counterpart to condition (iv) of

Theorem 3.2, which is equivalent to σi+1 (Q(ejϕτ )) < γ < σi (Q(ejϕτ )), given by

N
(
F̂ (ejϕτ , γ)

)
= (0, n + i− ν̂), (3.74)

where ν̂ is the number of singular values of D larger than γ, or equivalently, ν̂ is the

number satisfying

σbν+1(D) < γ < σbν(D). (3.75)

Following the above arguments, it is shown that ‖Q(ejϕτ )‖ can be obtained by

searching for the largest value of γ across which the number of negative eigenvalues

of F̂ (ejϕτ , γ) increases as γ decreases. (In other words, ‖Q(ejϕτ )‖ can be obtained by

searching for the largest value of γ that satisfies the condition det
(
F̂ (ejϕτ , γ)

)
= 0.)

Furthermore, as in the case of F (ϕ, γ), F̂ (ejϕτ , γ) also has an advantageous property

in which the eigenvalues of this matrix are uniformly non-increasing as γ decreases,

provided that γ is within the range of (3.73). Therefore, we can find the largest

value of γ across which the number of negative eigenvalues of F̂ (ejϕτ , γ) increases

as γ decreases in a numerically reliable fashion.

This one-dimensional search algorithm is in fact closely related to the compu-

tation method given by Yamamoto and Khargonekar [81], which is based on the

following proposition (adapted and rearranged to fit our notation).
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Proposition 3.1 (Theorem 2 of [81]) Suppose that γ is not a singular value of D.

Then, the following two statements are equivalent.

(i) γ is a singular value of Q(ejϕτ )

(ii) det
(
ejϕτE(γ)− A(γ)

)
= 0

where

E(γ) =

[
I −B(γI − 1

γ
D∗D)−1B∗

O A∗ + C∗D(γ2I −D∗D)−1B∗

]

A(γ) =

[
A+ B(γ2I −D∗D)−1D∗C O

−C∗(γI − 1
γ
DD∗)−1C I

]
.

Now, letting Aγ := A + B(γ2I − D∗D)−1D∗C, Bγ := B(γI − 1
γ
D∗D)−1B∗ and

Cγ := C∗(γI − 1
γ
DD∗)−1C, the condition (ii) can be restated as follows.

det

([
ejϕτI − Aγ −ejϕτBγ

Cγ ejϕτA∗
γ − I

])
= 0. (3.76)

On the other hand, our condition det
(
F̂ (ejϕτ , γ)

)
= 0 can be rewritten as

det

([
−Bγ ejϕτI − Aγ

e−jϕτI − A∗
γ −Cγ

])
= 0. (3.77)

Naturally, it can easily be verified that (3.76) and (3.77) are equivalent. However,

the latter has a numerically desirable feature that the involved matrix F̂ (ejϕτ , γ) is

self-adjoint (i.e., Hermitian). Furthermore, the eigenvalues of the matrix involved

have numerically amenable properties as stated above.

Before closing this subsection, we mention that a one-dimensional search algo-

rithm is also obtained for the computation of singular values of D. Suppose that γ

crosses one of the singular values of D before it crosses ‖Q(ejϕτ )‖ as γ decreases.

In this case, the inequality (3.75) fails for the original ν̂, and this inequality will be

satisfied for a larger value of ν̂. This implies that the right-hand side of (3.74) must

become smaller as γ crosses a singular value of D. However, since the eigenvalues

of F̂ (ejϕτ , γ) do not increase as γ decreases, which is derived in a similar way to the

above arguments for F (ϕ, γ), this can happen only by a discontinuous jump of some

of the eigenvalues of this matrix at a singular value of D. To state this in reverse,

the singular values of D can be found, including their multiplicities, by observing

the place and the number of such kinds of discontinuous jumps of the eigenvalues

of F̂ (ejϕτ , γ). This gives an alternative method for the computation of the singular

values of D. For this computation, it is obviously enough to take only one fixed

value ϕ.
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3.3.3 Relationship to the solution of sampled-data H∞ prob-

lem

The exponentiation formula for computing the finite-dimensional matrix F̂ (ejϕτ , γ),

or equivalently, that for G(γ), appearing in the lifting-based methods for computing

the frequency response gain of sampled-data systems, frequently also appears in the

existing research on the H∞ control problem of sampled-data systems, e.g., Bamieh

and Pearson [10] and Hayakawa et al. [40]. This suggests a strong connection

between our study and those existing studies, and we indeed have constructed the

following theorem that establishes such a connection.

Theorem 3.5 Suppose that the discrete-time system P̃ given by

x̃[k + 1] = Ãx̃[k] + B̃1w̃[k] + B̃2ρ[k]

z̃[k] = C̃1x̃[k] + D̃11w̃[k] + D̃12ρ[k]

η[k] = C̃2x̃[k] (3.78)

satisfies the following three conditions.

(i) G(γ) given by (3.66) has the following decomposition.




O Â B2d

ÂT O O

BT
2d O O


 +



B1 O

O C∗
1

O D∗
12




[
γI −D∗

11

−D11 γI

]−1 [
B∗

1 O O

O C1 D12

]

=




O Ã B̃2

ÃT O O

B̃T
2 O O


 +




B̃1 O

O C̃T
1

O D̃T
12




[
γI −D̃T

11

−D̃11 γI

]−1 [
B̃T

1 O O

O C̃1 D̃12

]
. (3.79)

(ii) γ > σ1(D̃11).

(iii) For all ACd
, BCd

, CCd
and DCd

, the matrix A is stable if and only if the matrix

Ã is, where

A =

[
Â + B2dDCd

C2d B2dCCd

BCd
C2d ACd

]
, Ã =

[
Ã + B̃2DCd

C̃2 B̃2CCd

BCd
C̃2 ACd

]
. (3.80)

Then, P̃ can be used as an equivalent discrete-time system for solving the H∞

control problem of the original sampled-data system.

Theorem 3.5 can be proved by replacing G(γ) in (3.65) with the right-hand

side of (3.79) and tracing the arguments in Sec. 3.2.1 in the reverse way mutatis

mutandis. The importance of Theorem 3.5 lies in that it provides a general class of

discrete-time systems that can be used for solving the H∞ problem of sampled-data
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systems. Indeed, we can verify that both the discrete-time system given by Bamieh

and Pearson [10] (which we call the B-P type realization) and that by Hayakawa

et al. [40] (H-H-Y type) are special examples of P̃ satisfying the conditions of the

above theorem; we can interpret the B-P type realization as the one obtained by

solving the equation (3.79) for P̂ under the constraint D̃11 = 0, while the H-H-Y

type is that under the constraint Ã = Â and B̃2 = B2d.

3.3.4 Possible applications of the properties of the congru-

ent transformation

As seen in the preceding sections, the properties of the congruent transformation

are very useful for the computation of the frequency response gain of sampled-data

systems, as well as for the solution of the sampled-data H∞ control problem. As

a matter of fact, the congruent transformation approach developed in this chapter

can be applied to a wide class of problems on systems and control. For example,

applying a similar technique, the well-known bisection algorithm for computing the

H∞ norm of a continuous-time system [11] can be derived in an elementary way

(i.e., purely algebraically, without resorting to a system-theoretic notion such as the

inverse systems in [11]). In this subsection, we give further possible applications of

the infinite-dimensional congruent transformation approach.

Gain margin and nonlinear stability analysis of sampled-data systems

In Hagiwara [35], the computation of the smallest positive γ (denoted by γmin),

such that Q(jϕ) + γI is positive real, was studied for the sampled-data system of

Figure 2.3 with w and z the same size, where the notion of positive real sampled-

data systems was introduced in Sugimoto and Suzuki [70],[71]. The inverse of such

γ is closely related to the gain margin kmax, where kmax is the maximum of k that

guarantees the internal stability of the closed-loop system whose FR-operator is

given by (I + kQ(jϕ))−1, and also to the stability of the feedback system consisting

of the sampled-data system Q(jϕ) and a sector-bounded nonlinearity. Since the

positive real condition can be converted into the bounded real condition by the

Cayley transformation, and since the bounded real (i.e., the H∞ or small-gain)

type of problem has been studied much more extensively than the positive real

type of problem, one might try to compute γmin in the Cayley transform domain.

However, this is not simple because γ is involved in a very complex fashion in the

Cayley transform. As a matter of fact, the congruent transformation approach can

be applied directly to such positive real problems, too, and it is very useful for the

computation of γmin. To demonstrate the usefulness of the congruent transformation
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approach in a wide class of problems, we give a brief sketch of how it can be applied

to this problem. By definition, Q(jϕ)+γI is positive real if and only if the sampled-

data system is internally stable and

Q(jϕ) + Q∗(jϕ) + 2γI > 0 (∀ϕ ∈ I0) (3.81)

or equivalently,

{
2γI + P11(jϕ) + P11

∗(jϕ)
}− 1

τ

[
P21

∗(jϕ) P12H(jϕ)Cd(e
jϕτ )

]

×
[

0 −I + Π22(e
jϕτ )Cd(e

jϕτ )

−I + C∗
d(ejϕτ )Π∗

22(e
jϕτ ) 0

]−1 [
P21(jϕ)

C∗
d(ejϕτ )P12H

∗(jϕ)

]

> 0 (3.82)

for all ϕ ∈ I0. Assuming that D11 = 0 as before, we readily have 2γI + P11(jϕ) +

P11
∗(jϕ) ∈ N . Thus, we can apply the infinite-dimensional congruent transforma-

tion techniques as in Sec. 3.2, and thus we can reduce the checking of (3.82) into

counting the following two numbers: the number of eigenvalues of the self-adjoint

operator −(P11(jϕ) + P11
∗(jϕ)) larger than 2γ (which we denote by ν(ϕ)) and the

number of negative eigenvalues of the finite-dimensional matrix
[

0 −I + Π22(e
jϕτ )Cd(e

jϕτ )

−I + C∗
d(ejϕτ )Π∗

22(e
jϕτ ) 0

]
− 1

τ

[
P21(jϕ)

C∗
d(ejϕτ )P12H

∗(jϕ)

]

× {
2γI + P11(jϕ) + P11

∗(jϕ)
}−1

[
P21

∗(jϕ) P12H(jϕ)Cd(e
jϕτ )

]
(3.83)

(which we denote by µ(ϕ)). To be more precise, we must check whether the number

µ(ϕ) is equal to l − ν(ϕ) for all ϕ ∈ I0 (this corresponds to condition (iv) of

Theorem 3.1). Here, the number ν(ϕ) can be computed easily since the eigenvalues

of P11(jϕ) + P11
∗(jϕ) can be computed by a finite-dimensional truncation method,

which can be derived by slightly modifying the arguments in Sec. 3.2.2. Concerning

the computation of µ(ϕ), we can also derive the matrix exponentiation formula

for the finite-dimensional matrix (3.83) by modifying the arguments in Sec. 3.2.3.

Consequently, it is easy to check whether µ(ϕ) is equal to l− ν(ϕ) for all ϕ ∈ I0, or

equivalently if Q(jϕ)+γI is positive real. Thus, by using the arguments in Sec. 3.2,

we can easily construct a bisection algorithm for the computation of γmin.

Quadratic constraints for sampled-data systems

A powerful method for the analysis of the feedback connections of two systems

was proposed by Megretski and Rantzer [60]. It is based on the idea of integral

quadratic constraints (IQC) and includes the bounded real and positive real ap-

proaches as special cases. Therefore, to get more general results than those based
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on the bounded/positive real conditions as discussed above, it will be important

to extend their arguments to the setting of sampled-data systems. Here, we use

lifting-based representation for the following reasons: (i) IQC can be reduced to the

conditions described by state space representation in general; (ii) the lifting-based

representation of sampled-data systems can be regarded as a generalization of the

state space representation of continuous or discrete-time systems. Therefore, it is

more natural to use lifting-based representation than FR-operator-based represen-

tation.

In IQC-based analysis, it is important to check whether the quadratic constraint

of the form

[
(ejϕτI −A)−1B

I

]∗ [
M11 M12

M∗
12 M22

][
(ejϕτI −A)−1B

I

]
< 0 (∀ ϕ) (3.84)

is satisfied for all ϕ ∈ I0, where A is a stability matrix and M11, M12, and −M22

are, respectively, a Hermitian matrix, a compact operator, and an invertible operator

belonging to N ; furthermore, they generally depend on the operators C and D. Such

a quadratic constraint corresponds to the one regarding the Kalman-Yakubovich-

Popov lemma in the continuous or discrete-time case [68]. Now, we readily see by a

direct computation that (3.84) can be restated as follows:

−M22 −
[
B∗ M∗

12

] [
0 ejϕτI −A

e−jϕτI −A∗ −M11

]−1 [
B
M12

]
> 0 (∀ ϕ). (3.85)

Note that the inverse in (3.85), which we denote here by R−1, is a finite-dimensional

matrix, and we can show N(R) = (0, n), where n is the size of the matrix A. Also

note that −M22 ∈ N by assumption. Therefore, again we can apply a technique

similar to that in the preceding sections for reducing the test of the condition (3.85)

to a finite-dimensional test. Thus, the congruent transformation approach can be

applied to various problems in systems and control through the IQC method [60].

3.4 Numerical Study

In this section, we apply the bisection algorithm given in the preceding sections to

compute the frequency response gain and singular values of sampled-data systems.

We also apply the one-dimensional search algorithm, which is a slightly modified

version of the method given by Yamamoto and Khargonekar [81], and compare the

results with those obtained by our bisection algorithm.
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3.4.1 Frequency response gain and singular values of a sampled-

data system

Consider the continuous-time plant Ṕ (s) and the continuous-time controller Cr(s)

given by

Ṕ (s) =
1

4s2
· (s/a + 1)

∏1
i=0{(s/ωi)

2 + 2ζi(s/ωi) + 1}∏4
i=2{(s/ωi)2 + 2ζi(s/ωi) + 1} , (3.86)

Cr(s) =
0.0513s3 + 0.00424s2 + 0.0296s + 0.00157

s4 + 0.693s3 + 0.779s2 + 0.293s + 0.0739
, (3.87)

where a = 4.84, ζ0 = 0.02, ζ1 = −0.4, ζ2 = ζ3 = ζ4 = 0.02, ω0 = 1, ω1 = 5.65,

ω2 = 0.765, ω3 = 1.41, and ω4 = 1.85. This example is found in Anderson and Moore

[1]. We compute the singular value plot of the following sampled-data system.

P (s): P11(s) = P12(s) = Ṕ (s), P21(s) = P22(s) = −Ṕ (s).

Cd(z): discretization of Cr(s) by the Tustin (bilinear) transformation with sam-

pling period τ = 8.
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Figure 3.1: Singular value plot.
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We suppose that P and Cd are connected with the zero-order hold and the ideal

sampler.

Here, based on Theorem 3.2, we compute seven singular values from the largest

for each angular frequency, where the number of angular frequencies is 200. To

compute the initial upper and lower bounds of the singular values, we use the method

given by Hagiwara et al. [34]. The CPU used for the computation is Intel CoreTM2

Duo P8700 2.53 GHz, and the amount of RAM is 4 GB. The bisection algorithm

is implemented by MATLAB 6.0. The singular value plot of this example, which is

accurate up to the tolerance of 0.01dB (can be guaranteed by employing a dB-based

bisection method), is shown in Figure 3.1, and the computational load (CPU-time)

is shown in Table 3.1. In this table, Tinf denotes the CPU-time for computing the

singular values of the infinite-dimensional operator P11(jϕ), and Ti denotes that

for computing, with the bisection algorithms, the i-th largest singular value for all

frequencies.

Table 3.1: Computational load for bisection search (CPU-time [sec])

CPU-time number of γ-iterations

Tinf 0.109

T1 0 0∗

T2 0 0∗

T3 0.016 13

T4 0.109 21

T5 0.250 310

T6 1.217 1579

T7 1.450 1891

∗ The initial upper and lower bounds for the first and second

singular values were close enough, and so no bisection loop

was run.

3.4.2 Comparison with the method of Yamamoto and Khar-

gonekar

Here, we compute the frequency response gain of the sampled-data system given in

Sec. 3.4.1 with the method by Yamamoto and Khargonekar [81]. More precisely,

we use the condition (3.77) instead of (3.76) for better numerical properties. For

simplicity, we decrease γ from 44dB to 4dB with a step of ∆dB, since we know
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Figure 3.2: ∆ = 0.2, e = 0.01(+), 0.001( e)

from Figure 3.1 that the frequency response gain plot is actually within this range.

The one-dimensional search is carried out at 33 angular frequencies, and, for each

angular frequency, if the magnitude of the determinant (3.77) becomes less than e

as we decrease γ, then the frequency response gain is regarded as equal to γ, where

we take e = 0.01 or 0.001. Figure 3.2 and Figure 3.3 show the results for ∆ = 0.2

and for ∆ = 0.002, respectively, where “+” and “ e” denote the plots for e = 0.01

and e = 0.001, respectively. Even though we refer to the computational load shown

in Table 3.2, since it is surely an important factor that cannot be neglected, we

stress that our primary intention here is to highlight the numerical reliability of our

bisection algorithm.

From Figures 3.2 and 3.3, we can observe that a sufficiently small e must be

taken to get accurate results, and we also need to take a correspondingly small ∆

as we make e smaller. However, from Table 3.2, we can see that making both e

and ∆ small would require a long time. How much this computation time lengthens

depends entirely on how good the initial upper and lower bounds are, but it is

generally true that this one-dimensional search is time-consuming compared with

the bisection algorithm. Indeed, for the same setting (i.e., the computation is carried

out at 33 angular frequencies starting from the uniform upper bound of 44dB and

lower bound of 4dB and is accurate up to a tolerance of 0.002dB), the bisection

search takes only 0.375 sec with 495 iterations. Another important finding that
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Table 3.2: Computational load for one-dimensional search (CPU-time [sec])

∆ dB

0.2 0.002

e 0.01 1.34 98.8

0.001 2.32 102

should be noted in Figure 3.3 is that the computation of the frequency response

gain at ϕ = 10−0.6 ≈ 0.25 rad/sec is very difficult with this one-dimensional search.

The situation does not change so much by making e and ∆ small. This can be

seen from Figure 3.4, where the dependence of the determinant of (3.77) versus γ

is plotted for this frequency. Since the slope of this curve at the zero-crossing point

is very steep, it is difficult to detect this point by a discrete search of γ. Note that

the slope here is steep because this point (i.e., the frequency response gain at this

frequency) is close to the discontinuous point of the plot (namely, a singular value of

D — recall the arguments of Sec. 3.3.2). In contrast, our bisection algorithm is free

from such a problem since the algorithm can be applied even at those frequencies

where the gain is close to a singular value of D.



58

13.1 13.15 13.2 13.25 13.3 13.35 13.4
-10

-5

0

5

10

15

20

Gain(dB)

d
e
t
[
h
a
t
{
F
}
]

Figure 3.4: γ vs. det(F̂ (ejϕh, γ)) plot at ϕ = 10−0.6

3.5 Summary

In this chapter, we gave a complete bisection algorithm for computing the frequency

response gain of sampled-data systems. The algorithm is based on the properties

of the infinite-dimensional congruent transformation (i.e., the Schur complement

arguments and Sylvester’s law of inertia), and we focused on how to count the

numbers of negative eigenvalues of self-adjoint matrices. The algorithm can be

carried out easily with the state-space matrices of the sampled-data system, and the

effectiveness of the derived bisection algorithm is demonstrated through a numerical

example.

We also derived a bisection algorithm with the lifting approach by using the same

technique. Furthermore, since the algorithm requires computation of the singular

values of the operator D, we proposed a bisection algorithm for their computation

as well, again with the same technique. The algorithm can also be carried out with

the state-space matrices of the sampled-data system.

In addition, some important related issues were discussed such as the relationship

to the existing one-dimensional search method by Yamamoto and Khargonekar [81].

Furthermore, the link between computing the frequency response gain and solving
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the sampled-data H∞ problem was made clearer. This contrasts with the apparently

prevailing belief (e.g., earlier work [39]) that the former is essentially much harder

than the latter, which comes from some difficulties stemming from the fact that the

frequency response gain can be smaller than ‖D‖, while the H∞ norm is no smaller

than ‖D‖.





Chapter 4

FR-Operator Approach to the

Sensitivity Reduction Problems of

Sampled-Data Systems

In the preceding chapters, we provided several methods for computing the fre-

quency response gain of sampled-data systems using the notion of FR-operators.

FR-operators can be used not only for computing the frequency response gain of

sampled-data systems but also for analyzing their performance while taking into

account intersample behavior and the influence of aliasing. This is possible because

FR-operators completely describe the frequency-domain characteristics of sampled-

data systems. In this chapter, we consider the sensitivity reduction (SR) and com-

plementary sensitivity reduction (CSR) problems of sampled-data systems by using

the notion of FR-operators.

We show that, as far as the SR and CSR problems are concerned, we can have

a discretization method to reduce them to equivalent discrete-time problems. This

provides a discretized system that we call the doubly sensitivity-preserving (DSP)

discretized system, which can be used for both the SR and CSR problems of sampled-

data systems. We also introduce the discretized system obtained by the ‘hold equiv-

alent’ discretization, which is referred to as the naively discretized system. This

chapter is mainly devoted to the study of the SR and CSR problems of sampled-

data systems through the DSP discretized system, including an investigation into

the important relationship between the DSP discretized plant and the naively dis-

cretized plant.

This chapter is organized as follows. First, we define the sensitivity and comple-

mentary sensitivity of sampled-data systems and summarize useful notions for study-

ing the SR/CSR problems such as the coprime factorization approach, inner-outer

factorization, Nevanlinna problem, and its solution. For details, see Vidyasagar [75]

61
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and Francis [19]. Before going on to a consideration of the SR/CSR problems of

sampled-data systems, we consider much easier problems, that is, the SR/CSR prob-

lems of naively discretized systems, and show several interesting results for the best

achievable performances in these problems by using the coprime factorization ap-

proach. Next, we introduce the DSP discretized system and show that the SR/CSR

problems of sampled-data systems can be equivalently reduced to those of the DSP

discretized system. Based on this result, we show the relationships between the SR

(CSR) problem of sampled-data systems (that of DSP discretized systems) and the

corresponding problems of the naively discretized systems. Finally, we give results

for the best achievable performances of the SR and CSR problems of sampled-data

systems through the coprime factorization of the DSP discretized plant and the so-

lution of the Nevanlinna problem with the Pick matrix. A numerical example is

also presented to show the relationship between the best achievable performances

in the SR/CSR problems of sampled-data systems and those obtained by naively

discretized systems.

4.1 Preliminary

4.1.1 Sensitivity and Complementary Sensitivity of Sampled-

Data Systems

Consider the sampled-data system Σ shown in Figure 4.1, consisting of the continu-

ous time plant P , the discrete-time controller Cd, the ideal sampler S with sampling

period τ , which works according to yd[k] = y(kτ), and the generalized hold H, which

works according to u(kτ + t) = h(t)ud[k] (t ∈ [0, τ)), where u and ud are hold output

and input, respectively, and h(t) is called the hold function. The transfer matrices

of P , H, and Cd are denoted by P (s), H(s) (=
∫ τ

0
h(t)e−stdt), and Cd(z), respec-

tively. In Figure 4.1, solid lines stand for continuous-time signals and dashed lines

represent discrete-time signals.

The sensitivity S(jϕ) and the complementary sensitivity T (jϕ) of the sampled-

data system are defined as the FR-operators from r to e and u, respectively. Ac-

cording to Araki et al. [8], S(jϕ) and T (jϕ) are operators on l2 represented as

infinite-dimensional matrices given by

S(jϕ) : =

(
I +

1

τ
H(jϕ)Cd(e

jϕτ )P (jϕ)

)−1

= I − 1

τ
H(jϕ)Kd(e

jϕτ )P (jϕ), (4.1)

T (jϕ) : =
1

τ
H(jϕ)Kd(e

jϕτ )P (jϕ), (4.2)
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Figure 4.1: Sampled-data system Σ.

where and I is the identity on l2, ϕ ∈ I0 = (−π/τ, π/τ ], and

H(jϕ) =




...

H(jϕ−1)

H(jϕ0)

H(jϕ1)
...




, (4.3)

P (jϕ) =
[
· · · P (jϕ−1) P (jϕ0) P (jϕ1) · · ·

]
, (4.4)

ϕm = ϕ +
2π

τ
m ( m = 0,±1, · · · ) , (4.5)

Kd(e
jϕτ ) = Cd(e

jϕτ )(I + Pd(e
jϕτ )Cd(e

jϕτ ))−1, (4.6)

Pd(e
jϕτ ) =

1

τ
P (jϕ)H(jϕ) =

1

τ

∞∑
m=−∞

P (jϕm)H(jϕm), (4.7)

= Z[P (s)H(s)]z=ejϕτ . (4.8)

In earlier work [8], it was shown that S(jϕ) gives the improvement of the sensitivity

due to the feedback control and also represents the ability to reject disturbances; it

was also shown that T (jϕ) represents the degree of robust stability and, at the same

time, provides the effect of detection noise. Thus, S(jϕ) and T (jϕ) can be regarded

as the natural counterparts to the sensitivity and the complementary sensitivity,

respectively, of a continuous-time system. For details, see the earlier work [8]. In

the following, we omit jϕ and ejϕτ when no confusion occurs.

4.1.2 Mathematical Preliminaries

In this subsection, we summarize the useful notions for considering SR and CSR

problems, such as the coprime factorization approach, inner-outer factorization, and

Nevanlinna problem. See Vidyasagar [75] and Francis [19] for the details.



64

In this chapter, we often use λ := 1/z instead of z to describe transfer matrices of

discrete-time systems, and we consider the SR and CSR problems using the coprime

factorization on R , which denotes the set of rational functions analytic on D̄, the

closed unit disc. We also use the notation R for the set of matrices whose every

entry belongs to R .

First, we summarize the coprime factorization approach. The importance of the

coprime factorization approach is that it provides a parameterization of all con-

trollers that stabilize a given plant. For scalar functions a, b ∈ R , a and b are

said to be coprime if they have no common zeros in D̄. It is well-known that, for a,

b ∈ R , a and b are coprime if and only if there exist x, y ∈ R satisfying ax+by = 1.

The equation ax+by = 1 is referred to as the Bezout identity. Now, suppose that Pd

is the pulse transfer matrix of a scalar discrete-time plant and let Pd = n/d where

n, d ∈ R are coprime. We refer to the pair (n, d) as a coprime factorization of Pd.

In this case, the set of all controllers Cd that stabilize Pd, denoted by C, is given by

C =

{
Cd =

x + dq

y − nq

∣∣∣∣ q ∈ R and y − nq 6= 0

}
, (4.9)

where (x, y) ∈ R is a pair of the solutions of the Bezout identity nx + dy =

1. Thus, we can completely parameterize all stabilizing controllers by using free

parameter q ∈ R . Another importance of the coprime factorization approach is

that the discrete-time sensitivity Sd = 1/(1 + CdPd) and complementary sensitivity

Td = CdPd/(1 + CdPd) are expressed by affine functions of the free parameter q

as Sd = d(y − nq) and Td = n(x + dq). This significantly reduces the difficulty of

handling the SR/CSR problems.

Next, we briefly summarize the definitions of inner and outer on R and related

issues. A matrix G ∈ R is inner if G˜G = I. A matrix G ∈ R is outer if G has

full-row rank for every λ ∈ D, the open unit disc. A matrix G ∈ R is a unit if

it has an inverse in R . It is well known that every G ∈ R has an inner-outer

factorization G = GiGo where Gi and Go are inner and outer, respectively. In this

case, all zeros of Gi in D consist of all zeros of G in D. When G has no zeros

on the unit circle, Go turns out to be a unit. For a given matrix G, the set GR

is defined as GR = {GQ | Q ∈ R }. A matrix G is said to be co-inner or co-

outer if GT is inner or outer, respectively. A co-inner-outer factorization has the

form G = GcoGci, where Gco and Gci are co-outer and co-inner, respectively. An

inner-outer factorization of GT yields a co-inner-outer factorization of G.

Finally, we review the Nevanlinna problem, which is closely related to the SR/

CSR problems of discrete-time systems. Conforming to the forms that we encounter

in the arguments in this chapter, we state the following “canonical” form of the

Nevanlinna problem, which will be used to describe the explicit problems dealt with
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later.

Problem 4.1 Suppose that αi (i = 1, · · · ,m) and βj (j = 1, · · · , l) are distinct

complex numbers with modulus less than 1. Determine whether there exists F ∈ R

satisfying the conditions ‖F‖∞ < 1, F (αi) = Ξi (i = 1, . . . , m), and F (βj) = Υj (j =

1, . . . , l), where Ξi and Υj are given complex matrices having a norm less than 1.

Obviously, the optimization problem that finds the infimum of γ such that there

exists F ∈ R satisfying the conditions ‖F‖∞ < γ, F (αi) = Ξi (i = 1, . . . , m), and

F (βj) = Υj (j = 1, . . . , l) can be reduced to Problem 4.1 by scaling. It is well known

that the following proposition is useful for studying the above problem.

Proposition 4.1 Suppose λ1, · · · , λn are distinct complex numbers with modulus

less than 1 and Λ1, · · · , Λn are complex matrices with a norm less than 1. Define

the Pick matrix Q as

Q =




Q11 · · · Q1n

...
. . .

...

Qn1 · · · Qnn


 , Qij =

1

1− λ̄iλj

· (I − Λ∗i Λj). (4.10)

Then, there exists F ∈ R such that ‖F‖∞ < 1 and F (λi) = Λi (i = 1, · · · , n) if

and only if the matrix Q is positive definite.

4.2 SR and CSR Problems of Naively Discretized

Systems

Before going on to consideration of the SR/CSR problems of sampled-data systems,

we consider much easier problems, that is, the SR/CSR problems of discrete-time

systems obtained by the ‘hold equivalent’ discretization. We call the discrete-time

systems naively discretized systems. The precise definition of the naively discretized

system will be given later.

Concerning the SR/CSR problems of naively discretized systems, pioneering

work was done by Sung and Hara [73], where several interesting results were derived

such as some integral constraints for the sensitivity and complementary sensitivity,

and lower bounds of the best achievable performances for SR and CSR problems.

The result of the integral constraint for the sensitivity and the result of the lower

bound for the SR problem were extended to multiple-input multiple-output case

by Hara and Sung [36]. In this section, we further study the SR/CSR problems

of naively discretized systems and show that the best achievable performances in
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the SR and CSR problems of naively discretized systems coincide. In addition, we

show that the two lower bounds of the best achievable performances for these two

problems derived by Sung and Hara [73] also coincide with each other.

Let us consider the discrete-time system Σd shown in Figure 4.2 consisting of the

discrete-time plant Pd and the discrete-time controller Cd, where Pd is obtained by

discretizing the continuous-time plant P as in (4.8). This system can be regarded

as a discrete-time counterpart of the sampled-data system Σ shown in Figure 4.1

provided that r and rd are zero. The use of this discrete-time system Σd is standard

in the treatment of the sampled-data system Σ when we are not concerned about the

intersample behavior, e.g., in stability analysis. That is, the discrete-time system Σd

only describes the behavior at sampling instants, and there is no direct and obvious

way to describe the intersample behavior of Σ with Σd. Throughout this chapter,

we refer to Σd as the naively discretized system.

The sensitivity Sd(e
jϕτ ) and the complementary sensitivity Td(e

jϕτ ) of the naively

discretized system Σd are defined as the frequency transfer matrices from rd to ed

and ud, respectively:

Sd(e
jϕτ ) :=

{
I + Cd(e

jϕτ )Pd(e
jϕτ )

}−1
, (4.11)

Td(e
jϕτ ) := Cd(e

jϕτ )Pd(e
jϕτ )

{
I + Cd(e

jϕτ )Pd(e
jϕτ )

}−1
. (4.12)

The best achievable performance for the SR problem of the naively discretized sys-

tem Σd and that for the CSR problem are defined as infCd∈C ‖Sd‖∞ and infCd∈C ‖Td‖∞,

respectively, where C is the set of all stabilizing controllers Cd. In the rest of this

section, we use λ := 1/z instead of z to describe transfer matrices of discrete-time

systems.

For the naively discretized system Σd, we set the following assumptions:

Assumption 4.1

(i) P and H are nonzero scalar systems.

S P H

Cd

Pd = Z[PH] rd

ed ud

+−

Figure 4.2: Naively discretized system Σd.
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(ii) P is controllable and observable.

(iii) P (s) is strictly proper and does not have poles on the imaginary axis.

(iv) P (s) has m(6= 0) distinct poles of order one in <(s) > 0. They are referred to

as unstable poles of P (s), and are denoted by ai (i = 1, · · · ,m).

(v) The sampling period τ is selected such that the discrete-time plant Pd is con-

trollable and observable.

(vi) Pd does not have zeros on the unit circle.

Remark 4.1 When m = 0, we can show that Cd = 0 attains the best achievable

performances for both SR and CSR problems. It is to avoid such a trivial case that

m 6= 0 is assumed in condition (iv) of Assumption 4.1.

From conditions (i) and (v) of Assumption 4.1, Pd is also a nonzero scalar system.

In this case, according to the coprime factorization approach given in Sec. 4.1.2, the

set of all stabilizing controllers is given by1

C =

{
Cd =

x + dq

y − nq

∣∣∣∣ q ∈ R and y − nq 6= 0

}
, (4.13)

where the pair (n, d) is a coprime factorization of Pd on R satisfying

Pd = n/d, n, d ∈ R (4.14)

and x, y ∈ R are the solutions of the Bezout identity

nx + dy = 1. (4.15)

In the following, we arbitrarily fix the solutions x and y. Note that, from (4.11),

(4.12), (4.13), (4.14), and (4.15), Sd and Td are expressed, respectively, as follows:

Sd = d(y − nq), (4.16)

Td = n(x + dq). (4.17)

Remark 4.2 From Assumption 4.1, together with the results obtained by Mid-

dleton and Freudenberg [61], it is shown that, for almost every sampling period

τ , the relative degree of Pd(z) is one, and Pd(z) has m unstable poles. In other

words, Pd(1/λ) has zero of order one at λ = 0, m distinct unstable poles e−aiτ

(i = 1, · · · ,m) of order one, and no unstable poles and zeros on the unit circle.

Therefore, ni is expressed as ni = λn̂i, where n̂i is inner consisting of unstable zeros

of Pd(1/λ) except for the origin, di has m distinct poles e−aiτ (i = 1, · · · ,m) in the

open unit disc D, and both no and do become units, where nino = n and dido = d

are inner-outer factorizations of n and d, respectively.

1Small letters imply scalar functions.
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4.2.1 Relationship Between Best Achievable Performance in

SR Problem and That in CSR Problem for Discrete-

Time Systems

In this subsection, we show the following theorem, which implies that the best

achievable performances in the SR and CSR problems of the naively discretized

system Σd coincide.

Theorem 4.1 infCd∈C ‖Sd‖∞ = infCd∈C ‖Td‖∞

Proof of Theorem 4.1: Let αi := e−aiτ (i = 1, · · · ,m) and βj (i = 1, · · · , l)

be unstable poles and zeros of Pd(1/λ), respectively, and inner-outer factorizations

of d and n be d = dido and n = nino, respectively. Then, we have |αi| < 1,

di(α1) = · · · = di(αm) = 0 and |βj| < 1, ni(β1) = · · · = ni(βl) = 0. From (4.16) and

(4.17), we obtain

inf
Cd∈C

‖Sd‖∞ = inf
q∈R

‖d(y − nq)‖∞ = inf
q′∈nodoR

‖dy − nidiq′‖∞ = inf
q′∈R

‖dy − nidiq′‖∞,

(4.18)

inf
Cd∈C

‖Td‖∞ = inf
q∈R

‖n(x + dq)‖∞ = inf
q′∈nodoR

‖nx + nidiq′‖∞ = inf
q′∈R

‖nx + nidiq′‖∞.

(4.19)

The last equalities of (4.18) and (4.19) are due to the fact that nodoR = R because

no and do are units from Assumption 4.1 (See Remark 4.2). Furthermore, from (4.18)

and (4.19), we obtain

inf
Cd∈C

‖Sd‖∞ = inf
q′∈R

{
γ > 0

∣∣∣∣
∥∥∥∥
dy

γ
− nidiq′

∥∥∥∥
∞

< 1

}
, (4.20)

inf
Cd∈C

‖Td‖∞ = inf
q′∈R

{
γ > 0

∣∣∣∣
∥∥∥∥
nx

γ
+ nidiq′

∥∥∥∥
∞

< 1

}
. (4.21)

Here, note from (4.15) that dy = 0 and nx = 1 for λ such that d(λ) = 0, while

dy = 1 and nx = 0 for λ such that n(λ) = 0. Hence, it follows that the computation

of the best achievable performance infCd∈C ‖Sd‖∞ reduces to Problem 4.1 with Ξi =

0 (i = 1, · · · ,m), and Υj = 1/γ (j = 1, · · · , l). We refer to this problem as Problem-

Sd. Similarly, the problem of finding the best achievable performance infCd∈C ‖Td‖∞
reduces to Problem 4.1 with Ξi = 1/γ (i = 1, · · · ,m), and Υj = 0 (j = 1, · · · , l).

We refer to this problem as Problem-Td. From these interpolation conditions, we

have γ > 1 for both problems (i.e., Problem-Sd and Problem-Td) because γ (> 0)

should satisfy the constraint 1/γ < 1 in both cases.
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From Proposition 4.1, the computation of the infimum γ for Problem-Sd reduces

to the problem of finding the infimum of γ > 1 such that the Pick matrix

QSd
=

[
X Y

Y ∗ (1− γ−2)Z

]
(4.22)

is positive definite, where the (i, j)-elements of X, Y , and Z, which we denote

by Xij, Yij, and Zij, respectively, are given by Xij = 1
1−αiαj

(i, j = 1, · · · ,m),

Yij = 1
1−αiβj

(i = 1, · · · ,m; j = 1, · · · , l), and Zij = 1
1−βiβj

(i, j = 1, · · · , l). In a

similar manner, the computation of the infimum γ for Problem-Td reduces to the

problem of finding the infimum of γ > 1 such that the Pick matrix

QTd
=

[
(1− γ−2)X Y

Y ∗ Z

]
(4.23)

is positive definite. Here, note that the positive definiteness of QSd
and that of

QTd
are equivalent because these matrices are mutually related by a congruence

transformation. Hence, Theorem 4.1 is established.

4.2.2 Relationship Between Lower Bound of Best Achiev-

able Performance in SR Problem and That in CSR

Problem Derived by Sung and Hara

In the preceding subsection, we showed that the best achievable performances in the

SR and CSR problems of the naively discretized system Σd coincide. In this subsec-

tion, we show that the two lower bounds of these two best achievable performances

obtained by Sung and Hara [73] also coincide. Their lower bounds are given by the

following proposition.

Proposition 4.2

inf
Cd∈C

‖Sd‖∞ ≥ eατ , (4.24)

inf
Cd∈C

‖Td‖∞ ≥ λ1/2
max(Aτ

−1Bτ ), (4.25)

where α :=
∑m

i=1 ai. Aτ and Bτ are square matrices of size m whose (i, j)-element

(Aτ )ij and (Bτ )ij are given, respectively, by

(Aτ )ij :=
1

1− e−(āi+aj)τ
, (Bτ )ij :=

e(āi+aj)τ

1− e−(āi+aj)τ
. (4.26)

Theorem 4.1 says that the left-hand sides of (4.24) and (4.25) in Proposition 4.2

coincide. On the other hand, we can show the following theorem stating that the

right-hand sides of (4.24) and (4.25) also coincide.
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Theorem 4.2 eατ = λ1/2
max(Aτ

−1Bτ ).

Proof of Theorem 4.2: In Sung and Hara [73], Proposition 4.2 is obtained by

using the following inequalities2, and by showing that the right-hand side of (4.28)

is equal to eατ and the right-hand side of (4.30) is equal to λ
1/2
max(Aτ

−1Bτ ).

inf
Cd∈C

‖Sd‖∞ = inf
q∈R

‖dy − didoλn̂inoq‖∞ = inf
q′∈bninodoR

‖dy − λdiq′‖∞ (4.27)

≥ inf
q′∈R

‖dy − λdiq′‖∞ = inf
q′∈R

‖doy − λq′‖∞, (4.28)

inf
Cd∈C

‖Td‖∞ = inf
q∈R

‖nx + λn̂inodidoq‖∞ = inf
q′∈bninodoR

‖nx + λdiq′‖∞ (4.29)

≥ inf
q′∈R

‖nx + λdiq′‖∞ = inf
q′∈R

‖n̂inox + diq′‖∞. (4.30)

On the other hand, we prove Theorem 4.2 by showing that the left-hand side of

(4.28) and that of (4.30) coincide. In the following, we only show the outline of the

proof because the proof is similar to the proof of Theorem 4.1.

The left-hand side of (4.28) coincides with the right-hand side of (4.18) if we

replace ni by λ. In a similar manner, the left-hand side of (4.30) coincides with

the right-hand side of (4.19) by replacing ni by λ. Therefore, we can show that

infq′∈R ‖dy−λdiq′‖∞ = infq′∈R ‖nx+λdiq′‖∞, if we rewrite the arguments starting

from (4.20) of the proof of Theorem 4.1 by replacing ni by λ and setting l = 1, β1 = 0.

This completes the proof.

Remark 4.3 If Pd(1/λ) does not have unstable zeros except for the origin, the set

n̂inodoR coincides with the set R . In this case, from the above inequalities, we can

show that the inequalities of (4.24) and (4.25) turn out to be equalities, that is, the

right-hand side of (4.24) and that of (4.25) become the best achievable performance

of the naively discretized system Σd in the SR problem and that in the CSR problem,

respectively.

2Although the derivation of these inequalities is found in the earlier work [73], we briefly sum-
marize the derivation for the self-containedness of this thesis. The inequalities in (4.28) and (4.30)
are due to the fact that n̂inodoR ⊂ R . The equalities in (4.28) and (4.30) are due to the facts
that di and λ are both inner.
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4.3 Consideration of SR and CSR problems for

Sampled-Data Systems Using Doubly Sensitivity-

Preserving Discretized Systems

In this section, we turn back to the SR/CSR problems of the sampled-data system Σ

and establish that these problems can be related to some sensitivity reduction prob-

lems of the naively discretized system Σd with some frequency-dependent weights.

For our consideration of the SR and CSR problems for the sampled-data system Σ,

we use a discrete-time feedback system whose internal stability is equivalent to that

of the original sampled-data system Σ and whose frequency response of the sensitiv-

ity (respectively, complementary sensitivity) coincides with that of Σ at each angular

frequency. We call this discrete-time system the doubly sensitivity-preserving (DSP)

discretized system Σ̂. The precise definition of the DSP discretized system will be

given later.

Using the DSP discretized system Σ̂, we establish a link between the CSR prob-

lem of the sampled-data system Σ and that of the naively discretized system Σd.

This is accomplished by introducing a key notion called the aliasing factor, and its

role in the study of the best achievable performance of the sampled-data system Σ

for the CSR problem is also discussed here. Then, we study the SR problem of the

sampled-data system Σ and establish a similar link to a sort of mixed sensitivity

reduction problem of the naively discretized system Σd.

4.3.1 Derivation of Doubly Sensitivity-Preserving Discretized

System Σ̂

It is generally understood that the naively discretized plant Pd introduced in the pre-

ceding section is useless for studying the SR/CSR problems of the original sampled-

data system Σ. For studying such problems directly, we introduce in this section

a more elaborate and useful discretized plant that we call the doubly sensitivity-

preserving (DSP) discretized plant, denoted by P̂ . We also introduce what we call

the DSP discretized hold, denoted by Ĥ, and consider as in Figure 4.3 the closed-

loop system consisting of P̂ , Ĥ and the same discrete-time controller Cd as in the

original sampled-data system Σ; we call the latter the DSP discretized system and

denote it by Σ̂ (the rationale for the term DSP will become clear later). In this

section, we establish that Σ̂ is stable if and only if the original sampled-data system

Σ is stable and that the frequency response gain of the sensitivity (respectively,

complementary sensitivity) of Σ̂ coincides with that of Σ at each angular frequency.

These properties imply that the SR/CSR problems of the sampled-data system Σ
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P̂ Ĥ

Cd

r̂

û

ê +−

Figure 4.3: Doubly sensitivity-preserving (DSP) discretized system Σ̂.

can be reduced equivalently to the corresponding discrete-time problems for the DSP

discretized system Σ̂. The DSP discretized plant P̂ is thus very important in its own

right. However, what makes the discussions in this chapter much more significant

is that we can in fact reveal a relationship between these equivalent SR and CSR

problems in terms of Σ̂ and a sort of sensitivity reduction problem of the naively

discretized system Σd. What is surprising in such a relationship is that the latter

system has been obtained by completely ignoring the intersample behavior of Σ, and

thus at a glance it is irrelevant to the SR and CSR problems of the sampled-data

system Σ (or Σ̂). The discussions on such a relationship between Σ (or Σ̂) and

Σd as well as its implications form the core of this chapter; however, they will be

deferred to Secs. 4.3.2, 4.3.3, and 4.4, and to prepare some fundamental results, we

confine our attention in this section to the derivation of the DSP discretized plant

P̂ and hold Ĥ.

In the following, we suppose that the state-space realization of the continuous-

time plant P is given by

P (s) =

[
A B

C 0

]
, (4.31)

and the hold function h(t) of the hold circuit H is given by h(t) = CHeAH tBH , where

we assume that (AH , BH) is controllable and (CH , AH) is observable. Now, we begin

with a key lemma.

Lemma 4.1 Let B̂ and ĈH be matrices satisfying[
B̂

ĈT
H

] [
B̂T ĈH

]
=

∫ τ

0

Γ (t)Γ T (t)dt, (4.32)

Γ (t) =

[
eA(τ−t) 0

0 eAT
H t

][
B

CT
H

]
.

Then, for

P̂ (z) =

[
Â B̂

C 0

]
, Ĥ(z) = ĈHBH (4.33)
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with Â = eAτ , the following relation holds:

1

τ

[
P (jϕ)

H∗(jϕ)

][
P ∗(jϕ) H(jϕ)

]
=

[
P̂ (ejϕτ )

Ĥ∗(ejϕτ )

][
P̂ ∗(ejϕτ ) Ĥ(ejϕτ )

] (
∀ϕ ∈ I0 =

(
−π

τ
,
π

τ

])
.

(4.34)

Proof of Lemma 4.1: The proof is essentially based on the well-known fact that the

right-hand side of (4.7), known as the impulse modulation of P (s)H(s), is equivalent

to the usual discretization of P (s)H(s) given by (4.8) evaluated on the unit circle.

That is, we first note that the left-hand side of (4.34) can be regarded as a sort

of impulse modulation since P ∗(jϕm) = P (̃jϕm) and H∗(jϕm) = H (̃jϕm). Then,

we see that it can be represented as the left-hand side of the following equation

evaluated at z = ejϕτ .

Z
[[

P (s)

H (̃s)

] [
P (̃s) H(s)

]]
=

[
P̂ (z)

Ĥ (̃z)

] [
P̂ (̃z) Ĥ(z)

]
. (4.35)

Therefore, it suffices to prove the above relation, and it follows readily by applying

essentially the same arguments as in the proofs of Z
[
P21(s)P21 (̃s)

]
= Π21(z)Π21 (̃z)

and Z
[
H (̃s)P12 (̃s)P12(s)H(s)

]
= Π12 (̃z)Π12(z) in Sec. 2.4. This completes the

proof.

In the following, P̂ (z) and Ĥ(z) given by (4.33) are called the doubly sensitivity-

preserving (DSP) discretized plant and the DSP discretized hold, respectively, for

reasons to become clear shortly. Regarding P̂ (z) and Ĥ(z), note that Ĥ(z) is in

fact a constant matrix independent of z (see (4.33)) and that P̂ Ĥ = Pd by (4.7)

and the (1, 2)-component of (4.35). From this observation, we first introduce the

alternative representation of the naively discretized system Σd shown in Figure 4.4,

which is equivalent to that in Figure 4.2. We then see that the system Σ̂ shown in

Figure 4.3, which we mentioned before, is only slightly modified from the naively

discretized system in Figure 4.4 and looks more similar to that in Figure 4.1 with

respect to the locations of the external inputs. This rearrangement of the naively

P̂ Ĥ

Cd

rd

ud

ed +−

Figure 4.4: Another representation of the naively discretized system Σd.
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discretized system Σd in terms of the DSP discretized plant P̂ and hold Ĥ, including

the modified treatment of the external inputs, is a very important idea that plays

the key role in the overall discussion of this chapter. In the following arguments,

the discrete-time system Σ̂ shown in Figure 4.3 is referred to as the DSP discretized

system.

In this section, we begin by establishing that the norm of the sensitivity (respec-

tively, complementary sensitivity) of the sampled-data system Σ at each angular

frequency can be computed as that of the DSP discretized system Σ̂; this property

clearly validates the term DSP. Here, the sensitivity Ŝ (respectively, the comple-

mentary sensitivity T̂ ) of Σ̂ is defined precisely as the transfer matrix from r̂ to ê

(respectively, û). They are given respectively by

Ŝ = I − ĤCd

(
I + P̂ ĤCd

)−1

P̂ = I − ĤCd (I + PdCd)
−1 P̂

= I − ĤKdP̂ , (4.36)

T̂ = ĤCd

(
I + P̂ ĤCd

)−1

P̂ = ĤKdP̂ (4.37)

where Kd is given by (4.6).

We can now state an important theorem giving the relationship between the

(complementary) sensitivity of the sampled-data system Σ and that of the DSP

discretized system Σ̂.

Theorem 4.3 The DSP discretized system Σ̂ is stable if and only if the original

sampled-data system Σ is stable. Furthermore, if P̂ (z) and Ĥ(z) given by (4.33)

satisfy the condition

6 ∃ϕ ∈ I0 = (−π/τ, π/τ ] such that
[
P̂ ∗ Ĥ

]
is of full-row rank, (4.38)

then

‖Ŝ(ejϕτ )‖ = ‖S(jϕ)‖l2/l2 (∀ϕ ∈ I0) , (4.39)

‖T̂ (ejϕτ )‖ = ‖T (jϕ)‖l2/l2 (∀ϕ ∈ I0) . (4.40)

Remark 4.4 In Braslavsky et al. [12], a finite-dimensional computation method

for ‖T (jϕ)‖l2/l2 and ‖S(jϕ)‖l2/l2 was established, but it involves no viewpoint of

“an equivalent discrete-time system” as in the DSP discretized system Σ̂. Although

such a viewpoint was provided in another method by Hagiwara et al. [29], as far

as the computation of ‖T (jϕ)‖l2/l2 is concerned, no such viewpoint that can be
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applied to the computation of ‖S(jϕ)‖l2/l2 has been provided in existing methods,

e.g., Braslavsky [12], Ito et al. [48], and Yamamoto and Khargonekar [81]. In

contrast, Theorem 4.3 clearly establishes that the (complementary) sensitivity of

the sampled-data system Σ can be studied through an “equivalent system” (i.e., the

DSP discretized system Σ̂), which is common for the treatment of the sensitivity

and that for the complementary sensitivity.

Proof of Theorem 4.3: It is well known that Σ is stable if and only if Σd is

stable. Hence, the first assertion is obvious since Pd = P̂ Ĥ. Also, the proof of (4.40)

is essentially the same as the arguments in Hagiwara et al. [29]; this follows readily

by applying the equalities about the (1, 1) and (2, 2)-components of (4.34) to (4.2).

Accordingly, the details are omitted. Therefore, it suffices to show that (4.39) holds

under the assumption (4.38).

From (4.1), we obtain S∗S = I + X for each ϕ ∈ I0, where

X =
1

τ

[
P ∗ H

] [
K∗

d · 1
τ
H∗H ·Kd −K∗

d

−Kd 0

][
P

H∗

]
. (4.41)

Since X is compact (in particular, finite-rank), we have ‖S‖2
l2/l2 = max(λmax (S∗S) , 1) =

1 + max(λmax (X) , 0). On the other hand, from (4.36), we obtain Ŝ∗Ŝ = I + X̂ for

each ϕ ∈ I0, where

X̂ =
[
P̂ ∗ Ĥ

] [
K∗

dĤ
∗ĤKd −K∗

d

−Kd 0

][
P̂

Ĥ∗

]
. (4.42)

Thus, we obtain, ‖Ŝ‖2 = λmax

(
Ŝ∗Ŝ

)
= 1 + λmax(X̂). Consequently, to establish

(4.39), it is enough to show that max(λmax(X), 0) = λmax(X̂) under the assumption

(4.38). To show this, we prove the following three equalities in order:

max (λmax(X), 0)

= max

{
λmax

(
1

τ

[
P

H∗

] [
P ∗ H

] [
K∗

d · 1
τ
H∗H ·Kd −K∗

d

−Kd 0

])
, 0

}
,

= max

{
λmax

([
P̂

Ĥ∗

] [
P̂ ∗ Ĥ

] [
K∗

d · Ĥ∗Ĥ ·Kd −K∗
d

−Kd 0

])
, 0

}
,

= λmax(X̂). (4.43)

The second equality of (4.43) is a direct consequence of (4.34), so it is enough to

show the first and third equalities; they both rely on the well-known fact that when

XY and Y X are both well-defined operators or matrices, the spectrum of XY

can possibly be a larger set than that of Y X (or vice versa) by including just one
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additional point that can exist nowhere else than at the origin. The first equality of

(4.43) follows immediately from this fact. Similarly, the third equality also follows

from this fact if we note that the last quantity in (4.43) is nonnegative under the

assumption (4.38), since the matrix X̂ given by (4.42) has an eigenvalue at the

origin. Hence, the proof is completed.

Remark 4.5 If
[
P̂ ∗ Ĥ

]
is of full-row rank for some ϕ, we can modify P̂ and Ĥ

into
[
P̂ 0

]
and

[
Ĥ

0

]
within the standing constraint on P̂ and Ĥ given by (4.35).

Consequently, the condition (4.38) is not restrictive, but it is very important in

making the last quantity in (4.43) as it is, rather than making it max(λmax(X̂), 0).

In other words, without the condition (4.38), we would have to introduce such

an “additional max-operation,” which would then prevent us from associating the

computation of ‖S(jϕ)‖l2/l2 directly with the DSP discretized system Σ̂. Regarding

such a max-operation, we give some further remarks on the arguments in the earlier

work [12]. Although no such max-operation can be found there, this is due to a flaw

in the arguments. More precisely, equation (19) of that work [12] can be validated

only under the nonsingularity assumption of the matrix M therein, but such an

assumption is not actually made nor is it satisfied automatically. Since those early

arguments [12] are intrinsically irrelevant to such a rank condition as (4.38) in this

thesis, correcting the flaw leads to the same additional max-operation with 0 in their

arguments.

Remark 4.6 When (A,B) is controllable, B̂ has full-row rank. Therefore, when C

is of full-row rank, it follows that P̂ (z) becomes right-invertible except at a point of

infinity, i.e., P̂ (z) has no finite zeros. Similarly, when (CH , AH) is observable, ĈH

has full-column rank, and thus if BH is of full-column rank, then Ĥ is left-invertible;

since Ĥ is independent of z, Ĥ has no zeros. If both P and H are scalar systems

satisfying all of the assumptions mentioned above, P̂ (z) and Ĥ become a row vector

and a column vector, respectively.

Remark 4.7 The idea of the DSP discretized system arose from a desire to relate

the the equation (4.41) relevant to sampled-data systems with the equation (4.42)

about discrete-time systems. Such a desire leads in a straightforward fashion to con-

sidering the discrete-time systems P̂ and Ĥ satisfying (4.34) in Lemma 4.1. In this

sense, the introduction of the DSP discretized system could be said to be a natural

consequence of the fact that the FR-operator representations of the sensitivity and

complementary sensitivity directly reflect the way the components in the sampled-

data system Σ are connected with each other. This is one of the advantages of the

FR-operator approach.
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By Theorem 4.3, the DSP discretized system Σ̂ shown in Figure 4.3 is equivalent

to the sampled-data system Σ in Figure 4.1 when we consider the SR/CSR problems.

In this sense, the DSP discretized system Σ̂ is much more important than the naively

discretized system Σd, which does not take the intersample behavior into account.

However, we can easily see that the only difference between Σ̂ and Σd lies in the

evaluation points for sensitivity and complementary sensitivity. This might suggest

that even the naively discretized system Σd could be related somehow to the SR and

CSR problems of the original sampled-data system Σ. This is indeed the case, and

the discussions in the following part of this chapter are devoted to clarifying such a

relationship.

4.3.2 Relationship Between CSR Problems of DSP Discretized

System Σ̂ and Naively Discretized System Σd

In this subsection, we clarify that there exists a clear relationship between two

seemingly irrelevant problems, i.e., the CSR problem of the sampled-data system Σ

in Figure 4.1, which completely takes into account the intersample behavior, and

that of the naively discretized system Σd in Figure 4.2, which is inherently free from

the concept of intersample behavior. This is accomplished by noting the equivalence

of Σ and the DSP discretized system Σ̂ with respect to the CSR problem and by

introducing a key notion called the aliasing factor ψ, which describes the frequency-

dependent effects of the difference in the locations of the external inputs in Σ̂ and

Σd. The significance of the aliasing factor is also demonstrated through a further

study on the relationship between the best achievable performances associated with

the CSR problems of Σ and Σd.

In the following, we clarify the relationship between the CSR problems of the

sampled-data system Σ (or equivalently, the DSP discretized system Σ̂) and the

naively discretized system Σd under the same assumptions in Sec. 4.2, i.e., Assump-

tion 4.1. From Assumption 4.1, together with the observability of (CH , AH), it

follows that P̂ (z) and Ĥ given by (4.33) become a row vector with no finite zeros

and a constant column vector with no zeros, respectively (see Remark 4.6). In the

rest of this section, we use λ := 1/z instead of z to describe transfer functions of

discrete-time systems.

Let us consider a coprime factorization of P̂ on R . Since all poles of Pd and

those of P̂ coincide3, d, the denominator of Pd in (4.14), can also be chosen as a

3Both of them are eigenvalues of Â−1, where Â = eAτ , which appears in (4.33).
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denominator of P̂ . Let NP be given by NP = P̂ d. Then, NP ∈ R and

P̂ = NP /d, (4.44)

is a coprime factorization of P̂ on R because P̂ , or equivalently, NP has no unstable

zeros except for the origin, and thus NP and d do not share the same unstable zeros.

It also follows that

n = NP Ĥ (4.45)

since Pd = n/d and Pd = P̂ Ĥ. From (4.6), (4.13), (4.36) and (4.37), we obtain the

following equations for the DSP discretized system Σ̂.

Ŝ = I − Ĥ
(
x + dq

)
NP , (4.46)

T̂ = Ĥ
(
x + dq

)
NP . (4.47)

The aliasing factor ψ

We first introduce the inner-outer factorization of Ĥ and the co-inner-outer factor-

ization of NP given respectively by

Ĥ = H i · ho, NP = nco
P ·N ci

P , (4.48)

where H i and N ci
P are a column vector and a row vector, respectively. For more

on the reason that ho and nco
P can be taken as scalars, see Fact 17 on p. 165 of

Vidyasagar [75] for details. Note that ho and nco
P are units on R (see Remark 4.6).

From (4.47) and (4.48), the H∞ norm of the complementary sensitivity T̂ is given

as follows:

‖T̂‖∞ = ‖H iho
(
x + dq

)
nco

P N ci
P ‖∞ = ‖ho

(
x + dq

)
nco

P ‖∞ = ‖nco
P ho

(
x + dq

)‖∞. (4.49)

From (4.49), together with (4.17), we conclude that the H∞ norm of the comple-

mentary sensitivity of the sampled-data system Σ and that of the naively discretized

system Σd are related by

‖T‖∞ = ‖T̂‖∞ =

∥∥∥∥
nco

P ho

n
Td

∥∥∥∥
∞

=

∥∥∥∥
nco

P ho

nino
Td

∥∥∥∥
∞

=

∥∥∥∥
nco

P ho

no
Td

∥∥∥∥
∞

, (4.50)

where ni and no correspond to the inner-outer factorization n = nino. In (4.50),

nco
P ho/no is an important factor that relates the CSR problem of the sampled-data

system Σ and that of the naively discretized system Σd. In other words, this func-

tion can be regarded as the frequency-dependent factor with which the influence of

aliasing, ignored under the treatment of the sampled-data system Σ as the naively
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discretized system Σd, can be recovered in the treatment through Σd. This obser-

vation provides us with a very important viewpoint in the following study of the

CSR (or SR) problem of the sampled-data system Σ, as well as its best achievable

performances. We define the inverse of this function as the aliasing factor 4, which

is denoted by ψ:

ψ :=
no

nco
P ho

. (4.51)

Summarizing the above, we obtain the following theorem on the relationship

between the CSR problem of the sampled-data system Σ and that of the naively

discretized system Σd.

Theorem 4.4 For the CSR problem, the following two conditions are equivalent:

(i) Cd is a stabilizing controller for Σ s.t. ‖T‖∞ < γ.

(ii) Cd is a stabilizing controller for Σd s.t.

∥∥∥∥
1

ψ
Td

∥∥∥∥
∞

< γ.

To clarify further relationships between the CSR problems of Σ and Σd, it is

important to clarify the properties of the aliasing factor ψ. The following theorem

gives a key answer to this issue.

Theorem 4.5 The aliasing factor ψ is a unit such that |ψ(λ)| ≤ 1 (|λ| ≤ 1), i.e.,

‖ψ‖∞ ≤ 1.

Proof of Theorem 4.5: ψ is outer because nco
P and ho are units (recall Remark 4.6).

Since the outer function no is also a unit by condition (vi) in Assumption 4.1, it

follows readily that ψ is a unit. From (4.14), (4.44), (4.48), and the fact that

P̂ Ĥ = Pd, we obtain

[
P̂

(Ĥ )̃

] [
(P̂ )̃ Ĥ

]
=

[
nco

P

d
· nco

P ˜

d˜
n
d

n˜
d˜

(ho)̃ ho

]
. (4.52)

From this together with the definition of the aliasing factor ψ, we obtain

ψ · ψ˜ =

(
P̂ · Ĥ

)
·
(
P̂ · Ĥ

)
˜

(
P̂ · (P̂ )̃

)
·
(
(Ĥ )̃ · Ĥ

) . (4.53)

Since ψ is outer, it is analytic on the closed unit disc. Therefore, from the maximum

modulus principle, the maximum value of |ψ| is attained on the unit circle. From

4The reason for defining the aliasing factor as the inverse of the function nco
P ho/no is that it is

helpful for deriving the analytic properties of the aliasing factor.



80

the right-hand side of (4.53) and Schwarz’s inequality, we obtain |ψ| ≤ 1 on the unit

circle (since (·)̃ = (·)∗ on the unit circle). Therefore, when |λ| ≤ 1,

|ψ(λ)| ≤ max
ϕ
|ψ(ejϕτ )| ≤ 1. (4.54)

This completes the proof.

It should be noted from (4.53) together with (4.35) that the aliasing factor ψ is

determined by P (s) and H(s) and does not in fact depend on the specific choice

of the factors P̂ and Ĥ nor on the specific coprime factorizations in (4.14) and

(4.48). More precisely, ψ is determined uniquely up to the multiplication by a

constant inner function (i.e., a complex number with modulus 1), since ψ is outer;

this indeed permits us to call it the aliasing factor.

It should be noted that the aliasing factor ψ is closely related to the fidelity index

Φd introduced in Braslavsky et al. [12], defined only on the unit circle by

Φ2
d(e

jϕτ ) =

( ∞∑
m=−∞

|P (jϕm)|2
)( ∞∑

m=−∞
|H(jϕm)|2

)

∣∣∣∣
∞∑

m=−∞
P (jϕm)H(jϕm)

∣∣∣∣
2

. (4.55)

From (4.35) and (4.53), we see that Φ2
d = 1/(ψ∗ψ) holds on the unit circle. Therefore,

the aliasing factor can be regarded as the analytic extension, from the unit circle to

the complex plane, of the inverse of the square root of the fidelity index.

Remark 4.8 Actually, the fidelity index in the earlier work [12] was introduced for

the feedback system in which the external input is located at the output-side of the

plant. On the other hand, as shown in Figure 4.1, the external input of our system is

located at the input-side of the plant. Therefore, the definition (4.55) of the fidelity

index of our system has been slightly modified from the original one to match the

context here.

Even though we considered the H∞ norm in (4.50) or Theorem 4.4, it is obvious

that we can develop parallel arguments on the frequency response gain, by which

we have ‖T‖l2/l2 = ‖T̂‖ = ‖ 1
ψ
Td‖. This implies that the result in the earlier work

[12] can also be recovered with the use of the aliasing factor.

Relationship between the best achievable performances of Σ and Σd

Next, we consider the relationship between the CSR problem of the sampled-data

system Σ and that of the naively discretized system Σd through the property of the

aliasing factor ψ.



81

In the naively discretized system Σd, we have

‖Td‖∞ = ‖n(x + dq)‖∞ = ‖nino(x + didoq)‖∞
= ‖no(x + diq′)‖∞, (4.56)

where di and do correspond to the inner-outer factorization of d = dido. Hence, as

is well known (e.g., Vidyasagar [75]), the CSR problem of Σd, i.e., the problem of

minimizing the H∞ norm of Td, can essentially be reduced to the problem of finding

an interpolation function that is analytic on the closed unit disc and attains, at the

zeros of di, the same value as nox, while possessing as small an H∞ norm as possible.

On the other hand, it follows from Theorem 4.3 that we have the following

relation for the sampled-data system Σ:

‖T‖∞ = ‖T̂‖∞ =

∥∥∥∥
1

ψ
Td

∥∥∥∥
∞

=

∥∥∥∥
1

ψ
n(x + dq)

∥∥∥∥
∞

=

∥∥∥∥
1

ψ
no(x + diq′)

∥∥∥∥
∞

(4.57)

Due to the difference between (4.56) and (4.57) by the factor 1/ψ, we can see that

the interpolation function in the CSR problem of the sampled-data system Σ should

satisfy the same analyticity constraint but has to attain, at an interpolation point,

a value whose magnitude is larger (or no smaller) than that for Σd by the factor

|1/ψ| (≥ 1), since |ψ| ≤ 1 inside the unit circle by Theorem 4.5. Hence, in general,

the H∞ norm of the interpolation function would naturally degrade (i.e., become

larger) in the case of Σ when compared with the case of Σd. We thus arrive at the

following theorem immediately.

Theorem 4.6 infCd∈C ‖T‖∞ ≥ infCd∈C ‖Td‖∞
This theorem says that analyzing the best achievable performance with respect to

the CSR problem of the sampled-data system Σ would lead to a “too optimistic”

result if it were carried out in terms of the CSR problem of the naively discretized

system Σd that completely ignores the intersample behavior. A rigorous treatment

should use the DSP discretized system Σ̂ instead. This consequence itself is well

known (e.g., Braslavsky [12], Hara et al. [38]), but the contribution of this thesis

is new in the sense that the result has been derived through an important property

of the aliasing factor ψ, and thus the significance of the aliasing factor has been

demonstrated. The significance of the aliasing factor will be revealed further in the

remaining discussions.

4.3.3 Relationship Between SR Problems of DSP Discretized

System Σ̂ and Naively Discretized System Σd

In the preceding subsection, we established that the seemingly irrelevant CSR prob-

lem of the naively discretized system Σd has a clear link to that of the sampled-data
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system Σ through the frequency-dependent weighting by the aliasing factor ψ. In

this subsection, we proceed to a consideration of the SR problem of Σ and establish

that it also has a clear link to another sort of sensitivity reduction problem of Σd,

i.e., a mixed sensitivity reduction problem with no weighting on the sensitivity but

some frequency-dependent weighting on the complementary sensitivity; the latter

frequency-dependent weighting is explicitly determined again through the aliasing

factor.

Theorem 4.7 For the SR problem, the following two conditions are equivalent

when γ > 1:

(i) Cd is a stabilizing controller for Σ s.t. ‖S‖∞ < γ.

(ii) Cd is a stabilizing controller for Σd s.t.∥∥∥
[
Sd

γ√
γ2−1

1
ψ
(1− ψψ )̃1/2Td

]∥∥∥
∞

< γ.

In the above theorem, we denote by (1 − ψψ )̃1/2 an outer function ξ such

that5 ξξ˜ = 1 − ψψ .̃ As stated in the proof of Theorem 4.3, we have ‖S‖2
l2/l2 =

max(λmax(S
∗S), 1) and thus we always have ‖S‖∞ ≥ 1. Hence, the assumption

γ > 1 in the above theorem leads to no loss of generality when we refer to the

condition ‖S‖∞ < γ. The following part of this subsection is devoted to the proof

of the above theorem.

Let us observe that ‖S‖∞ = ‖Ŝ‖∞ by Theorem 4.3, and thus consider the con-

dition

‖Ŝ‖∞ = ‖I − Ĥ(x + dq)NP‖∞ < γ (4.58)

for a given γ > 1, where we used (4.46) for the representation of Ŝ. For H i in (4.48),

we introduce a complementary inner matrix X such that H
i
=

[
H i X

]
is square

and inner. It is shown in Vidyasagar [75] that any non-square inner matrix has a

complementary inner matrix. H
i
is called a squared inner matrix for H i. Similarly,

we can take Y such that N
ci

P =

[
N ci

P

Y

]
is square and co-inner. N

ci

P is referred to as

a squared co-inner matrix for N ci
P .

Using H
i
and N

ci

P , we factorize Ĥ and NP , respectively, as follows:

Ĥ = H
i

[
ho

0

]
, NP =

[
nco

P 0
]
N

ci

P . (4.59)

5Such an outer exists since 1−ψψ˜≥ 0 on the unit circle. See Theorem 4.5 of this dissertation
and Lemma 2 on p. 212 of Vidyasagar [75].
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Since H
i
is a square matrix satisfying (H

i
)̃ H

i
= I, the equality H

i
(H

i
)̃ = I also

holds. Similarly, we obtain (N
ci

P )̃ N
ci

P = N
ci

P (N
ci

P )̃ = I. These facts will often be

used later.

From (4.59), the condition (4.58) can be rewritten as

∥∥∥∥∥(H
i
)̃ (N

ci

P )̃ −
[
ho

0

]
(x + dq)

[
nco

P 0
]∥∥∥∥∥

∞
< γ. (4.60)

Let V and W be the matrices given by

V =
[
1 0

]
(H

i
)̃ (N

ci

P )̃ − ho(x + dq)
[
nco

P 0
]

=
{[

1 0
]
− ho(x + dq)NP H

i
}

(H
i
)̃ (N

ci

P )̃ , (4.61)

W =
[
0 I

]
(H

i
)̃ (N

ci

P )̃ , (4.62)

respectively, where the second equality in (4.61) is obtained by
[
nco

P 0
]

= NP (N
ci

P )̃ ,

which is derived from (4.59). Note that the matrix in the left-hand side of (4.60)

is expressed as

[
V

W

]
. Here, we rewrite (4.60) by using the following fact shown in

Vidyasagar [75]: when γ2I−W˜W is positive definite on the unit circle,

∥∥∥∥∥

[
V

W

]∥∥∥∥∥
∞

<

γ is equivalent to ‖V Z‖∞ < 1, where Z is an outer matrix satisfying ZZ˜ = (γ2I −
W˜W )−1. The existence of such Z is assured by the positive definiteness of γ2I −
W˜W on the unit circle. Before applying this fact, we introduce the following two

lemmas:

Lemma 4.2 For W given by (4.62), γ2I − W˜W is positive definite on the unit

circle if and only if γ > 1.

Lemma 4.3 When γ > 1, we have

(H
i
)̃ (N

ci

P )̃ (γ2I −W˜W )−1N
ci

P H
i
=




1
γ

0

0 1√
γ2−1

I




2

. (4.63)

Proof of Lemma 4.2: Since γ > 0, the positive definiteness of γ2I − W˜W on

the unit circle is equivalent to that of γ2I −WW˜ there. From (N
ci

P )̃ N
ci

P = I and

(H
i
)̃ H

i
= I, it follows from (4.62) that γ2I − WW˜ = (γ2 − 1)I. Hence, the

assertion follows immediately.
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Proof of Lemma 4.3: Since H
i

is a squared inner matrix and N
ci

P is a squared

co-inner matrix, we obtain the following from (4.62):

(H
i
)̃ (N

ci

P )̃ (γ2I −W˜W )−1N
ci

P H
i
=

{
(H

i
)̃ (N

ci

P )̃
(
γ2I −W˜W

)
N

ci

P H
i
}−1

=
(
γ2I − (H

i
)̃ (N

ci

P )̃ W˜WN
ci

P H
i
)−1

=

(
γ2I −

[
0

I

] [
0 I

])−1

. (4.64)

Hence, the assertion follows immediately.

Combining the above arguments, we can readily see that when γ > 1, the con-

dition (4.60) is equivalent to the following condition:
∥∥∥∥∥∥
{[

1 0
]
− ho(x + dq)NP H

i
}




1
γ

0

0 1√
γ2−1

I




∥∥∥∥∥∥
∞

< 1. (4.65)

Here, since NP Ĥ = n (recall (4.45)), it follows that

hoNP H
i
=

[
hoNP H i hoNP X

]
=

[
n hoNP X

]
. (4.66)

From this, together with the Bezout identity (4.15), the condition (4.65) can be

written into
∥∥∥
[

1
γ
d(y − nq) − 1√

γ2−1
(x + dq)hoNP X

]∥∥∥
∞

< 1. (4.67)

Concerning hoNP X in the above, we have the following result:

Lemma 4.4 hoNP XX (̃NP )̃ (ho)̃ = n
ψ

(1− ψψ )̃
(

n
ψ

)
.̃

Proof of Lemma 4.4: From H
i
(H

i
)̃ = I, we have H i(H i)̃ + X(X )̃ = I. Hence,

it follows that

hoNP XX (̃NP )̃ (ho)̃ = hoNP (NP )̃ (ho)̃ − hoNP H i(H i)̃ (NP )̃ (ho)̃

= honco
P (nco

P )̃ (ho)̃ − (NpĤ)(NpĤ )̃

=
nhonco

P (nco
P )̃ (ho)̃ n˜

no(no)̃
− nn˜ =

n

ψ
(1− ψψ )̃

(
n

ψ

)
.̃

Thus, the assertion follows immediately.

By Lemma 4.4, we can replace hoNP X in (4.67) by 1
ψ
(1 − ψψ )̃1/2n. Thus, we

obtain the equivalent condition
∥∥∥
[

1
γ
d(y − nq) 1√

γ2−1

1
ψ

(1− ψψ )̃1/2 n(x + dq)
]∥∥∥

∞
< 1 (4.68)

to the condition ‖S‖∞ < γ provided that γ > 1. Now, the assertion of Theorem 4.7

follows immediately from (4.16) and (4.17).

From Theorem 4.7, we obtain the following result, a counterpart to Theorem 4.6.



85

Theorem 4.8 infCd∈C ‖S‖∞ ≥ infCd∈C ‖Sd‖∞

Proof of Theorem 4.8: From Theorem 4.7, we see that for every Cd ∈ C and any

γ > 1, ‖S‖∞ < γ implies ‖Sd‖∞ < γ because

‖Sd‖∞ ≤
∥∥∥
[
Sd

γ√
γ2−1

1
ψ
(1− ψψ )̃1/2Td

]∥∥∥
∞

. (4.69)

By this, we have ‖S‖∞ ≥ ‖Sd‖∞ for every Cd ∈ C. This yields the assertion of

Theorem 4.8 immediately.

Theorem 4.8 says that analyzing the best achievable performance with respect

to the SR problem of the sampled-data system Σ would lead to a “too optimistic”

result if it were carried out in terms of the SR problem about the naively discretized

system Σd.

It is obvious that we can develop parallel arguments on the frequency response

gain. Indeed, we can show that the frequency response gain of S is given by

‖S‖l2/l2 = A+ + A−, (4.70)

where

A+ =
1

2

√(
1

|ψ|2 − 1

)
‖Td‖2 + (‖Sd‖+ 1)2, (4.71)

A− =
1

2

√(
1

|ψ|2 − 1

)
‖Td‖2 + (‖Sd‖ − 1)2 . (4.72)

This expression of ‖S‖l2/l2 is nothing but the restatement of the one given in

Braslavsky et al. [12] with the fidelity index instead of the aliasing factor.

4.4 Relationship Between Best Achievable Per-

formance in SR Problem and That in CSR

Problem for Sampled-Data Systems

In Sec. 4.2, we showed that the best achievable performances in the SR and CSR

problems of naively discretized systems coincide with each other. In this section,

we show that the same result also holds for sampled-data systems. Through the

derivation of this result, we further demonstrate the importance of the preceding

arguments with the DSP discretized system, the aliasing factor, and the coprime

factorization treatment.
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Since we have clarified that the H∞ norm of the sensitivity (respectively, com-

plementary sensitivity) of the sampled-data system Σ can be dealt with through the

DSP discretized system Σ̂, the best achievable performance in the SR (respectively,

CSR) problem of the sampled-data system Σ can be studied through Σ̂. By slightly

extending the preceding arguments on the coprime factorization for Σ̂, we show the

following result, which says that, in the sampled-data system Σ, the best achievable

performance in the SR problem is equal to that in the CSR problem.

Theorem 4.9 infCd∈C ‖S‖∞ = infCd∈C ‖T‖∞

Proof of Theorem 4.9: Let αi := e−aiτ (i = 1, · · · ,m) and βj (i = 1, · · · , l)

be unstable poles and zeros of Pd(1/λ), respectively. Then, we have |αi| < 1,

di(α1) = · · · = di(αm) = 0 and |βj| < 1, ni(β1) = · · · = ni(βl) = 0. (Note that

Pd(1/λ) = n(λ)/d(λ) has no poles or zeros on the unit circle due to conditions (iii)

and (vi) in Assumption 4.1.)

From (4.68) and (4.57), together with the inner-outer factorizations d = dido and

n = nino, infCd∈C ‖S‖∞ and infCd∈C ‖T‖∞ can be restated, respectively, as

inf
q′∈R

{
γ > 0

∣∣∣∣
∥∥∥
[

dy
γ

1√
γ2−1

φnx
]
− nidi

[
1
γ
− φ√

γ2−1

]
q′

∥∥∥
∞

< 1

}
,

inf
q′∈R

{
γ > 0

∣∣∣∣
∥∥∥∥

nx

γψ
+ nidiq′

∥∥∥∥
∞

< 1

}
,

where q′ = nodoq ∈ R 6 and φ is an outer function satisfying φ˜φ = 1
ψ˜ψ

− 1; we

have also used the fact that ψ is a unit. The existence of φ is due to Theorem 4.5.

Here, note from (4.15) that dy = 0 and nx = 1 for λ such that d(λ) = 0 while

dy = 1 and nx = 0 for λ such that n(λ) = 0. Hence, it follows that the computa-

tion of the best achievable performance infCd∈C ‖S‖∞ reduces to Problem 4.1 with

Ξi =
[
0 φ(αi)√

γ2−1

]
(i = 1, . . . , m) and Υj =

[
1
γ

0
]

(j = 1, . . . , l). We refer to this

problem as Problem-S. In a similar fashion, the computation of the best achievable

performance infCd∈C ‖T‖∞ reduces to Problem 4.1 with Ξi = 1
γψ(αi)

(i = 1, . . . , m)

and Υj = 0 (j = 1, . . . , l). We refer to this problem as Problem-T .

As far as the computation of the infimum of γ is concerned, we may replace

Ξi and Υj in Problem-S by their transpose (Vidyasagar [75]). Using this fact and

applying Proposition 4.1, the computation of the infimum of γ for Problem-S reduces

to the problem of finding the infimum of γ > 1 such that the Pick matrix

QS =

[
X Y

Y ∗ (1− γ−2)Z

]
(4.73)

6Note that do and no are units due to conditions (iii) and (vi) in Assumption 4.1, respectively.
(See Remark 4.2.)
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is positive definite, where the (i, j)-elements of X, Y , and Z (denoted, respectively,

by Xij, Yij, and Zij) are given by Xij = 1
1−αiαj

(
1− φ∗(αi)φ(αj)

γ2−1

)
(i, j = 1, · · · ,m),

Yij = 1
1−αiβj

(i = 1, · · · , m; j = 1, · · · , l), Zij = 1
1−βiβj

(i, j = 1, · · · , l), respectively.

The positive definiteness of QS is obviously equivalent to the positive definiteness

of the following matrix Q′
S:

Q′
S =

[
(1− γ−2)X Y

Y ∗ Z

]
. (4.74)

Here, note that the (i, j)-element of (1− γ−2)X can be represented as

(1− γ−2)Xij =
1

1− αiαj

(
1− 1

γ2

[
1

φ(αi)

]∗ [
1

φ(αj)

])
. (4.75)

Observing that the above matrix has essentially the same form as Q in (4.10),

we see from Proposition 4.1 that the problem of finding the infimum of γ such

that Q′
S is positive definite is equivalent to the interpolation problem with Ξi =

1
γ

[
1

φ(αi)

]
(i = 1, . . . ,m) and Υj =

[
0

0

]
(j = 1, . . . , l). Note that each value of

Ξi or Υj to be interpolated in this modified interpolation problem is

[
ψ

φψ

]
times

that of the corresponding scalar value in the interpolation problem associated with

Problem-T . However, it follows from the relation φ˜φ = 1
ψ˜ψ

− 1 that

[
ψ

φψ

]
is inner.

Therefore, the modified interpolation problem derived above for the computation

of infCd∈C ‖S‖∞ is essentially equivalent to that associated with Problem-T . Hence

Problem-S shares the same infimum as Problem-T . This completes the proof.

Remark 4.9 One might suspect that Theorem 4.9 could be trivial and shown im-

mediately if we used some sort of symmetry between Ŝ and T̂ , which is evoked by the

relation Ŝ+T̂ = I. More precisely, if the set Ŝ =
{

Ŝ = I − Ĥ(x + dq)NP | q ∈ R
}

were to coincide with T̂ =
{

T̂ = Ĥ(x + dq)NP | q ∈ R
}

, then the idea would in-

deed be correct, but these sets do not in fact coincide for the following reason. Each

T̂ ∈ T̂ has an eigenvalue at the origin for all angular frequencies, since Ĥ is a col-

umn vector and P̂ is a row vector. On the other hand, Ŝ ∈ Ŝ has an eigenvalue at

the origin if and only if T̂ = Ĥ(x + dq)NP has an eigenvalue at 1, or equivalently,

Td = NP Ĥ(x + dq) = 1 by (4.17) and (4.45) (and thus Sd = 0). Therefore, Ŝ ∈ Ŝ
has an eigenvalue at the origin only at the angular frequencies such that Sd = 0.

Thus, we have Ŝ 6= T̂ .
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4.5 Numerical Example

In this section, we verify the results obtained in the preceding sections through

a numerical example. Let us consider the sampled-data system Σ of Figure 4.1,

in which the transfer function P (s) of the continuous-time plant P and the hold

function h(t) of the hold circuit H are given, respectively, by

P (s) =
s + 0.9

(s− 0.2)(s− 1.8)(s + 5)
, (4.76)

h(t) = e−t. (4.77)

We compute the best achievable performances in the SR and CSR problems of the

sampled-data system Σ and those of the naively discretized system Σd, together

with the lower bounds of the best achievable performances of the SR and CSR

problems of the naively discretized system Σd given by Sung and Hara [73]. For the

computation of the best achievable performances of the sampled-data system Σ, we

employ DSP discretized system Σ̂ and use a MATLAB function dhinflmi. We also

use this function for the computation of the best achievable performances of the

naively discretized system Σd. The results are shown in Figure 4.5 for the sampling

period τ ∈ [0.1, 1].

In Figure 4.5, solid lines, dash-dot lines, and dash-dash lines are plots for the

sampled-data system Σ, the naively discretized system Σd, and lower bounds, re-

spectively. The lines with circle and the lines with cross indicate that they are plots

for SR problem and CSR problem, respectively. From Figure 4.5, we can observe

that infCd∈C ‖S‖∞ = infCd∈C ‖T‖∞, infCd∈C ‖Sd‖∞ = infCd∈C ‖Td‖∞, and the lower

bound of the best achievable performance of the naively discretized system Σd in

the SR problem and that in the CSR problem coincide. These results correspond

to Theorems 4.9, 4.1, and 4.2, respectively. We can also observe from Figure 4.5

that infCd∈C ‖T‖∞ ≥ infCd∈C ‖Td‖∞ and infCd∈C ‖S‖∞ ≥ infCd∈C ‖Sd‖∞, which cor-

respond to Theorems 4.6 and 4.8, respectively. Thus, we have verified that all of

the results for the best achievable performances, as well as the lower bounds, in the

SR and CSR problems of the sampled-data systems Σ and the naively discretized

system Σd hold for this example.

In this example, note that the best achievable performance in the SR problem

(or CSR problem) of the naively discretized system Σd is equal to its lower bound

when the sampling period τ is less than 0.7, whereas it differs from its lower bound

when τ exceeds 0.7. This is due to the fact that Pd(z) does not have unstable zeros

except for the point at infinity when τ is less than 0.7, while it has an unstable zero

when τ exceeds 0.7. See Remark 4.3 and Figure 4.6, in which two finite zeros of

Pd(z) are plotted for τ ∈ [0.1, 1].
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Figure 4.5: Best achievable performances in SR and CSR problems of sample-data

system Σ and those of naively discretized system Σd, together with their lower

bounds.
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Figure 4.6: Zeros of naively discretized plant Pd(z).
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4.6 Summary

In this chapter, we studied some aspects of the sensitivity reduction (SR) and com-

plementary sensitivity reduction (CSR) problems of sampled-data systems. We first

considered the SR and CSR problems of the conventional ‘hold equivalent’ dis-

cretized system Σd (called the naively discretized system), which are much easier

problems than those of the original sampled-data system Σ, and showed that the

best achievable performance in the SR problem coincides with that in the CSR

problem. We also showed that the lower bound of the best achievable performance

obtained by Sung and Hara [73] in the SR problem coincides with that in the CSR

problem.

Next, we considered the SR and CSR problems of sampled-data systems and

showed that these problems can be reduced to equivalent discrete-time problems by

introducing the doubly sensitivity-preserving (DSP) discretized system Σ̂. Through

the coprime factorization treatment of Σ̂, we further introduced an important func-

tion called the aliasing factor. We then showed that the naively discretized system

Σd can also be used for the SR/CSR problems of the sampled-data system Σ, pro-

vided that appropriate frequency-dependent weights constructed from the aliasing

factor are applied on Σd. This should be very interesting because Σd has generally

been considered useless for the study of the SR/CSR problems of the sampled-data

system Σ, since the intersample behavior of Σ is completely ignored in Σd. We

then showed that a relation between the best achievable performance in the SR (or

CSR) problem of Σ̂ (and thus Σ) and that of Σd can be proved through clarifying

an analytic property of the aliasing factor. We also provided an interesting property

that the best achievable performance for the SR problem of Σ and that for the CSR

problem of Σ coincide with each other.

We finally remark that similar results can also be derived when the (comple-

mentary) sensitivity defined on the input side of the plant is dealt with, as opposed

to the treatment in this chapter, which is about the (complementary) sensitivity

defined on the output side. We hope that the study developed in this chapter could

provide a fundamental basis for a further study on the best achievable performances

of sampled-data systems, in addition to the existing study on the H2 tracking per-

formance of sampled-data systems conducted in [15].



Chapter 5

Frequency Response of

Sampled-Data Systems Using

Time-Sharing Multirate

Sample-Hold Controllers and

Application to Reliable

Stabilization

In the preceding sections, we considered several problems related to the frequency-

domain characteristics of sampled-data systems under the assumption that the

continuous-time plant and the discrete-time controller are connected with the gen-

eralized hold and the ideal sampler. In this chapter, we consider the sampled-data

system using a different type of sample-hold scheme called “time-sharing multirate

sample-hold scheme.” This is a special kind of control scheme that uses a multirate

sample-hold scheme, where “multirate” implies that the sampler and the hold oper-

ate with different periods, and “time-sharing” implies that the manipulation of the

plant input and the detection of the plant output work at separate time intervals.

We refer to the controllers using the time-sharing multirate sample-hold scheme as

time-sharing multirate sample-hold controllers.

In this chapter, we define the frequency response of the sampled-data system

using time-sharing multirate sample-hold controllers by giving the FR-operator rep-

resentation of the sampled-data system. Then, we derive some methods for com-

puting the frequency response gain of the sampled-data system. We also show that

such types of controllers can be applied to solving the reliable stabilization problem,

91
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in which we are to find a set of controllers that stabilize a given plant when they all

act together, as well as when any one of them fails.

5.1 Sampled-Data System Using Time-Sharing Mul-

tirate Sample-Hold Controllers

In this section, we introduce a new class of control scheme called the time-sharing

multirate sample-hold scheme. The feature of this class of controllers is that the

multirate hold and the multirate sampler employed satisfy what we call the time-

sharing condition. Next, to give a reasonable justification for introducing the time-

sharing multirate sample-hold scheme, we consider the open-loop system discretized

with a generalized hold and a generalized sampler that does not necessarily satisfy

the time-sharing condition. Considering the condition that guarantees a certain

desirable property of the discretized system, we are led to a useful notion called

the “orthogonality condition.” Consequently, time-sharing multirate sample-hold

controllers show themselves to be a natural class of controllers satisfying this useful

orthogonality condition, which in turn gives a justification for the introduction of

the time-sharing multirate sample-hold scheme.

5.1.1 Time-sharing multirate sample-hold scheme

Let us consider the system depicted in Figure 5.1, where solid lines represent continuous-

time signals and dashed lines represent discrete-time signals. P is a controllable,

observable, linear time-invariant plant described by

ẋ(t) = Ax(t) + Bu(t), (5.1)

y(t) = Cx(t), (5.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, y(t) ∈ Rl is the output, and

A,B,C are real matrices of appropriate dimensions. GH and GS are generalized

holds and generalized samplers, respectively, and they act according to the following

equations:

u(t) = F1(t− kτ)ρ[k] + F2(t− kτ)ud[k] kτ ≤ t < (k + 1)τ (5.3)

ρ[k] =

∫ kτ

(k−1)τ

G1(t− (k − 1)τ)y(t)dt, yd[k] =

∫ kτ

(k−1)τ

G2(t− (k − 1)τ)y(t)dt.

(5.4)
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Figure 5.1: Sampled-data system using time-sharing multirate sample-hold con-
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Figure 5.2: Hold function F (t) and sampling function G(t) (Ni = 3, No = 4).

Here, τ is a basic period for the control, which we call the frame period. In particular,

in the following, we consider the hold functions Fi(t) and the sampling functions

Gi(t) (i = 1, 2) of the form

Fi(t) =

{
Fij jτi ≤ t < (j + 1)τi (j = 0, · · · , Ni − 1)

0 L ≤ t < τ
(5.5)

Gi(t) =

{
0 0 < t < L∑No−1

j=0 Gijδ (t− (L + jτo)) L ≤ t ≤ τ
(5.6)

where τi = L/Ni and τo = (τ −L)/(No− 1) (see Figure 5.2). As seen from (5.5) and

(5.6), at each interval of their operations, the hold functions change their outputs Ni

times with period τi and the generalized samplers detect their inputs No times with

period τo. Such a sample-hold scheme that uses the different periods τi and τo for

manipulating inputs and detecting outputs, respectively, is called a multirate control

scheme. The integers Ni and No are called, respectively, the input multiplicity and

the output multiplicity. Furthermore, (5.5) and (5.6) imply that the manipulation of

the plant input and the detection of the plant output work at separate time intervals,
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i.e., [kτ, kτ + L) and [kτ + L, (k + 1)τ ], respectively. Therefore, we call the above

control scheme the “time-sharing multirate sample-hold scheme,” and the above

conditions (5.5) and (5.6) the “time-sharing condition” between the multirate holds

and the multirate samplers. The above scheme and condition were first introduced

in Ito et al. [43].

Now, we derive the discrete-time state equation and the output equation of the

system in Figure 5.1. From the time-sharing condition, the plant input is given by

u(kτ + t) =

{
F1(t)ρ[k] + F2(t)ud[k] 0 ≤ t < L

0 L ≤ t < τ
(5.7)

Hence, defining ξ[k] := x(kτ), we have

ξL[k] := x(kτ + L)

= eALξ[k] +

∫ L

0

eA(L−t)BF1(t)dtρ[k] +

∫ L

0

eA(L−t)BF2(t)dtud[k] (5.8)

ξ[k + 1] = eA(τ−L)ξL[k] (5.9)

y(t) = CeA(t−(kτ+L))ξL[k], kτ + L ≤ t ≤ (k + 1)τ. (5.10)

Since the hold functions are given by (5.5), it follows from (5.8) and (5.9) that

ξ[k + 1] = Aξ[k] + F 1ρ[k] + F 2ud[k], (5.11)

where

A=eAτ, F i =eA(τ−L)
[
ANi−1

i Bi, · · · , Bi

]



Fi,0

...

Fi,Ni−1


, Ai = eAτi, Bi =

∫ τi

0

eAtBdt. (5.12)

On the other hand, since the sampler functions are given by (5.6), it follows from

(5.9) and (5.10) that

ρ[k] = G1ξ[k], yd[k] = G2ξ[k], (5.13)

where

Gi =
[
Gi,0, · · · , Gi,No−1

]



C
...

CANo−1
o


 e−A(τ−L), Ao = eAτo . (5.14)

Combining the above equations leads to the following fundamental theorem.
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Theorem 5.1 The state equation for the closed-loop system with the multirate

holds (5.5) and the multirate samplers (5.6) satisfying the time-sharing condition is

given by

ξ(k + 1) = (A + F 1G1)ξ[k] + F 2ud[k] (5.15)

yd[k] = G2ξ[k]. (5.16)

Here, noting that (A,B,C) is controllable and observable, it follows from well-

known results (e.g., Hagiwara and Araki [25]) that the matrices F 1, G1, F 2 and

G2 can be made to coincide with any prescribed matrices by suitably choosing the

multirate holds and multirate samplers, provided that the input multiplicity Ni and

the output multiplicity No are large enough. Note in particular that the numbers

of columns of F 1 and F 2, as well as the numbers of rows of G1 and G2, can be

changed arbitrarily. Hence, the above theorem is a very powerful result, since the

state transition matrix as well as the input and output matrices can be adjusted

arbitrarily. Thus, for example, arbitrary pole/zero assignment can be achieved very

easily. This result will be especially useful when yd[k] is used as an artificial output

for the upper-level feedback (e.g., simultaneous pole assignment of Araki et al. [5],

Araki et al. [6], Hagiwara et al. [32]) to be applied on the top of the system given

by (5.15) and (5.16).

5.1.2 Control systems with a generalized hold and a gener-

alized sampler

This subsection aims to give a reasonable justification for introducing the time-

sharing multirate sample-hold scheme described in the preceding subsection. In

fact, the time-sharing multirate sample-hold scheme was inspired by the following

observations.

It is known that when we consider the pole assignment problem using general-

ized samplers (or multirate output feedback) (e.g., Hagiwara and Araki [26]), some

additional rank condition is required on the plant, although such a condition is

not required when we use generalized holds (or multirate input feedback) (e.g.,

Kabamba [55], Araki and Hagiwara [3]). Therefore, parallel results cannot be ob-

tained for manipulation and detection. Thus, it would be interesting to investigate

why such additional rank conditions arise in the studies with generalized samplers.

To this question, the notion of the “orthogonality condition” between generalized

holds and generalized samplers turns out to play an important role, as we discuss in

the following. Actually, this orthogonality condition is always satisfied by controllers
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Figure 5.3: Sampled-data control system using a generalized sampler and a gener-

alized hold (open-loop).

with generalized holds, but not by controllers with generalized samplers. Hence, it

can be regarded that the orthogonality condition has a close connection with the

ability to attain difficult control purposes without strong assumptions on the plant.

To meet that condition without introducing any coupled constraints between the

multirate holds and multirate samplers to be employed, it will be clearly shown that

the time-sharing multirate sample-hold scheme is very natural.

In the remaining part of this subsection, we discuss the orthogonality condition

mentioned above. To this end, let us consider an open-loop system with a generalized

hold (5.3) and a generalized sampler (5.4) as shown in Figure 5.3, without imposing

the time-sharing condition given by (5.5) and (5.6), and derive the equation of the

discretized system.

In this case, the inter-sample behavior of the state vector x(t) is given by

x(kτ + θ) = eAθξ[k] +

∫ θ

0

eA(θ−σ)BF (σ)dσud[k] (0 ≤ θ ≤ τ) (5.17)

so that the transition of the state between the sampling instants is given by

ξ[k + 1] = eAτξ[k] +

∫ τ

0

eA(τ−σ)BF (σ)dσud[k]. (5.18)

It follows from (5.17) and (5.18) that

x(kτ + θ) = e−A(τ−θ)ξ[k + 1]−
∫ τ

θ

eA(θ−σ)BF (σ)dσud[k] (0 ≤ θ ≤ τ). (5.19)

By (5.19), the inter-sample output of the plant in the interval [(k − 1)τ, kτ ] is

described by

y((k − 1)τ + θ) = Ce−A(τ−θ)ξ[k]−
∫ τ

θ

CeA(θ−σ)BF (σ)dσud[k − 1] (0 ≤ θ ≤ τ). (5.20)

Substituting (5.20) into (5.4) leads to the discrete-time output equation given by

yd[k] =

∫ τ

0

G(θ)Ce−A(τ−θ)dθξ[k]−
∫ τ

0

∫ τ

θ

G(θ)CeA(θ−σ)BF (σ)dσdθud(k − 1).

(5.21)
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Summarizing the above equations, the discrete-time open-loop equation becomes

ξ(k + 1) = Aξ[k] + Bud[k] (5.22)

yd[k] = Cξ[k] + Dud(k − 1), (5.23)

where

A = eAτ (5.24)

B =

∫ τ

0

eA(τ−σ)BF (σ)dσ (5.25)

C =

∫ τ

0

G(θ)Ce−A(τ−θ)dθ (5.26)

D = −
∫ τ

0

∫ τ

θ

G(θ)CeA(θ−σ)BF (σ)dσdθ. (5.27)

Note that the discrete-time output equation turns out to include the term Dud(k−1),

although the original plant does not include such a kind of terms. What is more,

it presents some delayed effect on the output from the input. Therefore, when we

connect a feedback controller between ρ(·) and v(·), we must view the above open-

loop discretized plant as having the augmented state vector [ξ[k]T ud(k − 1)T ]T ,

unless D = 0.

In the case of the standard discretized plant with a generalized hold and the

impulsive detector (i.e., the ideal sampler), the condition D = 0 is satisfied auto-

matically, as is well known. On the other hand, in the case of the system with the

generalized sampler and the zero-order hold, we have D 6= 0 in general. We can in-

terpret that this difference gives rise to the difference in the order of the discretized

plant, which in turn results in different conditions required in achieving similar

control purposes with generalized holds on one hand and generalized samplers the

other.

From the above consideration, it can be expected that the condition

D = 0 (5.28)

plays an important role in attaining some difficult control purposes under mild condi-

tions when we use generalized holds and generalized samplers at the same time. We

refer to the above condition as the “orthogonality condition between a generalized

hold and a generalized sampler,” or simply the “orthogonality condition.”

There are many ways to choose F (t) and G(t) that satisfy the orthogonality

condition. One of the easiest ways to satisfy it is to have the manipulation and

detection work at separate intervals. This leads to the idea of the time-sharing

multirate sample-hold controllers proposed in Sec. 5.1.1.
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5.2 Frequency Response of Sampled-data Systems

Using Time-Sharing Multirate Sample-Hold

Controllers

In this section, we give the FR-operator representation for the sampled-data sys-

tem using time-sharing multirate sample-hold controllers and define the frequency

response of the sampled-data system. We also provide some methods for computing

its frequency response gain.

Let us consider the sampled-data system shown in Figure 5.4, which is a slightly

modified version of the sampled-data system shown in Figure 2.3. Here, P and Cd

are a finite-dimensional linear time-invariant (FDLTI) continuous-time generalized

plant and an FDLTI discrete-time controller, respectively. H and S are the multirate

hold and the multirate sampler, respectively, with the frame period τ , which satisfy

the time-sharing condition. To be more specific, the multirate hold H maps the

discrete-time signal ud given by

ud[k] =
[
uT

d,0[k] uT
d,1[k] · · · , uT

d,Ni−1[k]
]T

(5.29)

to the continuous-time signal

u(t) =





ud,j[k] (kτ + jτi ≤ t < kτ + (j + 1)τi; j = 0, 1, · · · , Ni − 1),

0 (L ≤ t ≤ τ),
(5.30)

where Ni is the input multiplicity and τi = L/Ni. The multirate sampler S maps

the continuous-time signal y to discrete-time signal yd by

yd[k] =
[
yT

d,0[k] yT
d,1[k] · · · yT

d,No−1[k]
]T

, (5.31)

yd,j[k] = y
(
(k − 1)τ + L + jτo

)
(j = 0, 1, · · · , No − 1), (5.32)

where No is the output multiplicity and τo = (τ − L)/(No − 1) (see Figure 5.5).

Remark 5.1 The definitions of the multirate hold and the multirate sampler in

this section are slightly different from those in Sec. 5.1. To see this, consider the

sampled-data system shown in Figure 5.1 without feedback loop (or equivalently,

F1(t) = 0 and G1(t) = 0). The input to the multirate hold and the output from the

multirate sampler in this section are ud and yd, respectively, which consist of inputs

and outputs at multiple instants, while in Sec. 5.1, the corresponding signals are ud

and yd, which consist of the input and output at a single instant.
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-w

P
-z

y

¾S¾Cd
¾H ud yd

-u

Figure 5.4: Sampled-data system using time-sharing multirate sample-hold con-

trollers.

Figure 5.5: Time-chart of time-sharing multirate sample-hold scheme.

5.2.1 Representation via FR-operator

In this section, we give the FR-operator representation for the sampled-data system

using time-sharing multirate sample-hold controllers shown in Figure 5.4 and define

the frequency response for the sampled-data system. Here, as in the case of Sec. 2.2,

we suppose that the transfer matrix of the generalized plant P is given by

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
=




A B1 B2

C1 D11 D12

C2 0 0


 , (5.33)

where Pij(s)’s are component blocks of P (s) divided according to the sizes of the

signals z, y, w and u, and that the transfer matrix of the discrete-time controller Cd

is given by Cd(z). Before deriving the FR-operator representation of the sampled-

data system shown in Figure 5.4, we first consider the transfer characteristics of the



100

multirate hold H and the multirate sampler S.

Now, we begin by considering the multirate hold H. To obtain the transfer

characteristics of H, let us introduce the discrete-time signal ud[k] such that ud[0] =[
uT

d,0 · · · uT
d,Ni−1

]T

and ud[k] = 0 (k 6= 0). In this case, according to (5.30), the

output u of the multirate hold becomes

u(t) =





ud,j (jτi ≤ t < (j + 1)τi; j = 0, 1, · · · , Ni − 1),

0 (otherwise).
(5.34)

From (5.34), the Laplace transform of u(t) is given by

∫ ∞

0

u(t)e−stdt =

∫ Niτ

0

u(t)e−stdt =

Ni−1∑
j=0

∫ (j+1)τi

jτi

ud,je
−stdt (5.35)

=

Ni−1∑
j=0

∫ τi

0

e−s(t+jτi)dtud,j =

Ni−1∑
j=0

1− e−τis

s
e−jτisud,j (5.36)

=
[
I · · · e−(Ni−1)τisI

]
Hτi(s)

[
uT

d,0 · · · uT
d,Ni−1

]T

(5.37)

= H(s)ud[0], (5.38)

where

H(s) = Di(s)Hτi(s), Di(s) =
[
I · · · e−(Ni−1)τisI

]
, Hτi(s) =

1− e−τis

s
I. (5.39)

Thus, we obtain the transfer matrix of the multirate hold H as H(s) given in (5.39).

Next, we consider the transfer characteristic of the multirate sampler S. From

(5.31) and (5.32), together with the relation τo = (τ − L)/(No − 1), we have

yd[k] =




y((k − 1)τ + L)
...

y((k − 1)τ + L + (No − 1)τo)


 =




y(kτ − (No − 1)τo))
...

y(kτ)


 . (5.40)

This implies that yd[k] is obtained by sampling the continuous-time signal y(t) given

by

y(t) =
[
yT (t− (No − 1)τo)) · · · yT (t)

]T

(5.41)

with the sampling period τ . From the above observation, the multirate sampler

is regarded as the time-delay components Do with the transfer matrix Do(s) =[
e−(No−1)τosI · · · I

]T

followed by the ideal sampler with the sampling period τ .

From the above observations, we can obtain the sampled-data system shown

in Figure 5.6 as an equivalent expression of the sampled-data system shown in
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Figure 5.4, where Hτi is the zero-order hold with the period τi and S is the ideal

sampler with the sampling period τ . Thus, it readily follows that the FR-operator

representation of the sampled-data system of Figure 5.4 is obtained by replacing the

transfer matrices Pij(s) appearing in the FR-matrix given by (2.3)-(2.8) with the

corresponding components P ij(s) of the generalized plant P (s) given by

P (s) =

[
P 11(s) P 12(s)

P 21(s) P 22(s)

]
=

[
I 0

0 Do(s)

][
P11(s) P12(s)

P21(s) P22(s)

][
I 0

0 Di(s)

]
, (5.42)

and by replacing H(s) in (2.5) and (2.8) with Hτi(s). Consequently, we obtain the

FR-matrix Q(jϕ) for the sampled-data system of Figure 5.4 as

Q(jϕ) = P 11(jϕ) +
1

τ
P 12Hτi(jϕ)Λ(ejϕτ )P 21(jϕ), (5.43)

where

P 11(jϕ) = P11(jϕ) = block diag[· · · , P11(jϕ−1), P11(jϕ0), P11(jϕ1), · · · ], (5.44)

P 12Hτi(jϕ) =




...

P 12(jϕ−1)Hτi(jϕ−1)

P 12(jϕ0)Hτi(jϕ0)

P 12(jϕ1)Hτi(jϕ1)
...




, (5.45)

P 21(jϕ) =
[
· · · P 21(jϕ−1) P 21(jϕ0) P 21(jϕ1) · · ·

]
, (5.46)

Λ(ejϕτ ) = Cd(e
jϕτ )

(
I −Π22(e

jϕτ )Cd(e
jϕτ )

)−1
, (5.47)

-w

P (s)

-z

-
y

Do

¾S¾
yd

Cd(z)¾
ud

Hτi

- Di
-u

Figure 5.6: Sampled-data system equivalent to Figure 5.4.
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Π22(e
jϕτ ) =

1

τ

∞∑
m=−∞

P 22(jϕm)Hτi(jϕm) = Z
[
P 22(s)Hτi(s)

]
z=ejϕτ

, (5.48)

= Z
[
Do(s)P22(s)Di(s)Hτi(s)

]
z=ejϕτ

, (5.49)

ϕm = ϕ + mωs (m = 0,±1, · · · ), ωs =
2π

τ
. (5.50)

Using the FR-matrix Q(jϕ), we define the frequency response gain of the sampled-

data system of Figure 5.4 at angular frequency ϕ as ‖Q(jϕ)‖l2/l2 . The H∞ norm of

the sampled-data system is defined by ‖Q(jϕ)‖∞ := maxϕ ‖Q(jϕ)‖l2/l2 .

5.2.2 Computation method for frequency response gain

In this section we provide two methods for computing the frequency response gain

of sampled-data systems using the time-sharing multirate sample-hold controllers.

The first method is a general method based on a bisection algorithm. The second

method is based on the norm equivalent discrete-time system, which can be applied

under the condition P11(s) = 0. We begin with the bisection method.

In Sec. 3.2, we gave a bisection method for computing the frequency response

gain of sampled-data systems by using the infinite-dimensional congruent transfor-

mation. A parallel method can be obtained by using the same approach. Here, we

assume that the generalized plant given by (5.33) satisfies D11 = 0, as in the case

of Sec. 3.2. A key result for the frequency response gain computation is as follows,

which corresponds to Theorem 3.1 in Sec. 3.2:

Theorem 5.2 Suppose that γ is not a singular value of P 11(jϕ). Then, the follow-

ing conditions are equivalent:

(i) ‖Q(jϕ)‖l2/l2 < γ, (5.51)

(ii) N
(
F (ϕ, γ)

)
= (0, l − ν), (5.52)

where l and ν are the number of outputs of Π22(s) and the number of singular

values of P 11(jϕ) larger than γ, respectively, and F (ϕ, γ) is a finite-dimensional

matrix given by

F (ϕ, γ) :=

[
0 I −Π22(e

jϕτ )Cd(e
jϕτ )

I − C
∗
d(e

jϕτ )Π
∗
22(e

jϕτ ) 0

]

− 1

τ

[
P 21(jϕ) 0

0 C
∗
d(e

jϕτ )P 12Hτi

∗
(jϕ)

][
γI −P 11

∗
(jϕ)

−P 11(jϕ) γI

]−1

×
[
P 21

∗
(jϕ) 0

0 P 12Hτi(jϕ)Cd(e
jϕτ )

]
. (5.53)
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By Theorem 5.2, whether ‖Q(jϕ)‖l2/l2 < γ holds can be determined by counting

the number of singular values of P 11(jϕ) (or equivalently, P11(jϕ)) larger than γ,

the number of negative eigenvalues of the finite-dimensional matrix F (ϕ, γ), and

the multiplicity of the zero eigenvalue of F (ϕ, γ). A method for computing the first

number has already been provided in Sec. 3.2.2. For the second and third numbers,

we provide a method for computing F (ϕ, γ) in the following.

Observe that (5.53) can be rewritten as

F (ϕ, γ) =

[
0 I

I 0

]
−

[
I 0

0 C
∗
d(e

jϕτ )

]
Φγ(e

jϕτ )

[
I 0

0 Cd(e
jϕτ )

]
, (5.54)

where

Φγ(e
jϕτ ) :=

[
0 Π22(e

jϕτ )

Π
∗
22(e

jϕτ ) 0

]
+

1

τ

[
P 21(jϕ) 0

0 P 12Hτi

∗
(jϕ)

]

×
[

γI −P 11
∗
(jϕ)

−P 11(jϕ) γI

]−1 [
P 21

∗
(jϕ) 0

0 P 12Hτi(jϕ)

]
. (5.55)

For the computation of Φγ(e
jϕτ ), we have the following theorem, which corresponds

to Theorem 3.3 in Sec. 3.2:

Theorem 5.3 Φγ(e
jϕτ ) is the frequency pulse-transfer function of the discrete-time

system given by

Φγ(z) =

[
Φγ11(z) Φγ12(z)

Φγ21(z) Φγ22(z)

]
=




A B1 B2

C1 D11 0

C2 D12 D22


 , (5.56)

where

A = eEτ , B1 = ENi
i

[
ENo−1

o F1 · · · EoF1 F1

]
, (5.57)

B2 =
[
ENi−1

i F2i · · · EiF2i F2i

]
, (5.58)

C1 =




G1

G1Eo

...

G1E
No−1
o




, C2 =




G2i

G2iEi

...

G2iE
Ni−1
i




ENo−1
o , (5.59)

Eo = eEτo ,




Ei F2i 0

0 I 0

G2i Di I


 = exp








E F2 0

0 0 0

G2 D 0


 τi





, (5.60)

E =

[
−AT − 1

γ
CT

1 C1

1
γ
B1B

T
1 A

]
, F1 =

[
−CT

2

0

]
, F2 =

[
− 1

γ
CT

1 D12

B2

]
, (5.61)

G1 =
[
0 C2

]
, G2 =

[
BT

2
1
γ
DT

12C1

]
, D =

1

γ
DT

12D12, (5.62)
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and the (m,n)-block components of D11, D21, and D22 (denoted by D11mn, D12mn,

and D22mn) are given by

D11mn =





0 (m ≤ n)

G1E
m−n
o F1 (m > n)

(m = 0, · · · , No − 1; n = 0, · · · , No − 1), (5.63)

D21mn = G2iE
m
i ENo−1−n

o F1 (m = 0, · · · , Ni − 1; n = 0, · · · , No − 1), (5.64)

D22mn =





0 (m < n)

Di (m = n)

G2iE
m−n−1
i F2i (m > n)

(m = 0, · · · , Ni − 1; n = 0, · · · , Ni − 1). (5.65)

By Theorem 5.3, we can compute the finite-dimensional matrix F (ϕ, γ), and

thus by Theorem 5.2, we can compute the frequency response gain of sampled-data

systems using time-sharing multirate sample-hold scheme. To prove Theorem 5.3,

we need the following lemma:

Lemma 5.1 Let −τ ≤ a ≤ τ . Then,

Z [
C(sI − A)−1Beas

]
=





CeAτ1(zI − Â)−1eAτ2B (−τ ≤ a < 0)

CeAτ1(zI − Â)−1eAτ2B + CeAaB (0 ≤ a ≤ τ)
(5.66)

where Â = eAτ and τi (i = 1, 2) are any real numbers satisfying τ1 + τ2 = τ + a.

Proof of Lemma 5.1: Note that the inverse z-transform of C(sI − A)−1Beas is

CeA(t+a)Bu(t + a), where u(t) is the unit step function. From this, we have

Z [
C(sI − A)−1Beas

]
=





∑∞
k=1 CeA(kτ+a)Bz−k (−τ ≤ a < 0)

∑∞
k=0 CeA(kτ+a)Bz−k (0 ≤ a ≤ τ)

. (5.67)

This yields (5.66).

Proof of Theorem 5.3: From the impulse modulation formula, the right-hand

side of (5.55) can be rewritten as

Φγ(e
jϕτ ) =

1

τ

∞∑
m=−∞

[
Do(jϕm) 0

0 H∗
τi
(jϕm)D

∗
i (jϕm)

]
T (jϕm)

[
D
∗
o(jϕm) 0

0 Di(jϕm)Hτi(jϕm)

]

= Z
[[

Do(s) 0

0 Hτi (̃s)Dĩ (s)

]
T (s)

[
Do (̃s) 0

0 Di(s)Hτi(s)

]]

z=ejϕτ

, (5.68)
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where

T (s) =

[
0 P22(s)

P22 (̃s) 0

]
+

[
P21(s) 0

0 P12 (̃s)

][
γI −P11 (̃s)

−P11(s) γI

]−1[
P21 (̃s) 0

0 P12(s)

]
.

(5.69)

The state-space representation of T (s) was derived in Sec. 3.2.3. It was given by

T (s) =




E F1 F2

G1 0 0

G2 0 D


 , (5.70)

where E, F1, F2, G1, G2, and D are given by (5.61) and (5.62). Here, note that

[
Do (̃s) 0

0 Di(s)Hτi(s)

]
=




0 0 I

0 I 0

I 0 0




[
Do (̃s) 0

0 (1− e−τis)Di(s)

]
, (5.71)

and

[
Do(s) 0

0 Hτi (̃s)Dĩ (s)

]
=

[
Do(s) 0

0 (1− eτis)Dĩ (s)

]


0 0 I

0 I 0

−I 0 0


 . (5.72)

Therefore, from (5.68), (5.70), (5.71), and (5.72), together with Lemma 2.1, we

obtain

Φγ(z) = Z
[[

Do(s) 0

0 Hτi (̃s)Dĩ (s)

]
T (s)

[
Do (̃s) 0

0 Di(s)Hτi(s)

]]

=Z




[
Do(s) 0

0 (1− eτis)Dĩ (s)

]


Ă B̆1 B̆2

C̆1 0 0

C̆2 0 0



[
Do (̃s) 0

0 (1− e−τis)Di(s)

]
 , (5.73)

where

Ă =




E F2 0

0 0 0

G2 D 0


 , B̆1 =




F1

0

0


 , B̆2 =




0

I

0


 , C̆1 =

[
G1 0 0

]
, C̆2 =

[
0 0 −I

]
.

By applying Lemma 5.1 to (5.73), we obtain a state-space representation of Φγ(z)

as

Φγ(z) =

[
Φγ11(z) Φγ12(z)

Φγ21(z) Φγ22(z)

]
=




Ǎ B̌1 B̌2

Č1 Ď11 0

Č2 Ď12 Ď22


 , (5.74)
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where

Ǎ = eĂτ , B̌1 = eĂL
[
ĂNo−1

o B̆1 · · · ĂoB̆1 B̆1

]
, Ăo = eĂτo , (5.75)

B̌2 = (I − Ă−1
i )Ăi

[
ĂNi−1

i B̆2 · · · ĂiB̆2 B̆2

]
, Ăi = eĂτi , (5.76)

Č1 =




C̆1

C̆1Ăo

...

C̆1Ă
No−1
o




, Č2 =




C̆2

C̆2Ăi

...

C̆2Ă
Ni−1
i




(I − Ăi)e
Ă(τ−L), (5.77)

and the (m,n)-block components of D11, D21, and D22 (denoted by D11mn, D12mn,

and D22mn) are given by

Ď11mn =





0 (m ≤ n)

C̆1Ă
m−n
o B̆1 (m > n)

(m = 0, · · · , No − 1; n = 0, · · · , No − 1), (5.78)

Ď21mn = C̆2Ă
m
i (I − Ăi)Ă

(No−1−n)
o B̆1 (m = 0, · · · , Ni − 1; n = 0, · · · , No − 1), (5.79)

Ď22mn =





0 (m < n)

−C̆2ĂiB̆2 (m = n)

C̆2(2I − Ăi)ĂiB̆2 (m = n + 1)

C̆2(I − Ăi)Ă
m−n
i (I − Ă−1

i )B̆2 (m > n + 1)

(m = 0, · · · , Ni − 1; n = 0, · · · , Ni − 1). (5.80)

For the above derivation, we used C̆1B̆1 = 0, C̆1B̆2 = 0, and C̆2B̆2 = 0.

In the following, we only show that Φγ22(z) given by (5.74)-(5.80) coincides with

Φγ22(z) given by (5.56)-(5.65). For Φγ11(z), Φγ12(z), and Φγ21(z), their derivations

are carried out in a similar manner, and so they are omitted. From (5.75), (5.76),

(5.77), and (5.80), the (m,n)-block component of Φγ22(z), denoted by Φγ22mn(z), is

given by

Φγ22mn(z) =

[
eĂτ ĂNi−1−n

i (Ăi − I)B̆2

C̆2(I − Ăi)Ă
m
i eĂ(τ−L) Ď22mn

]
, (5.81)

where we used the relation (Ăi − I)Ăk
i = Ăk

i (Ăi − I). Now, let us introduce the

following matrix exponentiation:




E(t) F2(t) 0

0 I 0

G2(t) D(t) I


 = eĂt = exp








E F2 0

0 0 0

G2 D 0


 t





. (5.82)
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From (5.60), (5.81), (5.82), and Lemma 2.2, we obtain

Φγ22mn(z) =




E(τ) ∗ 0 E ((Ni − 1− n)τi) F2(τi)

0 ∗ 0 0

∗ ∗ ∗ ∗
G2(τi)E(mτi)E(τ − L) ∗ 0 Ď22mn




(5.83)

=

[
eEτ ENi−1−n

i F2i

G2iE
m
i ENo−1

o Ď22mn

]
. (5.84)

As for Ď22mn, we can obtain

− C̆2ĂiB̆2 = D(τi) = Di, C̆2(2I − Ăi)ĂiB̆2 = G2(τi)F2(τi) = G2iF2i, (5.85)

C̆2(I − Ăi)Ă
m−n
i (I − Ă−1

i )B̆2 = G2(τi)E(τi)
m−n−1F2(τi) = G2iE

m−n−1
i F2i. (5.86)

The equations (5.82)-(5.86) imply that Φγ22(z) given by (5.74)-(5.80) coincides with

Φγ22(z) given by (5.56)-(5.65).

We can also derive a norm equivalent discrete-time system when the generalized

plant shown in Figure 5.4 satisfies P11(s) = 0.

Theorem 5.4 Consider the sampled-data system shown in Figure 5.4. Suppose

that P11(s) = 0. Then, the frequency response gain ‖Q(jϕ)‖l2/l2 coincides with

σ̄(Q̂(ejϕτ )) for every ϕ, where Q̂(z) = Fl(Π(z), Cd(z)) and Π(z) is a generalized

plant given by

Π(z) =




Â B1d B2d

C1d 0 D12d

C2d D21d 0


 , (5.87)

where

Â = eAτ , B2d =
[
ANi−1

i Bi · · · AiBi Bi

]
, Ai = eAτi , Bi =

∫ τi

0

eAtB2dt, (5.88)

C2d =
[
CT

2 (C2Ao)
T · · · (C2A

No−1
o )T

]T

, Ao = eAτo , (5.89)

and B1d, C1d, D12d, and D21d are the matrices satisfying
[

B1d

D21d

] [
B

T

1d D
T

21d

]
=

[
W 11 W 12

W
T

12 W 22

]
,

[
C

T

1d

D
T

12d

] [
C1d D12d

]
=

[
V 11 V 12

V
T

12 V 22

]
. (5.90)

In (5.90), W 11 and W 12 are given by

W 11 = W (τ), W (t) =

∫ t

0

eAθB1B
T
1 eAT θdθ, (5.91)

W 12 =
[
0 eA(τ−τo)W (τo)C

T
2 · · · eA(τ−(No−1)τo)W ((No − 1)τo)C

T
2

]
, (5.92)
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and the (m,n)-block component of W 22 (denoted by W 22mn) is given by

W 22mn =





C2W (mτo)A
(n−m)T
o CT

2 (m ≤ n)

C2A
(m−n)
o W (nτo)C

T
2 (m > n)

(m = 0, · · · , No − 1; n = 0, · · · , No − 1). (5.93)

The matrices V 11 and V 12 are given by

V 11 = V (τ), V (t) =

∫ t

0

eAT θCT
1 C1e

Aθdθ, (5.94)

V 12 = eA(τ−L)
[
V12i + AiV ((Ni − 1)τi)Bi · · · ANi−1

i (V12i + AiV (0)Bi)
]
, (5.95)

and the (m,n)-block component of V 22 (denoted by V 22mn) is given by

V 22mn =





BT
i A

(n−m−1)T
i V12i + BT

i A
(n−m)T
i V ((Ni − 1− n)τi)Bi (m < n)

V22i + BT
i V ((Ni − 1−m)τi)Bi (m = n)

V T
12iA

(m−n−1)
i Bi + BT

i V ((Ni − 1−m)τi)A
(m−n)
i Bi (m > n)

(m = 0, · · · , Ni − 1; n = 0, · · · , Ni − 1), (5.96)

where V11i, V12i, and V22i are given by

[
V11i V12i

V T
12i V22i

]
=

∫ τi

0

exp

([
AT 0

BT
2 0

]
t

)[
CT

1

DT
12

] [
C1 D12

]
exp

([
A B2

0 0

]
t

)
dt. (5.97)

Theorem 5.4 is shown by applying techniques similar to those used in Sec. 2.4

and the proof of Theorem 5.3, and so the proof is omitted.

Here, note that the generalized plant Π(z) given by (5.87) is not only used

for computing the frequency response gain of the sampled-data system shown in

Figure 5.4 but also for solving H∞ problems of the sampled-data system. This

is because the stability of the original sampled-data system and that of the norm

equivalent discrete-time system composed of Π(z) and Cd(z) are also equivalent,

which is shown in a similar manner to the standard case that uses the zero-order

hold and the ideal sampler.

5.3 Reliable Stabilization Using Time-Sharing Mul-

tirate Sample-Hold Scheme

As an application of the time-sharing multirate sample-hold controller, we consider

the reliable stabilization problem. A general formulation of the reliable stabilization
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Figure 5.7: Reliable stabilization using time-sharing multirate sample-hold con-

trollers

problem is as follows: for a given plant P and an integer N , find a set of N controllers

C1, · · · , CN that stabilize P when they all act together, as well as when one of them

fails. In the following, we assume that each Ci consists of a multirate hold GHi

and a multirate sampler GSi, with the frame period τ , that are connected directly

(Figure 5.7). We further assume that GHi and GSi satisfy the time-sharing condition

for each i (with L replaced by Li, while τ does not depend on i). For simplicity,

however, we assume in the following that τ and Li (i = 1, · · · , N) are given, unless

otherwise stated. Their values are in fact not crucial in the arguments to follow in

the sense that no conditions are imposed on them, and thus we can readily extend

the results to the case where τ and Li (i = 1, · · · , N) can also be chosen as design

parameters.

Remark 5.2 In this section, we only deal with a stabilization problem, so we do

not consider those holds and samplers corresponding to the multirate hold with the

hold function F2(t) and the multirate sampler with the sampling function G2(t)

in Figure 5.1. Therefore, in the following, when we refer to multirate holds and

samplers, they correspond to those in Figure 5.1 with the hold function F1(t) and

the sampling function G1(t). In view of this, the subscript i (i = 1, · · · , N) in this

section is used to indicate the index of the controllers and their parameters such as

their hold and sampling functions, which obviates the use of double subscripts such

as F1i(t) and G1i(t).
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5.3.1 Reliable stabilization against 1-of-N controller failure

Now, we state the reliable stabilization problem studied in this section.

Problem 5.1 Given an integer N(≥ 2), find a set of N time-sharing multirate

sample-hold controllers that stabilize a given unstable plant P when they all act

together, as well as when any one of them fails.

We refer to Problem 5.1 as “reliable stabilization against 1-of-N controller failure.”

Extending (5.15), it is easy to see that the closed-loop state equation, when all

the controllers are working normally, is given by

ξ[k + 1] = (A + F 1G1 + · · ·+ FNGN)ξ[k]. (5.98)

Here, we assume that the transfer characteristic of a controller becomes 0 when it

goes into malfunction. Therefore, if the ith controller fails, then the term F iGi

vanishes from the above equation.

Now, let us assume that P is given by (5.1) and (5.2), and is controllable and

observable. Then F i and Gi (i = 1, · · · , N) can be made arbitrary matrices by

a suitable choice of Fi(t) and Gi(t) (i = 1, · · · , N) (including the number of the

column of F i and that of the row of Gi). Therefore, Qi := F iGi can be made

arbitrary matrices. From this, Problem 5.1 can be restated as follows:

Problem 5.2 Given A = eAτ ∈ Rn×n and an integer N(≥ 2), find Qi (i =

1, · · · , N) that make the following N + 1 matrices all stable.

S := A + Q1 + · · ·+ QN , (5.99)

Si := S −Qi (i = 1, · · · , N). (5.100)

Once Qi (i = 1, · · · , N) are obtained such that the matrices given by (5.99) and

(5.100) are all stable, we can find F i and Gi such that Qi = F iGi. We can then

find Fi(t) and Gi(t) satisfying (5.5), (5.6), (5.12) and (5.14) for each i = 1, · · · , N ,

provided that we take sufficiently large input and output multiplicities Nii and Noi,

and this leads to one solution to Problem 5.1. Even though there are infinitely

many degrees of freedom in the design of Fi(t) and Gi(t) under the specified Qi for

each i = 1, · · · , N , we do not pursue how to exploit that freedom in this thesis.

This is because our purpose in this section is to demonstrate the high ability of the

time-sharing multirate sample-hold controllers to handle the reliable stabilization

problem, and thus it suffices to discuss the existence of the above matrices Qi (i =

1, · · · , N).

To solve Problem 5.2, the following lemma obtained by Ito et al. [46] is very

useful. The proof will be given in Sec. 5.5.
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Lemma 5.2 Suppose X ∈ Rn×n and N ≥ 2. Then, X can be decomposed into the

sum of N (discrete-time) stability matrices if and only if |trace (X)| < Nn.

By applying Lemma 5.2, we can obtain the solvability condition of Problem 5.2.

Lemma 5.3 There exist Qi (i = 1, · · · , N) satisfying the condition of Problem 5.2

if and only if |trace (A)| < (2N − 1)n.

Proof of Lemma 5.3: First, we prove the necessity part. Suppose that S and

Si given by (5.99) and (5.100) are stable. Then, |trace (S)| < n and |trace (Si)| <

n (i = 1, · · · , N). Also by (5.99) and (5.100), we obtain S1+· · ·+SN = A+(N−1)S.

Therefore,

|trace (A)| = |trace (S1 + · · ·+ SN − (N − 1)S)|
≤ |trace (S1)|+ · · ·+ |trace (SN)|+ (N − 1)|trace (S)|
< (2N − 1)n.

Next, we prove the sufficiency part. Suppose that |trace (A)| < (2N − 1)n. By

Lemma 5.2, A can be decomposed into the sum of 2N − 1 stability matrices. In

particular, in view of the proof of the sufficiency part of Lemma 5.2 given in Sec. 5.5,

the decomposition

A = X1 + · · ·+ XN + (N − 1)X0

is possible, where Xi (i = 0, · · · , N) are all stability matrices. Now, let Qi =

−(X0 + Xi) (i = 1, · · · , N). Then, from (5.99) and (5.100), we obtain

S = A + Q1 + · · ·+ QN

= {X1 + · · ·+ XN + (N − 1)X0} −
N∑

i=1

(X0 + Xi) = −X0, (5.101)

Si = S −Qi = −X0 + (X0 + Xi) = Xi (i = 1, · · · , N). (5.102)

This means that Si (i = 1, · · · , N) and S are all stability matrices. This completes

the proof.

By Lemma 5.3, we can readily obtain the solvability condition of Problem 5.1.

Theorem 5.5 Problem 5.1 is solvable if and only if

|trace (eAτ )| < (2N − 1)n. (5.103)
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It should be noted that for any A and N ≥ 2, it is always possible to satisfy the

condition of Theorem 5.5 by a suitable choice of τ , since |trace (eAτ )| tends to n as

τ goes to zero. Therefore, if (A,B, C) is controllable and observable, reliable stabi-

lization is always possible by an appropriate choice of the frame period τ when the

time-sharing multirate sample-hold scheme is employed. Also note that even if the

frame period τ is fixed, reliable stabilization is possible by increasing the number of

controllers. This is in sharp contrast to the case of LTI controllers, in which case the

solvability condition has been obtained only under the two-controller configuration,

and strong stabilizability (e.g., Vidyasagar [75]) of the plant is required in that case

(e.g., Minto and Ravi [62]).

5.3.2 Reliable stabilization by decomposing a given con-

troller

In this subsection, we consider a similar problem for reliable stabilization. Namely,

suppose that we are given a stabilizing controller with the time-sharing multirate

sample-hold scheme, and we study whether it is possible to decompose it into the

sum of controllers with the time-sharing multirate sample-hold scheme. Recalling

the arguments to reduce Problem 5.1 to Problem 5.2, we can easily see that such a

problem can be formulated as follows.

Problem 5.3 Suppose that a time-sharing multirate sample-hold controller stabi-

lizing P is given, and let Q := F G where F and G correspond to F 1 and G1 of (5.12)

and (5.14), respectively (thus, A+F G = eAτ +Q =: S is a stability matrix). Given

also an integer N (≥ 2), find Qi (i = 1, · · · , N) such that the following conditions

are satisfied.

(i) Q = Q1 + · · ·+ QN .

(ii) N matrices in (5.100) are all stable.

Needless to say, condition (i) in the above problem corresponds to the decomposition

constraint, while condition (ii) corresponds to the reliable stabilization. Note that

the matrix corresponding to (5.99) is stable from the assumption of Problem 5.3.

The solvability condition of this problem is given by the following theorem.

Theorem 5.6 Problem 5.3 is solvable if and only if

|trace (eAτ +
N − 1

N
Q)| < n (5.104)
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Proof of Theorem 5.6: First, we show the necessity of the condition (5.104).

Let Qi (i = 1, · · · , N) satisfy the conditions (i) and (ii) of Problem 5.3, and let

Si (i = 1, · · · , N) be the stability matrices given by (5.100). Then, we can readily

show that

S1 + · · ·+ SN = NA + (N − 1)Q (5.105)

This implies that NA + (N − 1)Q can be decomposed into the sum of N stability

matrices. Hence, by Lemma 5.2, the condition (5.104) follows.

Next, we show the sufficiency of the condition (5.104). If the condition (5.104)

holds, again from Lemma 5.2, NA+(N − 1)Q (= NS−Q) can be decomposed into

the sum of N stability matrices X1, · · · , XN . Let

Qi := S −Xi (i = 1, · · · , N) (5.106)

Then,

Q1 + · · ·+ QN = NS − (X1 + · · ·+ XN) = NS − (NS −Q) = Q,

Si = S −Qi = Xi.

These equations, together with the stability of Xi, imply that Qi (i = 1, · · · , N)

given by (5.106) satisfy the conditions (i) and (ii) of Problem 5.3. This completes

the proof.

Summarizing the results in this section, we can see that time-sharing multi-

rate sample-hold controllers make it rather easy to solve the reliable stabilization

problem. It is important to note the following key fact to this strong result: once

Qi (i = 1, · · · , N) are obtained, there exist a multirate hold and multirate a sampler

that attain Qi whatever Qi may be, provided that the time-sharing condition is

satisfied.

5.4 Numerical Example

In this section, we give some numerical examples concerning the robust stabilization,

which is an application of Theorem 5.4 in Sec. 5.2, and the reliable stabilization using

time-sharing multirate sample-hold scheme.

5.4.1 Robust stabilization

First, we briefly review the robust stabilization problem and related issues. For a

given nominal plant G0(s), a stable rational transfer function δ(s), and a nonnegative
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Figure 5.9: Robust stabilization using time-sharing multirate sample-hold con-

trollers.

number k, we introduce a set of continuous-time plants given by

G(G0, δ, k) =
{
G(s) = G0(s)(I + ∆(s))

∣∣ ∆(s) is a stable rational transfer matrix

satisfying ‖∆(jϕ)‖ ≤ k|δ(jϕ)| (∀ϕ)} . (5.107)

Now, let us consider the feedback system shown in Figure 5.8, where G is a continuous-

time plant, Cd is a discrete-time controller, and H and S are the multirate hold and

the multirate sampler, respectively, which satisfy the time-sharing condition. The

feedback system shown in Figure 5.8 is denoted by ΣTSMSH (TSMSH stands for

time-sharing multirate sample-hold). The feedback system ΣTSMSH is said to be

robustly stable with respect to the plant set G(G0, δ, k) if ΣTSMSH is stable for all

G ∈ G(G0, δ, k). The problem of finding a controller Cd that stabilizes all plants

G ∈ G(G0, δ, k) is referred to as the robust stabilization problem. The set G(G0, δ, k)

is said to be robustly stabilizable if there exists a controller Cd that stabilizes all

plants G ∈ G(G0, δ, k).

In considering the robust stability of the sampled-data system ΣTSMSH with

respect to the plant set G(G0, δ, k), the sampled-data system shown in Figure 5.9 is

often introduced. By applying the small gain theorem (e.g., [86]) to the feedback

system of Figure 5.9, we can obtain the following result regarding the robust stability

of ΣTSMSH with respect to G(G0, δ, k).
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Proposition 5.1 Suppose that the feedback system ΣTSMSH is stable when G = G0.

Then, ΣTSMSH is robustly stable with respect to G(G0, δ, k) if

‖Q(jϕ)‖∞ < γ := 1/k, (5.108)

where Q(jϕ) is the FR-matrix associated with the sampled-data system of Figure 5.4

whose generalized plant is given by

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
=

[
0 I

G0(s)δ(s) −G0(s)

]
. (5.109)

Thus, we can reduce the robust stabilization problem of the sampled-data system

using a time-sharing sample-hold scheme to the H∞ problem of the sampled-data

system shown in Figure 5.4. Here, note that P11(s) = 0. Therefore, we can apply

Theorem 5.4 to the robust stabilization problem. It is derived from Proposition 5.1

that, for given G0 and δ, G(G0, δ, k) is robustly stabilizable by the time-sharing

sample-hold scheme if 0 ≤ k < k∗ where k∗ is given by

k∗ =
1

infCd∈S0
‖Q(jϕ)‖∞ , (5.110)

and S0 is the set of discrete-time controllers that stabilize G0. Therefore, k∗ can

be regarded as a robustly-stabilizing ability of the time-sharing multirate sample-

hold controller. Since k∗ is the upper bound of k that is derived by the small gain

theorem, we refer to k∗ as the guaranteed upper bound of k by the small gain theorem,

or shortly, the guaranteed upper bound. Here, it should be noted that k∗ is only an

upper bound of k and is not the supremum of k for which G(G0, δ, k) is robustly

stabilizable because k∗ is derived from the sufficient condition in Proposition 5.1.

In the following, we examine the robustly-stabilizing ability of time-sharing mul-

tirate sample-hold scheme by using k∗ through numerical examples. Let G0(s) and

δ(s) be given, respectively, by

G0(s) =
s− 2

(s− 1)(s + 1)
, δ(s) =

3s + 1

s + 1
. (5.111)

The guaranteed upper bounds under various situations are shown in Tables 5.1

and 5.2. The guaranteed upper bounds under the continuous-time setting and the

standard sampled-data setting (i.e., using the zero-order hold and the ideal sampler)

are shown in Table 5.3, where the upper bounds are obtained similarly by using the

small gain theorem.

From Tables 5.1 and 5.2, we see that the robustly-stabilizing ability of the time-

sharing multirate sample-hold controller becomes higher as the input multiplicity

Ni and the output multiplicity No become larger, and that such a tendency becomes



116

Table 5.1: Guaranteed upper bounds for τ = 0.005 and τ = 0.05.

τ = 0.005 τ = 0.05

L = 0.1τ Ni = 1 Ni = 2 Ni = 3 L = 0.1τ Ni = 1 Ni = 2 Ni = 3

No = 2 0.05256 0.05256 0.05256 No = 2 0.05126 0.05126 0.05126
No = 3 0.05256 0.05256 0.05256 No = 3 0.05126 0.05126 0.05126
No = 4 0.05256 0.05256 0.05256 No = 4 0.05126 0.05126 0.05126

L = 0.5τ Ni = 1 Ni = 2 Ni = 3 L = 0.5τ Ni = 1 Ni = 2 Ni = 3

No = 2 0.1174 0.1174 0.1174 No = 2 0.1135 0.1135 0.1135
No = 3 0.1174 0.1174 0.1174 No = 3 0.1135 0.1135 0.1135
No = 4 0.1174 0.1174 0.1174 No = 4 0.1135 0.1135 0.1135

L = 0.9τ Ni = 1 Ni = 2 Ni = 3 L = 0.9τ Ni = 1 Ni = 2 Ni = 3

No = 2 0.1574 0.1574 0.1574 No = 2 0.1507 0.1508 0.1508
No = 3 0.1574 0.1574 0.1574 No = 3 0.1507 0.1508 0.1508
No = 4 0.1574 0.1574 0.1574 No = 4 0.1507 0.1508 0.1508

L = 0.99τ Ni = 1 Ni = 2 Ni = 3 L = 0.99τ Ni = 1 Ni = 2 Ni = 3

No = 2 0.1650 0.1650 0.1650 No = 2 0.1578 0.1578 0.1578
No = 3 0.1650 0.1650 0.1650 No = 3 0.1578 0.1578 0.1578
No = 4 0.1650 0.1650 0.1650 No = 4 0.1578 0.1578 0.1578

stronger as the frame period τ becomes larger. We can also observe that the effect

of the increase of Ni becomes higher when L, the interval of the manipulation,

becomes larger, whereas the effect of the increase of No becomes higher when L

becomes small. By comparing Tables 5.1, 5.2, and 5.3, we see that the guaranteed

upper bound for the time-sharing multirate sample-hold controller approaches that

for the standard sampled-data controller as L tends to τ when Ni = 1. We can also

observe that the robustly stabilizing ability of time-sharing sample-hold controller

becomes superior to the standard sampled-data controller as frame period becomes

larger.

Figure 5.10 shows the frequency response gain of the FR-matrix Q(jϕ) (i.e.,

‖Q(jϕ)‖l2/l2) and 1
k∗ for the case of τ = 0.05, L = 0.5τ , Ni = 1, No = 2, where

the solid line and the dashed line indicate ‖Q(jϕ)‖l2/l2 and 1
k∗ , respectively. From

Figure 5.10, we see that ‖Q(jϕ)‖l2/l2 < 1
k∗ holds for all ϕ. We can observe such a

relation for every example listed in Tables 5.1 and 5.2.
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Table 5.2: Guaranteed upper bounds for τ = 0.5 and τ = 5.

τ = 0.5 τ = 5

L = 0.1τ Ni = 1 Ni = 2 Ni = 3 L = 0.1τ Ni = 1 Ni = 2 Ni = 3

No = 2 3.918×10−2 3.919×10−2 3.919×10−2 No = 2 8.623×10−4 8.689×10−4 8.702×10−4

No = 3 3.921×10−2 3.921×10−2 3.921×10−2 No = 3 8.737×10−4 8.804×10−4 8.817×10−4

No = 4 3.921×10−2 3.922×10−2 3.922×10−2 No = 4 8.782×10−4 8.849×10−4 8.862×10−4

L = 0.5τ Ni = 1 Ni = 2 Ni = 3 L = 0.5τ Ni = 1 Ni = 2 Ni = 3

No = 2 7.952×10−2 7.968×10−2 7.971×10−2 No = 2 9.096×10−4 10.04×10−4 10.74×10−4

No = 3 7.953×10−2 7.969×10−2 7.972×10−2 No = 3 9.146×10−4 10.46×10−4 10.80×10−4

No = 4 7.953×10−2 7.969×10−2 7.972×10−2 No = 4 9.155×10−4 10.47×10−4 10.81×10−4

L = 0.9τ Ni = 1 Ni = 2 Ni = 3 L = 0.9τ Ni = 1 Ni = 2 Ni = 3

No = 2 9.705×10−2 9.766×10−2 9.777×10−2 No = 2 7.222×10−4 9.291×10−4 10.08×10−4

No = 3 9.705×10−2 9.766×10−2 9.777×10−2 No = 3 7.224×10−4 9.293×10−4 10.08×10−4

No = 4 9.705×10−2 9.766×10−2 9.777×10−2 No = 4 7.224×10−4 9.294×10−4 10.08×10−4

L = 0.99τ Ni = 1 Ni = 2 Ni = 3 L = 0.99τ Ni = 1 Ni = 2 Ni = 3

No = 2 9.967×10−2 10.04×10−2 10.06×10−2 No = 2 6.908×10−4 9.043×10−4 9.921×10−4

No = 3 9.967×10−2 10.04×10−2 10.06×10−2 No = 3 6.908×10−4 9.043×10−4 9.921×10−4

No = 4 9.967×10−2 10.04×10−2 10.06×10−2 No = 4 6.908×10−4 9.043×10−4 9.921×10−4

Table 5.3: Guaranteed upper bounds of k for the continuous-time system and the

standard sampled-data system.

continuous-time standard sampled-data control
control τ = 0.005 τ = 0.05 τ = 0.5 τ = 5
0.1667 0.1658 0.1585 9.994×10−2 6.876×10−4

10
-3

10
-2

10
-1

10
0

10
1

10
2

18.8996

18.8998

18.9

18.9002

18.9004

18.9006

18.9008

18.901

18.9012

18.9014

Frequency [rad/sec]

G
a
i
n
 
[
d
B
]

Figure 5.10: Frequency response gain of Q(jϕ) (solid line) and 1
k∗ (dashed line).
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5.4.2 Reliable stabilization

In this subsection, we give a numerical example of the reliable stabilization for the

following linear time-invariant plant:

P (s) =
8(s− 2)(s− 4)

(s− 1)(s− 3)(s− 5)
.

It was shown in Minto and Ravi [62] that reliable stabilization under the two-

controller configuration using LTI controllers requires strong stabilizability of the

plant, that is, the plant must be stabilizable by a stable controller. Youla et al. [84]

showed that the strong stabilizability of the plant is equivalent to the condition that

the number of poles of the plant between every pair of real unstable zeros of the

plant is even, which is referred to as the “parity interlacing property.” The above

plant does not satisfy this property, and thus the plant is not reliably stabilizable

under the two-controller configuration by any LTI controllers.

We apply the results in the preceding section to obtain a set of reliably stabiliz-

ing controllers using the time-sharing multirate sample-hold scheme. Clearly, it is

possible to study under the general N -controller configuration for any given integer

N ≥ 2, but here we consider the three-controller configuration (N = 3), since an ex-

ample of reliably stabilizing controllers for such a case has not been shown anywhere

in whatever control scheme.

Now, let us take the following realization of the plant:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), A =




1 0 0

0 3 0

0 0 5


 , B =




3

2

3


 , C =

[
1 1 1

]
.

The frame period is selected to be τ = 0.1 so as to satisfy the condition of The-

orem 5.5, i.e., to guarantee the existence of a set of N(=3) controllers to achieve

reliable stabilization. Indeed, |trace (eAτ )| ≈ 4.10 < 15 = (2N − 1)n. However,

we proceed in our design according to the idea in Problem 5.3. Namely, first, we

find the optimal stabilizing controller Q (i.e., eAτ + Q is a stability matrix) such

that J =
∫∞

0

(
xT (t)x(t) + 0.1uT (t)u(t)

)
dt is minimized, and then we consider to

decompose it into three reliably stabilizing controllers.

The problem of finding the optimal controller Q that minimizes J under the time-

sharing multirate sample-hold setting is equivalently reduced to a certain discrete-

time problem as in the case of using the zero-order hold and the ideal sampler (e.g.,

Hagiwara and Araki [28] and Furuta [23] on using the zero-order hold and the ideal

sampler). By solving the discrete-time problem, we can obtain the optimal Q as
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follows:

Q =



−0.882 7.25 −5.23

−0.724 5.90 −4.21

−1.34 10.8 −7.63


 .

In this case, |trace (A + N−1
N

Q)| ≈ 2.36 < 3 = n, so the condition of Theorem 5.6 is

satisfied. Therefore, Q can be decomposed into the sum of three matrices Qi (i =

1, 2, 3) satisfying the condition of Problem 5.3. Such Qi are obtained in accordance

with the constructive proof of Theorem 5.6. However, we simply set Qi as Qi =
1
3
Q (i = 1, 2, 3) because these Qi satisfy the condition. This situation corresponds

to the case of three identical controllers working in cooperation. Here, we determine

Fi(t) and Gi(t) so that F i = 1
3
Qi = 1

3
Q and Gi = I (i = 1, 2, 3). These matrices

are attained by choosing the input multiplicities and the output multiplicities as

Ni = No = 3, and under the condition L = τ/2 = 0.05, the resulting hold function

Fi(t) and sampling function Gi(t) are obtained, respectively, as follows:

Fi(t) =





[
−7.17 50.6 −31.5

]
0 ≤ t < 0.05/3[

−0.758 7.83 −6.53
]

0.05/3 ≤ t < 0.1/3[
2.64 −14.7 6.32

]
0.1/3 ≤ t < 0.05[

0 0 0
]

0.05 ≤ t < 0.1

(i = 1, 2, 3),

Gi(t) =




227

−465

238


 δ(t− 0.05) +



−410

863

−453


 δ(t− 0.075) +




185

−400

215


 δ(t− 0.1). (i = 1, 2, 3).

The state responses for the initial value x(0) = [1 1 1]T are shown in Figure 5.11

and Figure 5.12, where the former corresponds to the case when all controllers work

together while the latter the case when one of the three identical controllers fails.

The time step size for these simulations is 0.05/30. These figures show that the

state converges to zero quickly when all controllers work together, and the stability

of the closed-loop system is guaranteed even when one of the controllers fails.
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Figure 5.11: Response of the input and the state (with all controllers working)
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Figure 5.12: Response of the input and the state (with one controller failing)
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5.5 Proof of Lemma 5.2

In this subsection, we give the proof of Lemma 5.2. For the proof, we exploit the

following properties:

(i) x ∈ R can be expressed as the sum of N numbers whose absolute values are

less than p, if and only if |x| < Np.

(ii) If X ∈ Rn×n is a stability matrix, then |trace (X)| < n.

In addition to these properties, we need the following two lemmas to prove Lemma 5.2.

Lemma 5.4 Suppose X ∈ R2×2 and X−xI2 6= 0 (∀x). Then, there exists an invert-

ible matrix T that assigns the diagonal elements of the matrix T−1XT arbitrarily

within the constraint that their sum equals trace (X).

Lemma 5.5 Suppose X ∈ Rn×n and X − xIn 6= 0 (∀x). Suppose also that p is an

arbitrary positive real number. If |trace (X)| < p, then there exists an invertible

matrix T that makes the absolute value of each diagonal element of T−1XT less

than p/n.

In the following, we give the proofs of Lemmas 5.4 and 5.5.

Proof of Lemma 5.4: We first show that the assertion of Lemma 5.4 is true when

n = 2. Let X =

[
a b

c d

]
. In this case, it is sufficient to show the assertion for

the following three cases: (i) b 6= 0, (ii) c 6= 0, (iii) b = c = 0 (Here, a 6= d by

assumption). For (i), T =

[
1 0

t 1

]
yields T−1XT =

[
a + bt b

∗ d− bt

]
. This means

that one of the diagonal elements can be assigned arbitrarily by the appropriate

choice of t. (ii) can be reduced to (i) by transposing X. For (iii), T =

[
1 0

t 1

]
yields

T−1XT =

[
a 0

(a− d)t d

]
. Therefore, (iii) can also be reduced to (ii). This completes

the proof.

Proof of Lemma 5.5: For n = 1, the assertion is trivial. For n = 2, the assertion

readily follows from Lemma 5.4 and property (i). In the following, we assume that

the assertion of Lemma 5.5 is true for n = k (k ≥ 2) and show that this is also true

for n = k +1. Since X 6= xIk+1, there exist i and j such that the matrix

[
xii xij

xji xjj

]
,

which we denote by X̃, is not a scalar multiple of the identity I2. By an appropriate



122

permutation T0, we obtain

X0 = T−1
0 XT0 =




x1 *. . .

xk−1

* X̃




=




x1

. . .

xk−1

*

*
xk

xk+1




(5.112)

where xk = xii, xk+1 = xjj. Now, let x′k and x′k+1 be the numbers satisfying the

following conditions:

x′k + x′k+1 = xk + xk+1, |x′k+1| <
p

k + 1
, |x1 + · · ·+ xk−1 + x′k| <

p

k + 1
k, x′k 6= xk−1.

(5.113)

Such x′k and x′k+1 always exist because |trace (X)| < p. Thus, from Lemma 5.4,

there exists a matrix S1 such that

S−1
1 X̃S1 =

[
x′k ∗
∗ x′k+1

]
. (5.114)

Now, let the transformation T1 be given by T1 = block diag[Ik−1, S1]. By this

transformation, we obtain

T−1
1 X0T1 =




x1

. . .

xk−1

x′k

*

* x′k+1




=:

[
X̂ *
* x′k+1

]
. (5.115)

By the second constraint in (5.113), the matrix X̂ ∈ Rk×k satisfies |trace (X̂)| < p

k + 1
k.

Also, by the third constraint in (5.113), X̂ is not a scalar multiple of the identity.

From the above, together with the assumption that the assertion of Lemma 5.5 is

true for n = k, there exists a transformation Tk that makes the absolute value of

each diagonal element of T−1
k X̂Tk less than

p

k + 1
. Therefore, the transformation

T := T0T1Tk makes the absolute value of each diagonal element of T−1XT less than
p

k + 1
. This means the assertion of Lemma 5.5 is true also for n = k + 1. By induc-

tion, we can conclude that Lemma 5.5 is true for any integer n. This completes the

proof.

Remark 5.3 We can extend Lemma 5.4 to a stronger result. Namely, the following

proposition holds.



123

Proposition 5.2 Suppose X ∈ Rn×n and X − xIn 6= 0 (∀x). Then, there exists

an invertible matrix T that assigns the diagonal elements of the matrix T−1XT

arbitrarily within the constraint that their sum equals trace (X).

The proof of Proposition 5.2 is slightly complicated, but it is proved in a similar

way to Lemma 5.5. Therefore, we omit the proof.

Now, we are in a position to prove Lemma 5.2.

Proof of Lemma 5.2: When X is equal to xIn for some x ∈ R, Lemma 5.2 follows

immediately from property (i). Hence, we assume that X does not satisfy that

condition. Since the necessity part of Lemma 5.2 is straightforward, we only prove

the sufficiency part.

Now, suppose that X satisfies the condition |trace (X)| < Nn. By this, together

with Lemma 5.5, T−1XT can be set as follows by an appropriate choice of the

transformation T .

T−1XT =




x1 *. . .

* xn


 , |xi| < N (i = 1, · · · , n). (5.116)

By property (i), each xi (i = 1, · · · , n) can be decomposed as1

xi = x
(1)
i + x

(2)
i + · · ·+ x

(N)
i (i = 1, · · · , n)

where

|x(j)
i | < 1 (i = 1, · · · , n; j = 1, · · · , N). (5.117)

By using the above x
(j)
i , we decompose the right-hand side of (5.116) as




x1 *. . .

* xn


 =




x
(1)
1 *. . .

0 x
(1)
n


 + · · ·+




x
(m)
1 0. . .

* x
(m)
n


 (5.118)

where each matrix in the right-hand side is an upper or lower triangular matrix. By

this, together with (5.117), each matrix in the right-hand side of (5.118) is a stability

matrix. This means that X can be expressed as the sum of stability matrices.

1One of the simplest ways to carry out such decomposition is to set x
(j)
i = xi/m.
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5.6 Summary

In this chapter, we gave the FR-operator-based representation for the frequency-

domain characteristics of sampled-data systems using the time-sharing multirate

sample-hold scheme. First, we introduced the time-sharing multirate sample-hold

scheme. This is a special kind of control scheme that uses a multirate sample-

hold scheme, where “multirate” implies that the sampler and the hold operate with

different periods, and “time-sharing” implies that the manipulation of the plant

input and the detection of the plant output work on separate time intervals. We

showed that when we use generalized holds together with generalized samplers,

the state-space representation of the discretized plant turns out to have a term

consisting of a one-step delay in general, which is caused by a certain interference

of the hold and sampling actions. We referred to the condition that such a term

is equal to zero as the orthogonality condition. In view of this, the time-sharing

multirate sample-hold scheme can be regarded as a special class that satisfies the

orthogonality condition.

Next, using the notion of FR-operators, we provided a frequency domain repre-

sentation of the sampled-data system using the time-sharing multirate sample-hold

scheme, and then we derived a bisection method for computing the frequency re-

sponse gain of such sampled-data systems. The derivation was based on the infinite-

dimensional congruent transformation approach used in Chapter 3. We also provided

a computation method based on the norm equivalent discrete-time system, which

can be applied under the condition P11(s) = 0. As an application of the time-sharing

multirate sample-hold scheme, we addressed the reliable stabilization problem. We

showed that the reliable stabilization problem under the N -controller configuration

with N ≥ 2, which is known to be a hard problem for LTI controllers, is solvable by

using the time-sharing multirate sample-hold scheme.



Chapter 6

Conclusion

In this thesis, we dealt with three topics involved in understanding the frequency

domain characteristics of sampled-data systems by using FR-operators.

(i) Computation of the frequency response gain of sampled-data systems.

(ii) Sensitivity and complementary sensitivity reduction problems of sampled-data

systems.

(iii) Frequency response of sampled-data systems using a time-sharing multirate

sample-hold scheme.

As a concluding chapter, we now summarize the contributions of this thesis.

In Chapter 2, as the fundamental background of this work, we introduced the

notion of an FR-operator, which enables us to consider the frequency domain charac-

teristics of sampled-data systems while taking into account the intersample behavior

and the influence of aliasing. We then summarized some useful properties of FR-

operators, which involve the l2-boundedness of the FR-operator, an approximative

method for frequency response gain computation through finite-dimensional trunca-

tion of the FR-matrix, and the relationship between the L2-induced norm and the

H∞ norm of sampled-data systems.

Next, we provided an exact and direct method for computing the frequency

response gain of a class of sampled-data systems satisfying the condition P11(s) = 0

under the generalized plant setting. The key result we obtained is that, under

the condition P11(s) = 0, there exists an ‘equivalent discrete-time system’ whose

frequency response gain coincides with that of the given sampled-data system at

every frequency. The technique used for the derivation of the method is fundamental

for deriving other related results. These results include a bisection algorithm for

computing the frequency response gain of general sampled-data systems (without

125
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the condition P11(s) = 0), which is presented in Chapter 3, and an analysis of

the sensitivity and complementary sensitivity reduction problems of sampled-data

systems, which is presented in Chapter 4.

In Chapter 3, we gave a complete bisection algorithm for computing the fre-

quency response gain of sampled-data systems that do not necessarily satisfy the

condition P11(s) = 0, which corresponds to topic (i). We showed that the problem of

deciding whether the frequency response gain at a given angular frequency is smaller

than a given positive number γ is reduced to the problem of counting up the number

of negative eigenvalues of a certain block-diagonal, self-adjoint infinite-dimensional

matrix. The algorithm can be carried out easily with the state-space matrices of

the sampled-data system. We also showed that a similar bisection method can be

obtained for the lifting-based representation of sampled-data systems.

The derivation of the algorithm is based on the properties of the infinite-dimensional

congruent transformation (i.e., the Schur complement arguments and Sylvester’s law

of inertia). This contrasts with the well-known arguments on the related issue of the

sampled-data H∞ problem (e.g., Bamieh and Pearson [10], Hayakawa et al. [40]),

where the positivity of the operator γ2I −D∗D (or equivalently, γ > ‖D‖) and the

loop-shifting technique play key roles, where D is the direct feedthrough term in the

lifted representation of the sampled-data system. Because of this difference in the

underlying tools, we do not need to set the above assumption on γ that was set in

the previous attempt towards a bisection algorithm (e.g., Hara et al. [39]); since the

frequency response gain can actually be smaller than ‖D‖, such an assumption is

not appropriate and thus the previous attempt was only partially successful.

In Chapter 4, we clarified several relationships between the SR/CSR problems

of a given sampled-data system and those of its ‘hold equivalent’ discretized system

(called the naively discretized system), which correspond to the issues of topic (ii),

where SR and CSR stand for sensitivity reduction and complementary sensitivity

reduction. We first considered the SR and CSR problems of the naively discretized

system Σd before considering these problems of the original sampled-data system

Σ, and showed that the best achievable performance in the SR problem coincides

with that in the CSR problem. We also showed that the lower bound of the best

achievable performance obtained by Sung and Hara [73] in the SR problem coincides

with that in the CSR problem.

Next, we showed that the SR/CSR problems of sampled-data systems can be

reduced to equivalent discrete-time problems by introducing the doubly sensitivity-

preserving (DSP) discretized system Σ̂. Through the coprime factorization treat-

ment of Σ̂, we further introduced an important function called the aliasing factor.

We then showed that the naively discretized system Σd can also be used for the SR/



127

CSR problems of the sampled-data system Σ, provided that appropriate frequency-

dependent weights constructed from the aliasing factor are applied to Σd. We then

showed that the relation between the best achievable performance in the SR (or

CSR) problem of Σ̂ (and thus Σ) and that of Σd can be proved through clarifying

an analytic property of the aliasing factor. We also derived an interesting property

that the best achievable performance for the SR problem of Σ and that for the CSR

problem of Σ coincide with each other.

The arguments in this thesis enable us to study the SR/CSR problems of sampled-

data systems through equivalent discrete-time problems with a fixed γ-independent

discretized plant. This contrasts with well-known solution methods for the sampled-

data H∞ problem, in which a γ-dependent discretized plant is used. Hence, the

arguments are not only important in their own right but might hopefully provide

a fundamental basis for further study of the performance limitations regarding the

SR/CSR problems of sampled-data systems.

In Chapter 5, we presented the FR-operator-based representation for the frequency-

domain characteristics of sampled-data systems using the time-sharing multirate

sample-hold scheme, which corresponds to the issues of topic (iii). First, we in-

troduced the time-sharing multirate sample-hold scheme. This is a special kind

of control scheme, where “multirate” implies that the sampler and the hold oper-

ate with different periods and “time-sharing” implies that the manipulation of the

plant input and the detection of the plant output work at separate time intervals.

We showed that when we use generalized holds together with generalized samplers,

the state-space representation of the discretized plant turns out to have a term con-

sisting of a one-step delay in general, which is caused by a certain interference of the

hold and sampling actions. We referred to the condition that such a term is equal

to zero as the orthogonality condition. In view of this, the time-sharing multirate

sample-hold scheme can be regarded as a special class that satisfies the orthogonality

condition.

Next, using the notion of FR-operators, we provided a frequency domain repre-

sentation of the sampled-data system using the time-sharing multirate sample-hold

scheme and derived a bisection method for computing the frequency response gain

of such sampled-data systems. The derivation was based on the infinite-dimensional

congruent transformation approach used in the study of topic (i). We also provided

a computation method based on the norm equivalent discrete-time system, which

can be applied under the condition P11(s) = 0. As an application of the time-sharing

multirate sample-hold scheme, we considered the reliable stabilization problem, in

which we are to find a set of controllers that stabilize a given plant when they all

act together, as well as when any one of them fails. We showed that the reliable
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stabilization problem under the N -controller configuration with N ≥ 2, which is

known to be a hard problem under the use of LTI controllers, is solvable by using

the time-sharing multirate sample-hold scheme. In deriving the result, a lemma on

the decomposition of a matrix into the sum of stability matrices played a key role.

Through our studies on the above three topics, we have established several fun-

damental tools and methods for dealing with the frequency domain characteristics

of sampled-data systems. The author believes that these tools and methods will be

useful for further studies on the frequency domain nature of sampled-data systems

and contribute to the development of the frequency domain theory of sampled-data

systems. In closing, we describe some future topics and possible extensions of the

results obtained in this thesis.

After the bisection method of Ito et al. [48] was presented, new bisection methods

were presented by Fujioka [21], Fujioka and Mirkin [22], and Mirkin [63]. These

methods are based on a certain kind of projection from infinite-dimensional space to

finite-dimensional space, and it was shown that their methods do not need the norm

of the singular values of the direct-feedthrough term of the lifted transfer operator,

which contrasts with our bisection method presented in Sec. 3.3.1. Clarifying the

relationship between their methods and our method is an interesting future topic.

One of the useful tools exploited in this thesis is the infinite-dimensional con-

gruent transformation, which was used for deriving the bisection algorithm for com-

puting the frequency response gain of sampled-data systems. Since the congruent

transformation approach yields a different perspective to the problems that are re-

lated to some positivity conditions, it can be applied to a wide class of problems on

systems and control. Finding useful applications of the congruent transformation

approach is also an interesting future topic.

We expect that the best achievable performances in the SR/CSR problems of

sampled-data systems can be evaluated more precisely by clarifying additional prop-

erties of aliasing factors. For example, by using limiting properties of aliasing factors

(i.e., the properties of aliasing factors when the sampling period τ tends to zero),

along with the properties of zeros of naively discretized systems, it would be pos-

sible for us to clarify the limiting properties of the best achievable performances of

sampled-data systems.



Bibliography

[1] B. D. O. Anderson and J. B. Moore, Optimal Control - Linear Quadratic

Method, Prentice Hall, 1990.

[2] M. Araki, “Recent developments in digital control theory,” Plenary Lecture,

the 12th IFAC Congress, 1993.

[3] M. Araki and T. Hagiwara, “Pole assignment by multirate sampled-data output

feedback,” Int. J. Control, Vol. 44, No. 6, pp. 1661–1673, 1986.

[4] M. Araki and T. Hagiwara, “Periodically time-varying controllers,” China-

Japan Joint Symposium of Systems Control Theory and Its Applications,

pp. 61–66, 1989.

[5] M. Araki, T. Hagiwara and H. Soma, “Application of multilevel multirate

sampled-data controllers to simultaneous pole assignment problem,” Proc. the

31st CDC, pp. 1762–1767, 1992.

[6] M. Araki, K. Fukumitsu, and T. Hagiwara, “Simultaneous stabilization and

pole assignment by two level controllers consisting of gain feedback and a mul-

tirate input controller,” Journal of Dynamic Systems, Measurement, and Con-

trol, Vol. 121, No. 2, pp. 302–305, 1999.

[7] M. Araki and Y. Ito, “On frequency-response of sampled-data control systems,”

Proc. the 21st SICE Symposium on Control Theory, pp. 19–24, 1992.

[8] M. Araki, Y. Ito and T. Hagiwara, “Frequency response of sampled-data sys-

tems,” Automatica, Vol. 32, No. 4, pp. 483–497, 1996.

[9] B. A. Bamieh and J. B. Pearson, “The H2 problem for sampled-data systems,”

Systems & Control Letters, Vol. 19, No. 1, pp. 1–12, 1992.

[10] B. A. Bamieh and J. B. Pearson, “A general framework for linear periodic

systems with applications to H∞ sampled-data control,” IEEE Trans. Automat.

Contr., Vol. AC-37, No. 4, pp. 418–435, 1992.

129



130

[11] S. Boyd, V. Balakrishnan and P. T. Kabamba, “A bisection method for com-

puting the H∞ norm of a transfer matrix and related problems,” Math. Control,

Signals, Systems, Vol. 2, pp. 207–220, 1989.

[12] J. H. Braslavsky, R. H. Middleton and J. S. Freudenberg, “L2-induced norms

and frequency gains of sampled-data sensitivity operators,” IEEE Trans. Au-

tomat. Contr., Vol. AC-43, No. 2, pp. 252–258, 1998.

[13] A. B. Chammas and C. T. Leondes, “On the design of linear time invariant

systems by periodic output feedback, part I. Discrete-time pole assignment,”

Int. J. Control, Vol. 27, No. 6, pp. 885–894, 1978.

[14] J. Chen, O. Toker, “Limitations on maximal tracking accuracy,” IEEE Trans.

Automat. Contr., Vol. AC-45, No. 2, pp. 326–331, 2000.

[15] J. Chen, S. Hara, L. Qiu, and R. Middleton, “Best achievable tracking per-

formance in sampled-data control systems via LTI controllers,” IEEE Trans.

Automat. Contr., Vol. AC-53, No. 11, pp. 2467–2479, 2008. Proc. the 41st CDC,

pp. 3889–3894, 2002. 1991.

[16] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Springer-

Verlag, 1996.

[17] J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis, “State-space so-

lutions to standard H2 and H∞ control problems,” IEEE Trans. Automat.

Contr., Vol. AC-34, No. 8, pp. 831–847, 1989.

[18] G. Dullerud, “Computing the L2-induced norm of a compression operator,”

Systems & Control Letters, Vol. 37, No. 2, pp. 87–91, 1999.

[19] B. A. Francis, A Course in H∞ Control Theory, Springer-Verlag, 1987.

[20] J. S. Freudenberg, R. H. Middleton and J. H. Braslavsky, “Inherent design

limitations for linear sampled-data feedback systems,” Int. J. Contr., Vol. 61,

No. 6, pp. 1387–1421, 1995.

[21] H. Fujioka, “Computation of frequency response gain of sampled-data systems,”

Proc. the 15th IFAC Congress, 2002.

[22] H. Fujioka and L. Mirkin, “Further study on computation of frequency response

gain of sampled-data systems based on projection,” Proc. the 31st SICE Sym-

posium on Control Theory, 2002.



131

[23] K. Furuta, “Digital control of continuous system (in Japanese),” J. Society of

Instrument and Control Engineers, Vol. 22, No. 7, pp. 651–653, 1983.

[24] G. C. Goodwin and M. Salgado, “Frequency domain sensitivity functions for

continuous time systems under sampled data control,” Automatica, Vol. 30,

No. 8, pp. 1263-1270, 1994.

[25] T. Hagiwara and M. Araki, “Controllability indices of sampled-data systems,”

Int. J. Systems Science, Vol. 19, No. 12, pp. 2449–2457, 1988.

[26] T. Hagiwara and M. Araki, “Design of a stable state feedback controller based

on the multirate sampling of the plant output,” IEEE Trans. Automat. Contr.,

Vol. AC-33, No. 9, pp. 812–819, 1988.

[27] T. Hagiwara and M. Araki, “Time-varying digital controllers (in Japanese),” J.

Society of Instrument and Control Engineers, Vol. 27, No. 12, pp. 1071–1077,

1988.

[28] T. Hagiwara and M. Araki, “On discretization of quadratic performance index

(in Japanese),” Trans. of SICE, Vol. 26, No. 5, pp. 592–594, 1990.

[29] T. Hagiwara, Y. Ito and M. Araki, “Computation of the frequency response

gains and H∞-norm of a sampled-data system,” Systems & Control Letters,

Vol. 25, No. 4, pp. 281–288, 1995.

[30] T. Hagiwara and M. Araki, “Absolute stability of sampled-data systems with

a sector nonlinearity,” Systems & Control Letters, Vol. 27, No. 5, pp. 293–304,

1996.

[31] T. Hagiwara and M. Araki, “FR-operator approach to the H2 analysis and

synthesis of sampled-data systems,” IEEE Trans. Automat. Contr., Vol. AC-

40, No. 8, pp. 1411–1421, 1995.

[32] T. Hagiwara, M. Araki and H. Soma, “Simultaneous pole assignment by multi-

structured multirate sampled-data controllers—orthogonality consideration,”

J. Robust and Nonlinear Control, Vol. 6, No. 6, pp. 571–584, 1996.

[33] T. Hagiwara and M. Araki, “Robust stability of sampled-data systems un-

der possibly unstable additive/multiplicative perturbations,” IEEE Trans. Au-

tomat. Contr., Vol. AC-43, No. 9, pp. 1340–1346, 1998.

[34] T. Hagiwara, M. Suyama and M. Araki, “Upper and lower bounds of the

frequency response gain of sampled-data systems,” Automatica, Vol. 37, No. 9,

pp. 1363–1370, 2001.



132

[35] T. Hagiwara, “Nyquist stability criterion and positive realness of sampled-data

systems,” Systems & Control Letters, Vol. 45, No. 4, pp. 283–291, 2002.

[36] S. Hara and H.-K. Sung, “Constraints on sensitivity characteristics in linear

multivariable discrete-time control systems,” Linear Algebra and its Applica-

tions, Vol. 122–124, pp. 889–912, 1989.

[37] S. Hara and P. T. Kabamba, “Worst case analysis and design of sampled-data

control systems,” Proc. the 12th SICE Dynamical System Theory Symposium,

pp. 167–172, 1989.

[38] S. Hara, M. Nakajima, and P. T. Kabamba, “Robust stabilization in digital

control systems” (in Japanese), Trans. of SICE, Vol. 28, No. 1, pp. 10–19, 1992.

[39] S. Hara, H. Fujioka, P. P. Khargonekar and Y. Yamamoto, “Computational

aspects of gain-frequency response for sampled-data systems,” Proc. the 34th

CDC, pp. 1784–1789, 1995.

[40] Y. Hayakawa, S. Hara and Y. Yamamoto, “H∞ type problem for sampled-

data control systems—a solution via minimum energy characterization,” IEEE

Trans. Automat. Contr., Vol. AC-39, No. 11, pp. 2278–2284, 1994.

[41] A. Hosokawa, Y. Ito, and N. Babaguchi, “On sensitivity reduction problem

of sampled-data systems –relationship to the problem of pure discrete-time

systems–,” (in Japanese), Proc. of the 32nd SICE Symposium on Control The-

ory, pp. 335–342, 2003.

[42] A. Ichikawa and H. Katayama, “H2 and H∞ control for jump systems with

application to sampled-data systems,” Int. J. Systems Science, Vol. 29, No. 8,

pp. 829–849, 1998.

[43] Y. Ito, M. Araki, and T. Hagiwara, “Proposal of a time-sharing sample-hold

controller: duality consideration between a generalized hold and a generalized

sampler,” Proc. the 13th IFAC Congress Vol. C, pp. 355–360, 1996.

[44] Y. Ito, S. Hattori, and H. Maeda, “Reliable stabilization using time-sharing

sample-hold controllers,” Proc. of International Symposium on the Mathemat-

ical Theory of Networks and Systems (MTNS1998), pp. 213–216, 1998.

[45] Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Bisection algorithm for com-

puting the frequency response gain of sampled-data systems,” Proc. of the 37th

IEEE Conference on Decision and Control, pp. 841–846, 1998.



133

[46] Y. Ito, S. Hattori, and H. Maeda. “On the decomposition of a matrix into

the sum of stable matrices,” Linear Algebra and Its Applications, Vol. 297,

pp. 177–182, 1999.

[47] Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Further study on the bisection

algorithm for the frequency response gain computation of sampled-data systems

and related issues,” Proc. of the American Control Conference, pp. 180–184,

2000.

[48] Y. Ito, T. Hagiwara, M. Araki, and H. Maeda, “Bisection algorithm for com-

puting the frequency response gain of sampled-data systems,” IEEE Trans.

Automat. Contr., Vol. AC-46, No. 3, pp. 369–381, 2001.

[49] Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Time-sharing multirate sample-

hold controllers and their application to reliable stabilization,” Dynamics of

Continuous, Discrete and Impulsive Systems Series B: Applications and Algo-

rithms, Vol. 8, pp. 445–463, 2001.

[50] Y. Ito, H. Shirahama, and N. Babaguchi, “Properties of aliasing factors in sen-

sitivity reduction problems of sampled-data systems,” Proc. of IFAC Workshop

on Periodic Control Systems (PSYCO 04), pp. 141 – 144, 2004.

[51] Y. Ito, H. Shirahama, and N. Babaguchi, “On sensitivity reduction problems of

sampled-data systems – performance limitations and the properties of aliasing

factors –,” Proc. of International Symposium on the Mathematical Theory of

Networks and Systems (MTNS2006), pp. 1788–1792, 2006.

[52] Y. Ito and H. Shirahama, “On the relationship between the best achievable per-

formances in the sensitivity and complementary sensitivity reduction problems

of discrete-time systems,” (in Japanese), Trans. Institute of Systems, Control

and Information Engineers, Vol. 23, No. 10, pp. 246–248, 2010.

[53] Y. Ito, H. Shirahama, and T. Hagiwara, “On sensitivity reduction problems

of sampled-data systems: relationships to the problems of discrete-time sys-

tems,” SICE J. of Control, Measurement, and System Integration, Vol. 3,

No. 6, pp. 456–465, 2010.

[54] E. I. Jury, Sampled-Data Control Systems, John Wiley, 1958.

[55] P. T. Kabamba, “Control of linear systems using generalized sampled-data

hold functions,” IEEE Trans. Automat. Contr., Vol. AC-32, No. 9, pp. 772–

783, 1987.



134

[56] P. T. Kabamba and C. Yang, “Simultaneous controller design for linear time-

invariant systems,” IEEE Trans. Automat. Contr., Vol. AC-36, No. 1, pp. 106–

110, 1991.

[57] P. T. Kabamba and S. Hara, “Worst-case analysis and design of sampled-data

control systems,” IEEE Trans. Automat. Contr., Vol. AC-38, No. 9, pp. 1337–

1357, 1993.

[58] P. P. Khargonekar, K. Poolla and A. Tannenbaum, “Robust control of linear

time-invariant plants using periodic compensation,” IEEE Trans. Automat.

Contr., Vol. AC-30, No. 11, pp. 1088–1096, 1985.

[59] P. P. Khargonekar and K. Poolla, “Robust control of linear time-invariant plants

using switching and nonlinear feedback,” Proc. the 28th CDC, pp. 2205–2207,

1989.

[60] A. Megretski and A. Rantzer, “System analysis via integral quadratic con-

straints,” IEEE Trans. Automat. Contr., Vol. AC-42, No. 6, pp. 819–830, 1997.

[61] R. Middleton and J. Freudenberg, “Non-pathological sampling for generalized

sampled-data hold functions,” Automatica, Vol. 31, No. 2, pp. 315–319, 1995.

[62] K. D. Minto and R. Ravi, “New results on the multi-controller scheme for the

reliable control of linear plants,” Proc. of 1991 ACC, pp. 615–619, 1991.

[63] L. Mirkin and Z.J. Palmor, “Computation of the frequency-response gain of

sampled-data systems via projection in the lifted domain,” IEEE Trans. Au-

tomat. Contr., Vol. AC-47, No. 9, pp. 1505–1510, 2002.

[64] L. Mirkin and G. Tadmor, “Yet another H∞ discretization,” IEEE Trans.

Automat. Contr., Vol. AC-48, No. 5, pp. 891–894, 2003.

[65] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and

Science, Springer-Verlag, 1982.

[66] H. Okajima, T. Asai, and S. Kawaji, “Closed-form expression of optimal track-

ing control problem for discrete-time systems (in Japanese),” Trans. Society

for Instrument and Control Engineers, Vol. 44, No. 10, pp. 793–801, 2008.

[67] R. Ortega and G. Kreisselmeyer, “Discrete-time reference adaptive control for

continuous-time systems using generalized sampled-data hold functions,” IEEE

Trans. Automat. Contr., Vol. AC-35, No. 3, pp. 334–338, 1990.



135

[68] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Systems & Control

Letters, Vol. 28, No. 1, pp. 7–10, 1996.

[69] N. Sivashankar and P. P. Khargonekar, “Worst case performance analysis of

linear systems with jumps with application to sampled-data systems,” Proc. of

1992 ACC, pp. 692–696, 1992.

[70] K. Sugimoto and M. Suzuki, “On γ-positive real sampled-data control systems,”

Proc. the 13th International Symposium on Mathematical Theory of Networks

and Systems, Padova, Italy, pp. 409–412, 1998.

[71] K. Sugimoto and M. Suzuki, “On γ-positive real sampled-data control sys-

tems and their phase property” (in Japanese), Transactions of the Society of

Instrument and Control Engineers, Vol. 35, No. 1, pp. 71–76, 1999.

[72] W. Sun, K. M. Nagpal and P. P. Khargonekar, “H∞ control and filtering for

sampled-data systems,” IEEE Trans. Automat. Contr., Vol. AC-38, No. 8,

pp. 1162–1175, 1993.

[73] H.-K. Sung and S. Hara, “Properties of sensitivity and complementary sensi-

tivity functions in single-input single-output digital control systems,” Int. J.

Control, Vol. 48, No. 6, pp. 2429–2439, 1988.

[74] H. T. Toivonen, “Sampled-data control of continuous-time systems with an H∞
optimality criterion,” Automatica, Vol. 28, No. 1, pp. 45–54, 1992.

[75] M. Vidyasagar, Control System Synthesis: A Factorization Approach, the MIT

Press, 1985.

[76] M. Vidyasagar and N. Viswanadham, “Reliable stabilization using a multi-

controller configuration,” Automatica, Vol. 21, No. 5, pp. 599–602, 1985.

[77] Y. Yamamoto, “Frequency response and its computation for sampled-data

systems,” Tech. Rep. No. 92008, Dept. Applied Math. Physics, Kyoto Univ,

1992.

[78] Y. Yamamoto and M. Araki, “Frequency responses for sampled-data systems—

Their equivalence and relationships,” Linear Algebra and its Applications,

Vol. 205–206, pp. 1319–1339, 1994.

[79] Y. Yamamoto, “New approach to sampled-data systems: a function space

method,” Proc. the 29th CDC, pp. 1882–1887, 1990.



136

[80] Y. Yamamoto, “A function space approach to sampled-data control systems

and tracking problems,” IEEE Trans. Automat. Contr., Vol. AC-39, No. 4,

pp. 703–713, 1994.

[81] Y. Yamamoto and P. P. Khargonekar, “Frequency response of sampled-data

systems,” IEEE Trans. Automat. Contr., Vol. AC-41, No. 2, pp. 166–176, 1996.

[82] Y. Yamamoto, A.G. Madievski and B.D.O. Anderson, “Computation and con-

vergence of frequency response via fast sampling for sampled-data control sys-

tems,” Proc. the 36th CDC, pp. 2157–2162, 1997.

[83] Y. Yamamoto, A.G. Madievski and B.D.O. Anderson, “Approximation of fre-

quency response for for sampled-data control systems,” Automatica, Vol. 35,

No. 4, pp. 729–734, 1999.

[84] D.C. Youla, J.J. Bongiorno, and C.N. Lu, “Single-loop feedback stabilization

of linear multivariable plants,” Automatica, Vol. 10, No. 2, pp. 159–173, 1974.

[85] N. Young, An Introduction to Hilbert Space, Cambridge University Press, 1988.

[86] K. Zhou, J.C. Doyle, and K. Glover, Robust and Optimal Control, Prentice

Hall, 1996.



List of Publications by the Author

Book Chapters

1. H. Kawahara, Y. Ito, and N. Babaguchi, “Fault-tolerant control using time-

sharing multirate controllers,” Systems and Human Science – For Safety, Se-

curity and Dependability –, selected papers of the 1st international symposium

SSR2003, edited by T. Arai, S. Yamamoto, and K. Makino, Elsevier, pp. 213–

225, 2005.

Journal Papers

1. T. Hagiwara, Y. Ito, and M. Araki, “ Computation of the frequency response

gains and H∞-norm of a sampled-data system,” Systems and Control Letters,

Vol. 25, pp. 281–288, 1995.

2. M. Araki, Y. Ito, and T. Hagiwara, “Frequency response of sampled-data

systems,” Automatica, Vol. 32, No. 4, pp. 483–497, 1996.

3. Y. Ito, S. Hattori, and H. Maeda, “On the decomposition of a matrix into

the sum of stable matrices,” Linear Algebra and its Applications, Vol. 297,

pp. 177–182, 1999.

4. Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Bisection algorithm for com-

puting the frequency response gain of sampled-data systems—infinite-dimensional

congruent transformation approach,” IEEE Trans. Automat. Contr., Vol. 46,

No. 3, pp. 369–381, 2001.

(This paper contains incorrect equations due to printer’s errors after the proof-

reading process. The following paper corrects these errors:

Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Corrections to “Bisection al-

gorithm for computing the frequency response gain of sampled-data systems—

infinite-dimensional congruent transformation approach”,” IEEE Trans. Au-

tomat. Contr., Vol. 47, No. 1, p. 201, 2002.)

137



138

5. Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Time-sharing multirate sample-

hold controllers and their application to reliable stabilization,” Dynamics of

Continuous, Discrete and Impulsive Systems Series B: Applications and Algo-

rithms, Vol. 8, pp. 445–463, 2001.

6. S. Kunimatsu, T. Fujii, and Y. Ito, “Discrete time ILQ servo system design

method,” (in Japanese), Trans. Institute of Systems, Control and Information

Engineers, Vol. 48, No. 11, pp. 514–517, 2004.

7. Y. Ebihara, Y. Ito, and T. Hagiwara, “Exact stability analysis of 2-D systems

using LMIs,” IEEE Trans. Automat. Contr., Vol. 51, No. 9, pp. 1509–1513,

2006.

8. K. Chinomi, G. Li, D. Nakashima, N. Nitta, Y. Ito, and N. Babaguchi,

“PriSurv: Privacy protected video surveillance system,” (in Japanese), IPSJ

Trans. on Computer Vision and Image Media (CVIM22), Vol. 1, No. 2,

pp. 152-162, 2008.

9. N. Miyake, Y. Ito, and N. Babaguchi, “3-mode net: a bi-directional anony-

mous communication system based on multiple encryption and probabilistic

selections of actions,” (in Japanese), IEICE Trans. A., Vol. J91-A, No. 10,

pp. 949-956, 2008.

10. K. Kono, Y. Ito, A. Aoyama, H. Kamoda, and N. Babaguchi, “Matrix based

algorithm for integrating inheritance relations of access rights for policy gen-

eration,” Journal of Information Processing, Vol. 17, pp. 318–327, 2009.

11. G. Li, Y. Ito, X. Yu, N. Nitta, and N. Babaguchi, “Recoverable privacy pro-

tection for video content distribution,” EURASIP Journal on Information Se-

curity, Vol. 2009, article ID 293031, online published, 2010.

12. K. Kono, S. Nakano, Y. Ito, and N. Babaguchi, “A consideration on the num-

bers of relay nodes and encryption required for anonymous communication

system 3-mode net,” Journal of Information Assurance and Security, Vol. 5,

No. 3, pp. 276–283, 2010.

13. K. Kono, S. Nakano, Y. Ito, and N. Babaguchi, “Theoretical analysis of the

performance of anonymous communication system 3-mode-net,” IEICE Trans.

on Fundamentals of Electronics, Communications and Computer Sciences.

Vol. E93-A, No. 7, pp. 1338–1345, 2010.



139

14. Y. Ito and H. Shirahama, “On the relationship between the best achievable

performances in the sensitivity and complementary sensitivity reduction prob-

lems of discrete-time systems,” (in Japanese), Trans. Institute of Systems,

Control and Information Engineers, Vol. 23, No. 10, pp. 246–248, 2010.

15. Y. Ito, H. Shirahama, and T. Hagiwara, “On sensitivity reduction problems

of sampled-data systems: relationships to the problems of discrete-time sys-

tems,” SICE J. of Control, Measurement, and System Integration, Vol. 3,

No. 6, pp. 456–465, 2010.

Conference Papers (International)

1. M. Araki, Y. Ito, “Frequency-response of sampled-data systems I: open-loop

consideration,” Proc. of the 12th triennial IFAC World Congress, Vol. 7,

pp. 289–292, 1993.

2. M. Araki, T. Hagiwara, and Y. Ito, “Frequency-response of sampled-data sys-

tems II: closed-loop consideration, Proc. of the 12th triennial IFAC World

Congress,” Vol. 7, pp. 293–296, 1993.

3. T. Hagiwara, Y. Ito, and M. Araki, “Frequency response gains and H∞-norms

of a sampled-data system,” Proc. of the 33rd IEEE Conference on Decision

and Control, pp. 722–723, 1994.

4. Y. Ito, M. Araki, and T. Hagiwara, “Proposal of a time-sharing sample-hold

controllers: duality consideration between a generalized hold and a generalized

sampler,” Proc. of the 13th triennial IFAC World Congress, pp. 355–360, 1996.

5. Y. Ito, S. Hattori, and H. Maeda, “Reliable stabilization using time-sharing

sample-hold controllers,” Proc. of International Symposium on the Mathemat-

ical Theory of Networks and Systems (MTNS1998), pp. 213–216, 1998.

6. Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Bisection algorithm for com-

puting the frequency response gain of sampled-data systems,” Proc. of the

37th IEEE Conference on Decision and Control, pp. 841–846, 1998.

7. Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Further study on the bisection

algorithm for the frequency response gain computation of sampled-data sys-

tems and related issues,” Proc. of the American Control Conference, pp. 180–

184, 2000.



140

8. Y. Ito, K. Hayashi, and H. Fujiwara, “Stability analysis and H∞ norm compu-

tation of 2-D discrete systems using linear matrix inequalities,” Proc. of the

41st IEEE Conference on Decision and Control, pp. 3306–3311, 2002.

9. H. Kawahara, Y. Ito, and N. Babaguchi, “Fault-tolerant control using time-

sharing multirate controllers,” Proc. of the 1st International Symposium on

Systems & Human Science – For Safety, Security, and Dependability – (SSR2003),

pp. 178–183, 2003.

10. Y. Ito, W. Date, and N. Babaguchi, “LMI-based stability condition for 2-D

discrete systems described by the Fornasini-Marchesini second model,” Proc.

of the 47st IEEE International Midwest Symposium on Circuits and Systems,

pp. II-557 – II-560, 2004.

11. Y. Ito, H. Shirahama, and N. Babaguchi, “Properties of aliasing factors in sen-

sitivity reduction problems of sampled-data systems,” Proc. of IFAC Work-

shop on Periodic Control Systems (PSYCO 04), pp. 141 – 144, 2004.

12. Y. Ito, W. Date, and N. Babaguchi, “Stability analysis and H∞ norm com-

putation of 2-D discrete systems described by Fornasini-Marchesini second

model,” Proc. of International Symposium on Communications and Informa-

tion Technologies (ISCIT2004), pp. 835 – 840, 2004.

13. Y. Ebihara, Y. Ito, and T. Hagiwara, “Exact stability analysis of 2-D systems

using LMIs,” Proc. of the 43rd IEEE Conference on Decision and Control,

pp. 1270–1271, 2004.

14. S. Tokunaga, Y. Ito, N. Nitta, and N. Babaguchi, “Meeting recording system

via multimodal sensing,” Proc. of Japan Society for Artificial Intelligence

2005, Workshop on Conversational Informatics, pp. 19–24, 2005.

15. Y. Ito, H. Shirahama, and N. Babaguchi, “On sensitivity reduction problems of

sampled-data systems – performance limitations and the properties of aliasing

factors –,” Proc. of International Symposium on the Mathematical Theory of

Networks and Systems (MTNS2006), pp. 1788–1792, 2006.

16. Y. Yokoe, Y. Ito, and N. Babaguchi, “Audio-based estimation of speakers di-

rections for multimedia meeting logs,” Proc. of 2007 International Conference

on Multimedia & Expo (ICME2007), 2007.

17. K. Chinomi, N. Nitta, Y. Ito, and N. Babaguchi, “PriSurv: Privacy protected

video surveillance system using adaptive visual abstraction,” Proc. of Multi-

media Modeling Conference (MMM2008), pp. 144–154, 2008.



141

18. X. Yu, K. Chinomi, T. Koshimizu, N. Nitta, Y. Ito, and N. Babaguchi, “Pri-

vacy protecting visual processing for secure video surveillance,” Proc. of In-

ternational Conference on Image Processing (ICIP2008), pp. 1672–1675, 2008.

19. G. Li, Y. Ito, X. Yu, N. Nitta, and N. Babaguchi, “A discrete wavelet transform

based recoverable image processing for privacy protection,” Proc. of Interna-

tional Conference on Image Processing (ICIP2008), pp. 1372–1375, 2008.

20. R. Yamaguchi, Y. Yamamoto, N. Nitta, Y. Ito, and N. Babaguchi, “Digital

diorama: adaptive 3D visualization system for indoor environment,” Proc. of

International Workshop on “Sensing Web”, pp. 17–24, 2008.

21. D. Nakashima, Y. Ito, N. Nitta, and N. Babaguchi, “Human identification in

surveillance video based on tracking via camera footage and ID updating via

RFID systems,” Proc. of International Workshop on Computer Vision and

Its Application to Image Media Processing (WCVIM2009), pp. 58–62, 2009.

22. K. Sato, N. Nitta, Y. Ito, and N. Babaguchi, “Suspicious object detection

based on appearance frequency in surveillance videos,” Proc. of International

Workshop on Computer Vision and Its Application to Image Media Processing

(WCVIM2009), pp. 42–46, 2009.

23. K. Kono, S. Nakano, Y. Ito, and N. Babaguchi, “Performance analysis of

anonymous communication system 3-mode net,” Proc. of the 5th Interna-

tional Conference on Information Assurance and Security (IAS09), pp. 593–

596, 2009.

24. K. Kono, S. Nakano, Y. Ito, and N. Babaguchi, “Security analysis of anony-

mous communication system 3-mode net against collaborating nodes,” Proc.

of 2009 Asia-Pacific Signal and Information Processing Association Annual

Summit and Conference (APSIPA ASC 2009), pp. 105–110, 2009.

25. K. Kono, Y. Ito, and N. Babaguchi, “Anonymous communication system using

probabilistic choice of actions and multiple loopbacks,” Proc. of the 6th Inter-

national Conference on Information Assurance and Security (IAS10), pp. 210–

215, 2010.

Conference Papers (Domestic)

1. Y. Ito, M. Araki, and T. Hagiwara, “Optimal feedforward for discrete-time

control systems,” (in Japanese), Proc. of the 34th Annual Conference of the

Institute of Systems, Control and Information Engineers, pp. 289–290, 1990.



142

2. M. Araki, Y. Ito, “On frequency response of sampled-data control systems,”

Proc. of the 21st SICE Symposium on Control Theory, pp. 19–24, 1992.

3. Y. Ito, M. Araki, and T. Hagiwara, “Use of generalized samplers in sampled-

data control,” Proc. of the 15th Dynamical System Theory Symposium, pp. 165–

170, 1992.

4. T. Hagiwara, Y. Ito, and M. Araki, “FR-operator and induced norm of sampled-

data systems,” Proc. of the 22nd SICE Symposium on Control Theory, pp. 1–

6, 1993.

5. Y. Ito, T. Hagiwara, and M. Araki, “H∞ Problem of sampled-data systems

viewed from FR-operators,” Proc. of the 22nd SICE Symposium on Control

Theory, pp. 7–12, 1993.

6. T. Kuroda, Y. Ito, T. Hagiwara, and M. Araki, “On the evaluation method

of modeling error for robust stabilization problem in sampled-data control

systems,” (in Japanese), Proc. of the 38th Annual Conference of the Institute

of Systems, Control and Information Engineers, pp. 11–12, 1994.

7. Y. Ito and H. Maeda, “On Reliable stabilization,” (in Japanese), Proc. of the

17th Dynamical System Theory Symposium, pp. 359–362, 1994.

8. N. Kyobashi, Y. Ito, and H. Maeda, “Robust stabilization problem in sampled-

data systems with multirate output sampling,” (in Japanese), Proc. of the

39th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 9–10, 1995.

9. T. Yagi, Y. Ito, and M. Maeda, “Method of choosing filter for robust stabi-

lization problem,” (in Japanese), Proc. of the 39th Annual Conference of the

Institute of Systems, Control and Information Engineers, pp. 11–12, 1995.

10. M. Ogawa, Y. Ito, and H. Maeda, “On Reliable stabilization,” (in Japanese),

Proc. of the 39th Annual Conference of the Institute of Systems, Control and

Information Engineers, pp. 515–516, 1995.

11. Y. Ito, N. Kyobashi, and H. Maeda, “Robust stabilization problem of multi-

rate sampled-data systems,” (in Japanese), Proc. of the Kansai-section Joint

Convention of Institute of Electrical Engineering, 1995.

12. S. Kimura, Y. Ito, and H. Maeda, “H∞ type problem in multirate sampled-data

systems with time-sharing sample-hold scheme,” (in Japanese), Proc. of the



143

40th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 421–422, 1996.

13. K. Fukui, S. Tanaka, Y. Ito, and H. Maeda, “H∞ control of sampled-data sys-

tems with generalized holds and generalized samplers,” (in Japanese), Proc.

of the 40th Annual Conference of the Institute of Systems, Control and Infor-

mation Engineers, pp. 425–426, 1996.

14. S. Hattori, S. Tanaka, Y. Ito, and H. Maeda, “H∞ control of sampled-data

systems with time-sharing sample-hold method,” (in Japanese), Proc. of the

40th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 429–430, 1996.

15. Y. Ito and H. Maeda, “H∞ control of sampled-data systems using generalized

holds and generalized samplers,” (in Japanese), Proc. of the SICE Kansai

Chapter Symposium, pp. 55–58, 1996.

16. N. Kyobashi, S. Kimura, Y. Ito, and H. Maeda, “Frequency response of

multirate sampled-data systems with time-sharing sample-hold scheme,” (in

Japanese), Preprints of the 2nd Advanced Signal Processing Symposium, pp. 49–

52, 1997.

17. T. Shirasaka, N. Kyobashi, Y. Ito, and H. Maeda, “Frequency response of mul-

tirate sampled-data control systems with time-sharing sample-hold scheme,”

(in Japanese), Proc. of the 41st Annual Conference of the Institute of Systems,

Control and Information Engineers, pp. 307–308, 1997.

18. S. Miyashita, Y. Ito, and H. Maeda, “Stabilizability and detectability of sampled-

data systems discretized by generalized holds and generalized samplers,” (in

Japanese), Proc. of the 41st Annual Conference of the Institute of Systems,

Control and Information Engineers, pp. 309–310, 1997.

19. T. Hanaki, Y. Ito, and H. Maeda, “On discretization of quadratic performance

index for sampled-data systems with generalized holds,” (in Japanese), Proc.

of the 41st Annual Conference of the Institute of Systems, Control and Infor-

mation Engineers, pp. 311–312, 1997.

20. H. Fukunaga, H. Yoshii, Y. Ito, and H. Maeda, “Computation of the sensitivity

frequency response gain of a sampled-data system,” (in Japanese), Proc. of the

42nd Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 209–210, 1998.



144

21. D. Thammanoon, Y. Ito, T. Hagiwara, and H. Maeda, “Bisection method for

the computation of the frequency response gain of sampled-data systems–the

case of the FR-operator approach,” (in Japanese), Proc. of the 42nd Annual

Conference of the Institute of Systems, Control and Information Engineers,

pp. 213–214, 1998.

22. T. Hagiwara, Y. Ito, and M. Araki, “Bisection method for the computation of

the frequency response gain of sampled-data systems – the case of the lifting

approach,” (in Japanese), Proc. of the 42nd Annual Conference of the Institute

of Systems, Control and Information Engineers, pp. 215–216, 1998.

23. Y. Hanaoka, S. Hattori, Y. Ito, and H. Maeda, “Reliable stabilization using

time-sharing sample-hold controllers,” (in Japanese), Proc. of the 42nd Annual

Conference of the Institute of Systems, Control and Information Engineers,

pp. 219–220, 1998.

24. Y. Ito, T. Hagiwara, H. Maeda, and M. Araki, “Bisection algorithm for com-

puting the frequency response gain of sampled-data systems,” Proc. of the

27th SICE Symposium on Control Theory, pp. 141–146, 1998.

25. Y. Ito, T. Hagiwara, M. Araki, and H. Maeda, “Computation of the frequency

response gain of sampled-data systems via bisection method–numerical con-

sideration,” (in Japanese), Proc. of the SICE Kansai Chapter Symposium,

pp. 9–12, 1998.

26. H. Masuoka, K. Sakitani, Y. Ito, and H. Maeda, “Parameterization of or-

thogonal wavelet filter banks via state-space representation,” (in Japanese),

Proc. of the 43rd Annual Conference of the Institute of Systems, Control and

Information Engineers, pp. 189–190, 1999.

27. T. Ueno, T. Shirasaka, Y. Ito, and H. Maeda, “Reliable stabilization using

time-sharing sample-hold controllers,” (in Japanese), Proc. of the 43rd Annual

Conference of the Institute of Systems, Control and Information Engineers,

pp. 585–586, 1999.

28. H. Atsumi, Y. Ito, H. Maeda, “Computation of the frequency response gain

of sampled-data systems via bisection method,” (in Japanese), Proc. of the

43rd Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 589–590, 1999.

29. Y. Hanaoka, Y. Ito, and H. Maeda, “Robust reliable stabilization of sampled-

data systems using time-sharing sample-hold controllers,” (in Japanese), Proc.

of the SICE Kansai Chapter Symposium, pp. 245–248, 1999.



145

30. H. Fukunaga, Y. Ito, and H. Maeda, “Positive real control problem for sampled-

data systems,” (in Japanese), Preprints of the 3rd Advanced Signal Processing

Symposium, pp. 33–36, 2000.

31. K. Nishimura, D. Thammanoon, Y. Ito, and H. Maeda, “H∞ optimal approx-

imation of continuous-time system by sampled-data system–design of gener-

alized hold and filter,” (in Japanese), Proc. of the 44th Annual Conference

of the Institute of Systems, Control and Information Engineers, pp. 61–62,

2000.

32. H. Fujiwara, H. Fukunaga, Y. Ito, and H. Maeda, “A method for solving the

positive real control problem of sampled-data systems based on the infinite-

dimensional congruent transformation approach,” (in Japanese), Proc. of the

44th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 197–198, 2000.

33. K. Hayashi, Y. Hanaoka, Y. Ito, and H. Maeda, “Reliable stabilization of

sampled-data systems using dynamical controllers,” (in Japanese), Proc. of the

44th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 285–286, 2000.

34. K. Hayashi, Y. Hanaoka, Y. Ito, and H. Maeda, “Design of reliably stabilizing

controllers using time-sharing sample-hold scheme,” (in Japanese), Proc. of

the Electronics, Information and System Conference, Electronics, Information

and Systems Society, Institute of Electrical Engineers of Japan, pp. 453–456,

2000.

35. Y. Ito, K. Hayashi, and H. Maeda, “Reliable stabilization of sampled-data

systems using time-sharing sample-hold controllers,” (in Japanese), Proc. of

the 23rd Dynamical System Theory Symposium, pp. 87–90, 2000.

36. K. Hayashi, H. Atsumi, Y. Ito, and H. Maeda, “On bounded real lemma for

2-D discrete systems,” (in Japanese), Proc. of the 45th Annual Conference of

the Institute of Systems, Control and Information Engineers, pp. 419–420,

2001.

37. K. Tsuda, H. Atsumi, Y. Ito, and H. Maeda, “Stability criterion for 2-D dis-

crete systems based on linear matrix inequality,” (in Japanese), Proc. of the

45th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 421–422, 2001.



146

38. K. Hayashi, K. Tsuda, Y. Ito, and H. Maeda, “Analysis of 2-D discrete systems

based on linear matrix inequality,” (in Japanese), Proc. of the 16th Digital

Signal Processing Symposium, pp. 601–606, 2001.

39. A. Hosokawa, K. Hayashi, and Y. Ito, “Design of H∞ and H2 deconvolution

filters for 2-D discrete systems,” (in Japanese), Proc. of the 46th Annual

Conference of the Institute of Systems, Control and Information Engineers,

pp. 61–62, 2002.

40. H. Kawahara, K. Nishimura, and Y. Ito, “Design of fault tolerant optimal

regulator for discrete-time systems,” (in Japanese), Proc. of the 46th Annual

Conference of the Institute of Systems, Control and Information Engineers,

pp. 63–64, 2002.

41. S. Matsumoto, H. Fujiwara, and Y. Ito, “Stability criterion and computation

of stability radius for 2-D discrete systems,” (in Japanese), Proc. of the 46th

Annual Conference of the Institute of Systems, Control and Information En-

gineers, pp. 247–248, 2002.

42. S. Tokunaga, K. Hayashi, and Y. Ito, “Computation of the upper bounds

of H2 and H∞ norms of 2-D discrete systems,” (in Japanese), Proc. of the

46th Annual Conference of the Institute of Systems, Control and Information

Engineers, pp. 249–250, 2002.

43. Y. Ito and H. Fujiwara, “Stability criterion for 2-D discrete systems based

on LMI,” (in Japanese), Proc. of SICE 2nd Annual Conference on Control

Systems, pp. 193–196, 2002.

44. Y. Ito and K. Hayashi, “Computation of the H2/H∞ norms of 2-D discrete

systems based on LMI,” (in Japanese), Proc. of SICE 2nd Annual Conference

on Control Systems, pp. 197–200, 2002.

45. W. Date, K. Tsuda, and Y. Ito, “µ-analysis for discrete-time systems based on

Fourier series approximation and loss-less S-procedure,” (in Japanese), Proc.

of the 47th Annual Conference of the Institute of Systems, Control and Infor-

mation Engineers, pp. 723–724, 2003.

46. K. Tsuda, W. date, and Y. Ito, “A method for solving discrete-Lyapunov-type

frequency-dependent LMIs and its application to µ-analysis,” (in Japanese),

Proc. of SICE 3rd Annual Conference on Control Systems, pp. 175–178, 2003.

47. A. Hosokawa, Y. Ito, and N. Babaguchi, “On sensitivity reduction problem

of sampled-data systems –relationship to the problem of pure discrete-time



147

systems–,” (in Japanese), Proc. of the 32nd SICE Symposium on Control

Theory, pp. 335–342, 2003.

48. H. Shirahama, Y. Ito, and N. Babaguchi, “Properties of aliasing factors in

sensitivity reduction problems of sampled-data systems,” (in Japanese), Proc.

of the 48th Annual Conference of the Institute of Systems, Control and Infor-

mation Engineers, pp. 21–22, 2004.

49. Y. Fukae, Y. Ito, and N. Babaguchi, “Computation of the structured singular

value for the perturbation with two real repeated scalar blocks,” (in Japanese),

Proc. of the 48th Annual Conference of the Institute of Systems, Control and

Information Engineers, pp. 159–160, 2004.

50. Y. Ebihara, Y. Ito, and T. Hagiwara, “Exact stability analysis of 2-D sys-

tems using LMIs,” Proc. of SICE 4th Annual Conference on Control Systems,

pp. 39–42, 2004.

51. Y. Ito and Y. Ebihara, “Computation of structured singular value using dilated

D-scaling,” (in Japanese), Proc. of SICE 4th Annual Conference on Control

Systems, pp. 97–100, 2004.

52. S. Ishihara, Y. Ito, and N. Babaguchi, “Inverse optimal regulator problem

for sampled-data systems,” (in Japanese), Proc. of the SICE Kansai Chapter

Symposium for Students, pp. 49–50, 2005.

53. S. Tokunaga, Y. Ito, N. Nitta, and N. Babaguchi, “Meeting recording system

via multimedia sensing,” (in Japanese), Proc. of Meeting on Image Recognition

and Understanding 2005 (MIRU 2005), pp. 583–587, 2005.

54. K. Kono, Y. Ito, and N. Babaguchi, “A study on RSA crypto system using

Pseudoprimes,” (in Japanese), Proc. of the 2005 IEICE Society Conference,

p. 175, 2005.

55. H. Shirahama, Y. Ito, and N. Babaguchi, “On sensitivity reduction prob-

lems of sampled-data systems –properties of aliasing factors, and performance

limitations–,” (in Japanese), Proc. of the 34th SICE Symposium on Control

Theory, pp. 441–444, 2005.

56. N. Miyake, Y. Ito, and N. Babaguchi, “Anonymous communication system

using Crowds and multiple encryption,” (in Japanese), Proc. of the SICE

Kansai Chapter Symposium for Young Researchers, pp. 85–88, 2006.



148

57. N. Miyake, Y. Ito, and N. Babaguchi, “3MN: an anonymous communication

system based on multiple encryption and probabilistic selections of actions,”

(in Japanese), Preprint of the IEICE Technical Report, ISEC2006-61, pp. 159–

164, 2006.

58. Y. Yokoe, Y. Ito, and N. Babaguchi, “Audio-based estimation of speaker di-

rection for creating multimedia meeting logs,” (in Japanese), Proc. of Meeting

on Image Recognition and Understanding 2006 (MIRU 2006), p. 489, 2006.

59. S. Ishihara, Y. Ito, N. Babaguchi, and S. Kunimatsu, “Design of ILQ servo

systems for constrained systems,” (in Japanese), Proc. of the 35th SICE Sym-

posium on Control Theory, pp. 123–126, 2006.

60. R. Tanihira, K. Kono, Y. Ito, and N. Babaguchi, “Fair automated trust ne-

gotiation with credential disclosure points,” (in Japanese), Proc. of the 2007

IEICE General Conference, p. 214, 2007.

61. K. Chinomi, N. Nitta, Y. Ito, and N. Babaguchi, “Policy control for privacy

protected video surveillance system PriSurv,” (in Japanese), Proc. of the 2007

IEICE General Conference, p. 216, 2007.

62. G. Li, N. Nitta, Y. Ito, and N. Babaguchi, “Foreground extraction for privacy

protected video surveillance system PriSurv,” (in Japanese), Proc. of the 2007

IEICE General Conference, p. 217, 2007.

63. D. Nakashima, Y. Ito, N. Nitta, and N. Babaguchi, “Human identification for

privacy protected video surveillance system PriSurv,” (in Japanese), Proc. of

the 2007 IEICE General Conference, p. 218, 2007.

64. H. Kamoda, K. Kono, Y. Ito, and N. Babaguchi, “Access control policy incon-

sistency check using model checker,” (in Japanese), Preprint of the IPSJ SIG

Technical Report, 2007-CSEC-36, pp. 441–446, 2007.

65. K. Kono, Y. Ito, A. Aoyama, H. Kamoda, and N. Babaguchi, “An integra-

tion method of access control policies using adjacency matrix,” (in Japanese),

Preprint of the IPSJ SIG Technical Report, 2007-CSEC-37, pp. 45–50, 2007.

66. K. Chinomi, G. Li, D. Nakashima, N. Nitta, Y. Ito, and N. Babaguchi, “Pri-

vacy protected video surveillance system PriSurv,” (in Japanese), Proc. of

Meeting on Image Recognition and Understanding 2007 (MIRU 2007), pp. 73–

80, 2007.



149

67. D. Nakashima, Y. Ito, N. Nitta, and N. Babaguchi, “Human identification

in surveillance video using RFID tag and camera footage,” (in Japanese),

Preprint of the IEICE Technical Report, PRMU2007-106, pp. 81–86, 2007.

68. D. Nakashima, A. Katayama, K. Nishikawa, T. Higashino, Y. Ito, and N. Babaguchi,

“Human identification in surveillance video using human tracking and ra-

diowave,” Proc. of the 2008 IEICE General Conference, Student Poster Ses-

sion, ISS-P-244, p. 108, 2008.

69. Y. Yamamoto, N. Nitta, Y. Ito, and N. Babaguchi, “Privacy protected 3D

visualization system for indoor environments,” (in Japanese), Proc. of the

2008 IEICE General Conference, p. 177, 2008.

70. K. Sato, N. Nitta, Y. Ito, and N. Babaguchi, “Suspicious object detection in

surveillance video considering occurrence frequency,” (in Japanese), Proc. of

the 2008 IEICE General Conference, p. 146, 2008.

71. G. Li, X. Yu, N. Nitta, Y. Ito, and N. Babaguchi, “Recoverable image pro-

cessing for protection using information hiding,” (in Japanese), Proc. of the

2008 IEICE General Conference, p. 130, 2008.

72. T. Hanaoka, K. Kono, Y. Ito, and N. Babaguchi, “Automated trust negotiation

among three agent based on service usage of client,” (in Japanese), Proc. of

the 2008 IEICE General Conference, p. 182, 2008.

73. Y. Yokoe, Y. Ito, and N. Babaguchi, “Multimedia meeting logs visualizing

participants’ interactions,” (in Japanese), Preprint of the IEICE Technical

Report, PRMU2007-264, pp. 121–126, 2008.

74. D. Nakashima, T. Wada, Y. Ito, N. Nitta and N. Babaguchi, “Human identifi-

cation in surveillance video based on ID updating and tracking,” (in Japanese),

Proc. of Meeting on Image Recognition and Understanding 2008 (MIRU 2008),

pp. 1204–1209, 2008.

75. K, Sato, N, Nitta, Y. Ito, and N. Babaguchi, “Suspicious object detection

based on appearance frequency for video surveillance,” (in Japanese), Proc. of

Meeting on Image Recognition and Understanding 2008 (MIRU 2008), pp. 404–

409, 2008.

76. G. Li, Y. Ito, X. Yu, N. Nitta, and N. Babaguchi, “Recoverable image process-

ing for privacy protection,” (in Japanese), Proc. of the 2009 IEICE General

Conference, Multimedia Information Hiding, pp. S-23-S24, 2009.



150

77. S. Nakano, K. Kono, Y. Ito, and N. Babaguchi, “Reduction of the relay nodes

in anonymous communication system 3-mode net,” (in Japanese), Proc. of the

2009 IEICE General Conference, p. 182, 2009.

78. K. Chinomi, Y. Ito, N. Nitta, and N. Babaguchi, “Privacy protection based

on features of subjects in photo shoots,” (in Japanese), Proc. of Meeting on

Image Recognition and Understanding 2009 (MIRU 2009), pp. 798–805, 2009.

79. K. Kono, Y. Ito, and N. Babaguchi, “Crowds-based anonymous communica-

tion system using multiple loopbacks,” (in Japanese) Proc. of Symposium on

Cryptography and Information Security (SCIS2010), 2010.

80. S. Nakano, Y. Ito, and N. Babaguchi, “Reduction of the number of relay

nodes in anonymous communication system 3-mode net using secure multi-

party computation,” (in Japanese) Proc. of Symposium on Cryptography and

Information Security (SCIS2010), 2010.

81. T. Hanaoka, Y. Ito, and N. Babaguchi, “Reducing disclosed credentials in

automated trust negotiation using preference,” (in Japanese), Preprint of the

IEICE Technical Report, ISEC2009-140(IT2009-132), pp. 391–398, 2010.

Expository Articles

1. Y. Ito, “On the frequency response of sampled-data control systems,” (in

Japanese), Proc. IX of the Information Science Research Group in Kansai

University, pp. 35–46, 1995.

2. Y. Ito and T. Hagiwara, “Bisection method for the computation of the fre-

quency response gain of sampled-data systems,” (in Japanese), Systems, Con-

trol and Information, Vol. 43, No. 7, pp. 353–361, 1999.

3. Y. Ito and Y. Ebihara, “Stability analysis for 2-D discrete systems,” (in

Japanese), Systems, Control and Information, Vol. 50, No. 11, pp. 412–417,

2006.

4. N. Nitta, Y. Ito, and N. Babaguchi, “Sensing-based real-world content–digital

diorama–,” (in Japanese), Journal of the Japanese Society for Artificial Intel-

ligence, Vol. 24, No. 2, pp. 220-225, 2009.

5. Y. Ito, “Reachability and controllability of LTI discrete-time systems,” (in

Japanese), Proc. of the 53rd Annual Conference of the Institute of Systems,

Control and Information Engineers, pp. 681–684, 2009.



151

6. Y. Ito, E. Furutani, A. Noda, S. Ohashi, and M. Kobayashi, “How privacy

protection should be in surveillance society,” (in Japanese), Systems, Control

and Information, Vol. 54, No. 6, pp. 219–222, 2010.




