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GENERAL INTRODUCTION 

 

Background 

1. Well-Defined Sequence in Biopolymers 

In polymer science and molecular biology, “sequence” implies the order of 

constitutional repeat units (monomer units) along the main-chain backbone of a polymer.  As 

symbolized in replication of deoxyribonucleic acid (DNA), sequence is the basis of life, by 

which all the information for life is replicated, inherited, and expressed from generation to 

generation.  In living cells, for example, the sequence in a parent DNA is exactly transcribed 

into a ribonucleic acid (RNA), and a particular protein is specifically expressed according to 

the sequence information transcribed in the RNA template (central dogma).
1
  These proteins 

are perfectly “sequence-regulated” polypeptides, although as many as 20 amino acids with the 

same reactive sites (amine and carboxylic acid) are employed as comonomers for the stepwise 

amidation.  The expressed sequence (or primary structure), in turn, dictates unique tertiary 

(three-dimensional) structures of proteins, such as chain-folding, to express advanced 

functions (e.g., organocatalysis, selective transport, and immune process) (Figure 1).  Most 

importantly, proteins and related biopolymers thus function as autonomous single molecules, 

in sharp contrast to synthetic polymers where their physical properties and functions mostly 

rely on their aggregates deriving from amplified intermolecular interactions among repeat 

units.  Thus, their functions are incomparably more efficient and advanced than those of 

artificial polymers, and the monomer-sequence regulation plays a central role for the 

functions. 

 

 

 

 

 

 

 

 

 

 Figure 1.  Sequence-regulated polymerization in nature.
2 
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2. Structural Control in Synthetic Polymers 

Synthetic polymers are indispensable for our modern life as chemical materials (e.g., 

plastics) and vastly produced with various polymerization techniques.  Among them, 

addition polymerization of vinyl monomers is important to obtain carbon main-chain 

polymers.  These polymers are usually a mixture of ill-defined macromolecular chains with 

various lengths (broad molecular weight distributions) and uncontrolled sequences of the 

pendent substituents or functionalities.  This irregularity is derived from the poor regulation 

in polymerization reactions: initiation and propagation reactions randomly occur; some side 

reactions (termination or chain-transfer reaction) disturb the propagation; and 

cross-propagation with comonomers is basically stochastic and of low selectivity.  However, 

since Szwarc discovered living anionic polymerization in 1956,
3
 molecular weight control is 

now possible in most of addition polymerizations including cationic,
4
 radical,

5-9
 and 

coordination.
10

 

Living polymerization is defined as a chain-growth polymerization that consists of 

initiation and propagation alone, free from termination or transfer reactions.  The initiation 

starts from a specific molecule carrying an initiating site (initiator) from which the same 

number of polymer chains propagates without side-reactions.  A suitable terminator or 

quencher can purposefully terminate the propagation.  By its nature, the molecular weight 

can be controlled by the feed ratio of monomer to initiator, and the molecular weight 

distribution is narrow or, ideally, of a Poison distribution, when initiation is much faster than 

propagation.  Additionally, it enables one to easily synthesize various structures such as 

end-functionalized, block, graft, and star polymers (Figure 2).
11

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Achieved polymer structures obtained via living polymerizations.
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The progress in living polymerization has opened a way to the precision syntheses of 

various functional polymers with sophisticated architecture for advanced functional materials.  

Even with these controlled polymerizations, however, the regularity of polymer chains is 

much inferior to biopolymers, especially in terms of sequence.  Given these progresses as 

well as deficiencies, an increasing number of polymer scientists nowadays have begun 

seeking for the road to approach the nature’s elegance and the biopolymers’ accuracy by 

sequence-regulating polymerization.  In the author’s view, as discussed below, the time is 

now ripe for our polymer chemists to embark on the sequence control for synthetic 

polymers.
12

 

 

3. Sequence Regulation in Synthetic Polymers 

As discussed above, the trend in polymer chemistry is moving to discover 

“sequence-regulated polymerization”.
12

  The pioneer of artificial sequence-regulated 

polymerization is Merrifield’s solid-phase synthesis of peptides.
13

  This is still a useful way 

to synthesize sequence-defined oligopeptides but is restricted to step-growth polymerization, 

and the protection-deprotection procedure is cumbersome and sometimes not tolerant of 

functional groups. 

In addition polymerization, thus far, sequence regulation has been achieved by three 

methods, though considerably to limited extents in terms of the number of repeat units to be 

controlled for specific sequences: (i) spontaneous alternating copolymerization, (ii) stepwise 

chain extension, and (iii) sequential monomer addition (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.  Sequence regulation in synthetic polymers.
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Spontaneous Alternating Copolymerization.    The simplest sequence regulation 

would be found in alternating copolymerization where sequence alternation (enhanced 

cross-propagation) is derived from the inherent electronic features of a specific monomer 

combination (Figure 3, route 1).  A typical example is the radical copolymerization of a pair 

of an electron-acceptor and an electron-donor monomers, such as maleic anhydride and 

styrene, and addition of a Lewis acid promotes the alternating propagation.
14

  Most of the 

previously reported examples in fact achieved alternating sequences but without the control of 

chain length (molecular weight).  Quite recently, however, alternating and living radical 

copolymerization has been examined to obtain alternating copolymers with controlled 

molecular weights.
15

  The feature of favoring cross-propagation has also allowed local 

functionalization at desired positions on a polymer chain.
16, 17

 

In addition to these AB-alternating sequences, alternation of three repeat units has 

been reported.  For example, in the course of their extensive study of spontaneous 

non-catalyst AB-alternating copolymerization of heterocyclic monomers, Saegusa and 

co-workers obtained alternating ABC-sequence copolymers by terpolymerization of ethylene 

phenylphosphonite, acrylonitrile, and carbon dioxide via zwitterion.
18

  Recently, Kamigaito 

et al. achieved an AAB-alternating copolymerization of limonene and maleimide by a 

controlled radical polymerization (reversible addition-fragmentation chain transfer 

polymerization: RAFT)
6
 in the presence of fluoroalcohol, which is to direct the specific 

sequence along with the inherently enhanced cross-propagation of the two monomers.
19

 

 

Stepwise Chain Extension.    A chain extension reaction of bifunctionally reactive 

monomers would lead to alternating or periodic sequences (Figure 3, route 2), where the 

extension process should be highly chemoselective.  Recently, the so-called “click 

chemistry”
20, 21

 has attracted attention for such chain extension methods.  For example, Lutz 

et al. synthesized AB-oligomers from an azide-amine monomer and an alkyne-carboxylic acid 

monomer via repetition of two chemoselective reactions: a copper-catalyzed azide-alkyne 

1,3-cycloaddition (CuAAC) and an amidification of carboxylic acids and primary amines.
22

  

On the other hand, Guan and co-workers designed oligopeptides carrying azide and alkyne 

terminals that are extended by CuAAC into sequence-controlled polypeptides with functional 

groups placed in a repetitive regular sequence.
23

  Similarly, heterotelechelic oligostyrenes 

carrying α-azide and ω-alkyne terminals were synthesized where maleimide units were 

included at designed positions via stepwise addition of a maleimide by cross-propagation.  
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Subsequent click chain extension by CuAAC gave polystyrenes in which the position of the 

maleimide’s unit (and their pendent functionality) is periodic.
17 

In another case, Kamigaito et al. performed metal-catalyzed step-growth polyaddition 

of specially designed monomers with a programmed sequence of subunits, such as ABCC, 

from common vinyl monomer building blocks.
24

  Thus, the monomers are designed to carry 

a carbon–chlorine bond active for metal-catalyzed living radical polymerization as well as 

non-conjugated olefin terminals that are inactive for radical propagation but capable of a 

single radical addition.  Once the carbon–chlorine bond is activated by a metal catalyst to 

give a radical species, it attacks the olefin to give a non-reactive vinyl chloride unit, and the 

repetition of this reaction leads to polymers of a programmed alternating sequence. 

 

Sequential Monomer Addition.    If the selective monoaddition of multiple 

monomers is possible in chain-growth living polymerization, repetition of such 

monoadditions would also allow sequence regulation (Figure 3, route 3).  In the beginning of 

1990s, Higashimura and co-workers applied this strategy for their living cationic 

polymerization of vinyl ethers.
25

  The research in fact gave sequence-defined oligomers but 

in low yield, because multiple homoaddition obviously accompanied single additions, and 

fractionation was accordingly required to remove undesired products. 

 

Though the above-discussed three approaches are very attractive to sequence 

regulation, they rely on specific monomers or special techniques.  Therefore, more universal 

and convenient ways to regulate sequence are desired, and template systems are attractive in 

artificial systems. 

 

4. Template Polymerization 

Inspired by biological systems, in which “template” is vital to produce perfectly 

sequence-regulated biomolecules, some researchers have examined template-assisted organic 

synthesis.
26

  In polymer chemistry, template polymerization (sometimes called “replica 

polymerization” or “matrix polymerization”) has been also studied
27

 since the first example 

was reported in 1950s.
28

  In template polymerization, as with like RNA transcription and 

related biopolymer syntheses, component monomers interact with a template polymer, and 

these aligned monomers are polymerized along the template (Scheme 1).  The linkage 

between monomers and a template is, for example, hydrogen bonding,
29

 ionic interaction,
30
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covalent bond,
31

 metal-coordination,
32

 or stereocomplex.
33

  Some positive “template effects” 

were reported: acceleration of polymerization; improvement of yield; and transcription of 

molecular weight or stereostructures from a template to a daughter polymer.  Recently, some 

researches have been attempted to incorporate the idea of “template polymerization” into 

precision polymerization for advanced control.
34

  However, to the author’s knowledge, there 

has been no report on sequence regulation by template polymerization, most likely because of 

the unclearness of the initiating point and difficulties in synthesis of the template with a 

well-defined sequence. 

 

 

 

 

 

 

Scheme 1.  Template polymerization. 
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Objectives  

From these backgrounds, the author has selected “sequence-regulated polymerization” 

through design of template molecules as the central subject of his doctoral research.  Here, 

he carefully devised an “initiator-embedding template” or “template initiator” in which a 

polymerization initiating site is placed in a close vicinity of a template moiety within the same 

molecular framework, so that his approach is clearly distinguished from conventional 

template systems that lack an intramolecularly incorporated precision initiating site (Figure 

4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To approach “sequence-regulated polymerization” with such a “template initiator”, the 

author considered the following points to be crucial in systems design: 

 

Point 1. The initiating site is designed at the edge of the template to control propagation 

along the template. 

Point 2. The template moiety should carry recognition units for monomers in a 

well-defined sequence. 

Point 3. Polymerization should proceed quantitatively from the initiating site without 

Figure 4.  The strategy for template initiator-assisted sequence-regulated polymerization. 
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side reactions, and the active species should be tolerant of functional groups 

both in the template for monomer recognition and in monomers to be 

polymerized. 

 

From these viewpoints, the author designed a heterobifunctional initiator 1 as the 

“base” initiator (Figure 5).  Here, one carbon–chlorine bond (C–Cl) neighboring the ether 

part is an initiator for Lewis acid-catalyzed living cationic polymerization
4
 to grow a template 

molecule (polymer), whereas another C–Cl neighboring the ester part is that for 

metal-catalyzed living radical polymerization
5
 to target “sequence regulation”.  They are 

connected ortho to each other on a rigid benzene framework, so as to bring the initiating site 

along the template (Point 1).  Living cationic polymerization is promising to synthesize a 

template molecule with well-defined sequence by tuning the condition according to monomer 

reactivity as shown by literature,
25

 although protection/deprotection or post-functionalization 

is required to introduce functional groups (Point 2).  For the backbone formation from the 

template-aligned monomers, metal-catalyzed living radical polymerization is suitable for 

“sequence regulation” because of the high tolerance of functional groups (Point 3). 

 

 

 

 

 

 

 

 

 

 

 

In this thesis, the author studied two objects to put the strategy with 1 into practice: 

 

(1) Programmed/Addressable Living Cationic Polymerization for Template Synthesis 

(2) Template Initiator-Assisted Radical Reactions 

 

 

Figure 5.  Design of template initiator from heterobifunctional initiator (1). 
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(1) Programmed/Addressable Living Cationic Polymerization for Template 

Synthesis.    The first objective was directed to a more advanced control over living 

cationic polymerization for precision synthesis of template.  Here, the author embarked on 

the two subjects with living cationic polymerization system: control over monoaddition of a 

monomer carrying protected functional side chain (Scheme 2A); and living cationic 

polymerization of an addressable monomer to introduce functional groups (Scheme 2B). 

The control over the monoaddition of a functional monomer is fundamental, since it 

allows synthesis of template whose position of the functional groups is well-defined.  In this 

thesis, the author studied a selective monoaddition for “living” polymer chain and the 

following end-capping reaction for sequential dual functionalization at well-defined positions, 

penultimate and terminal, respectively. 

In this design, the monomer-recognition sites (e.g., hydroxy, amine, and carboxylic 

acid) need to be dangled on the template molecule.  However, such functional groups need to 

be protected in the template construction but to be deprotected after the polymerization, since 

cationic growing species is less tolerant of such functional groups.
35-37

  In some cases, 

protection-deprotection processes unfortunately damage other chemical bonds in a template 

and thereby limits the availability of recognition sites. 

Therefore, more convenient ways to introduce functional groups were desired for 

living cationic polymerization.  Thus, the author focused on an azide-containing vinyl ether 

as an “addressable” monomer.  Since the azide group can be converted into versatile 

functional groups by CuAAC reaction
20

 or Staudinger reaction
38

 under mild conditions, the 

polymerization control would be useful for the template synthesis. 

 

 

 

 

 

 

 

 

 

 

 
Scheme 2.  Programmed/addressable living cationic polymerization. 
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(2) Template Initiator-Assisted Radical Reactions.    In the second objective, the 

author investigated the possibility of sequence-regulated polymerization with template 

initiators (Scheme 3).  For feasibility examination of this approach, template initiators with a 

single recognition site have been designed and synthesized by monoadition or end-capping.  

These template initiators were applied for metal-catalyzed radical addition (Kharasch 

addition)
39

 to examine the template effect: selectivity of a recognizable monomer was 

evaluated over the corresponding non-recognizable monomer (e.g., methacrylic acid vs. 

methyl methacrylate).  Also, multi-functionalized template was synthesized via the 

addressable living cationic polymerization to study template-assisted monomer-selective 

radical copolymerization.  It is quite difficult to provide some selectivity for a monomer 

(substrate) in radical-mediated addition and polymerization, and if achieved these template 

effects would be landmark results to approach sequence-regulated radical polymerization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.  Template initiator-assisted living radical polymerization toward sequence 

regulation. 
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Outline of This Study 

The present thesis consists of two parts: Part I (Chapter 1-2) deals with the 

development of living cationic polymerization toward controlled template synthesis in which 

selective single addition and direct living polymerization of an addressable monomer for 

diverse functional units were discussed.  Part II (Chapter 3-5) focused on template 

initiator-assisted substrate-selective radical reactions.   

 

 

Chapter 1 presents selective single monomer addition in living cationic 

polymerization.  Among the various monomers, the author found that di-tert-butyl 

{N-[2-(vinyloxy)ethyl]imido}dicarboxylate (BocVE) induced single addition for living 

cationic polymerization of n-butyl vinyl ether (NBVE) with SnCl4.  This would be due to the 

bulky side chain interacting with the terminal carbocation to block the further propagation.  

The Boc side chain, introduced at the terminal with a single unit, was quantitatively 

deprotected into amine, and also the combination with a conventional capping agent (e.g., 

sodium diethyl malonate) led to sequential double functionalization with, for example, amine 

and carboxylic acid (Scheme 4). 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 describes direct living cationic polymerization of azide-containing vinyl 

ether, 2-azidoethyl vinyl ether (AzVE) with SnCl4 as an activator.  The molecular weights of 

the produced polymers were directly increased as the conversion, and the molecular weight 

distributions were narrow (Mw/Mn ≈ 1.2).  Importantly, quantitative functionalization of the 

Scheme 4.  Selective single addition of BocVE and sequential double functionalization in 

living cationic polymerization. 
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side groups via Staudinger reaction and CuAAC reaction under mild condition was achieved 

(Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 deals with highly selective and quantitative radical addition of methacrylic 

acid (MAA) by using a template initiator containing a built-in amine group as the recognition 

site (Scheme 5).  The template initiator was synthesized via selective single addition of 

BocVE to the cationic site of a novel heterobifunctional initiator, 1.  In the radical addition 

of MAA, the specific ionic binding of MAA by the amine template led to preferential 

formation of 1:1 adducts.  Additionally, in competitive radical addition of MAA and 

non-recognized monomer (methyl methacrylate; MMA), highly selective addition of MAA 

over MMA was observed.  Quantitatively, the substrate selectivity was enhanced more than 

ten times relative to the result for the non-template initiator. 

 

 

 

 

 

 

 

 

 

Figure 6.  Direct living cationic polymerization of AzVE and addressable functionalization 

of azide groups by Staudinger reaction and CuAAC reaction. 

Scheme 5.  Template initiator-assisted selective monoaddition of MAA. 
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Chapter 4 focuses on template initiator-assisted selective radical addition of sodium 

methacylate (NaMA) over a methacrylate carrying ammonium cation.  Crucial is 

size-selective recognition by a lariat crown ether embedded close to the initiating site 

(Scheme 6).  The reaction could be conducted in low temperature utilizing active ruthenium 

catalyst, and the selectivity reached over 100 times larger than that with the non-template 

system.  Here, the template initiator was prepared via the electrophilic substitution on the 

cationic initiating site, which is the model for quenching reaction in living cationic 

polymerization, showing the versatility in template construction. 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 discusses the structural adequacy of the template platform consisting of two 

initiating sites placed ortho to each other in benzene.  With the platform, the author prepared 

the template initiators carrying single- or multi-amine recognition units and utilized them in 

competitive radical addition and copolymerization (Scheme 7).  Comparative experiments 

with similar but non-template initiators indicated that the ortho position design and the 

guaranteed initiating point at the edge of the template were crucial to induce desired template 

effects, i.e., recognized monomers selectively reacted or polymerized.   

 

 

 

 

 

 

 

Scheme 6.  Template initiator-assisted selective addition of NaMA by size-selective 

recognition by lariat capture of the crown ether template. 

Scheme 7.  Template initiator-assisted radical copolymerization 
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In conclusion, this thesis presents new template-assisted reaction systems with the 

template initiator toward unprecedented sequence-regulated polymerization.  For the 

template synthesis, selectivity or controllability was improved with living cationic 

polymerization: single addition control for polymer terminal; and polymerization control with 

an addressable functional monomer.  The template initiators were prepared via the advanced 

“cationic” techniques to achieve selective radical reactions and polymerizations, coupled with 

ruthenium catalysts. 

 

This study is just the beginning to realize sequence regulation in “artificial” 

polymerization, which has been essential in nature for the functions since the birth of life.  In 

the bio-systems, much more elegant and sophisticated systems are programmed to produce 

the “well-defined” polymers, which seem to be beyond our reach.  However, the author 

believes that our ultimate control over reactions and polymerizations would approach the 

essence of natural molecules, i.e., sequence regulation, and he wishes this thesis would 

contribute to the progress. 
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Selective Single Monomer Addition in Living Cationic  

Polymerization: Sequential Double End-Functionalization 

in Combination with Capping Agent 

 

 

 

 

Abstract 

Amine-functionalized and amine–carboxylate double-functionalized polymers (I and 

II, respectively) have been synthesized by a selective single addition of a protected 

2-aminoethyl vinyl ether (BocVE) {CH2=CH[OCH2CH2N(Boc)2];  Boc = t-butoxycarbonyl} 

onto a living cationic poly(n-butyl vinyl ether) [poly(NBVE)] initiated with the 

SnCl4/n-Bu4NCl system: (I) –(NBVE)n–CH2CH(OCH2CH2NH2)–H; (II) 

–(NBVE)n–CH2CH(OCH2CH2NH2)–CH2CO2H.  The single addition was examined with a 

set of alkene monomers less reactive than NBVE, including BocVE, 2-chloroethyl vinyl ether, 

2-vinyloxyethylphtalimide, and styrene.  Upon addition of 10 molar excess of these alkenes 

onto the living ends, only BocVE led to the intended single adduct, and this was attributed to 

a chelating interaction of the two carboxylate groups in the terminal BocVE unit with the 

growing poly(NBVE) terminal, thus sterically hampering further propagation.  A simple 

acid-catalyzed Boc-deprotection led to the amino-functionalized version I.  Alternatively, an 

additional quenching the BocVE-capped living end (the precursor of I) with sodium malonate, 

followed by double deprotection of the Boc and the malonate groups gave the 

double-functionalized version II.  The selective addition of a single monomer molecule is 

thus a new method for addressable or site-specific introduction of functional groups along 

polymer chains. 



Chapter 1 

 

 22

Introduction 

 

Despite the recent advances in precision polymer synthesis to give block, graft, and 

numerous other structures, synthetic polymers are generally much inferior beyond comparison 

to natural polymers, in terms of primary structure control and hence functions or smartness.  

A particular superiority of natural polymers is found in their perfectly defined and 

predetermined “sequence” of constitutional repeat units that addresses structural and 

functional groups within macromolecules and thereby dictates developing specific higher 

order structure, function, and performance.  Sequence control and addressable 

functionalization in artificial polymers is therefore most critical in approaching more 

advanced functions, though unprecedented yet.
1, 2

 

A possible way to this goal is the selective “single” addition of a specific monomer 

onto the growing end in propagation, by which only one new repeat unit is connected to the 

growing end, and thus a particular pendent functionality in the added monomer is addressed at 

a predetermined position along a polymer backbone (Scheme 1).
2
  The addition step herein 

should not only be living (free from side-reactions) but also occur only once, and the latter 

prerequisite is not simple to achieve in chain-growth polymerization.  Namely, in most of 

living polymerizations, the active species are reversibly converted into dormant forms that are 

in dynamic equilibria with the active form.  Despite the intervention of dormant species, the 

propagation is by nature a chain-growth process, and a single activation step usually triggers 

multiple propagation steps before the active end returns dormant. 

If, however, the attachment of a specific monomer unit (F) generates a new dormant 

end (...-F*) that is more stable and/or bulkier than the dormant end (...-M*) from a main 

monomer (M), further propagation might be temporarily stopped, even when an excess 

amount of F is loaded (the asterisk * indicates that the terminal is dormant).  The added 

monomer F thereby leads to a selective and temporary “end-capping”, 

forming ...–M-M-M-M-M-F*.  Nevertheless, though more stable, the new dormant end –F* 

Scheme 1.  Selective single addition in living cationic polymerization toward addressable 

functionalization. 
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is not completely inactive and may be re-activated by one way or another (e.g., higher 

temperature or a more active catalyst) to resume propagation with the “main” monomer M 

that is to provide a longer and non-functionalized main segments, i.e., ...-M-M-M-F-M-M-M*.  

Repetition of such a programmed end-capping (single addition of F) and re-activation 

(propagation with M) in turn enables addressable functionalization of a polymer chains at 

desired positions: 

...-M-M-M-F-M-M-M-M-F-M-M-M-F-M-M-M-M-M-F-M-M-M... 

Obviously, the success of an addressable functionalization should depend on, among 

other factors, the design of a specific monomer F (Scheme 1). 

Thus, the author began to search specific monomers to achieve the single monomer 

addition for the temporary termination in Lewis acid-catalyzed living cationic polymerization 

of vinyl ethers (VEs).
3
  1,1-Diphenyl ethylene (DPE) might be one of the promising 

candidates, since the single addition has been achieved in living cationic polymerization of 

isobutylene.
4
  However, the structure of DPE is less suitable as a functional monomer (unit) 

or the precursor: the re-activation from a DPE dormant end seems difficult; and introduction 

of functional groups into the DPE framework is not simple. 

In this chapter, the author targeted electron-donating vinyl compounds that may work 

as a specific monomer (as F) in the SnCl4-catalyzed living cationic polymerization of n-butyl 

vinyl ether (NBVE) (as M) to examine the proposed addressable functionalization (Scheme 2).  

Potential F monomers included:  2-chloroethyl vinyl ether (CEVE), 

2-vinyloxyethylphtalimide (VEP),
5
 di-tert-butyl{N-[2-(vinyloxy)ethyl]imido}dicarboxylate 

(BocVE),
2c, 6

 and styrene (St).  These were selected from the viewpoints of functionality (or 

post-reaction functionalization) and lower reactivity relative to NBVE as functions of 

Scheme 2.  Single addition in living cationic polymerization of NBVE. 
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electronic effects as well as steric bulkiness.  Note that CEVE is a precursor of functional 

VEs via SN2 substitution reactions; VEP and BocVE are both protected forms of 2-aminoethyl 

VE but different in protecting chemistry and in steric bulk; and St is for comparison with VEs 

and a standard for its substituted derivatives. 

Herein the author reports that BocVE is an excellent “specific” monomer that indeed 

achieves the single-step addition and selective end-capping upon living poly(NBVE) ends.  

From end-group analysis, among the candidate monomers examined, only BocVE specifically 

induced the single addition, while other monomers resulted in multi-step propagation (i.e., 

block copolymerization or oligomerization), or in no reactions.  Furthermore, the 

terminal ...–NBVE–BocVE* is stable against NBVE propagation but active enough for 

electrophilic reactions and thus quantitatively reacted with sodium diethyl malonate,
7
 to 

form ...–BocVE–(malonate) terminal, which led to a bifunctional sequence of an amine and a 

carboxylic acid upon double deprotection of the Boc and the malonate groups.   

 

 

Experimental Section 

 

Materials 

NBVE (Tokyo Kasei; >98%) was washed with 10% aqueous sodium hydroxide and 

then with water, dried overnight over potassium hydroxide (pellets), and distilled twice over 

calcium hydride before use.  CEVE was washed with 10% aqueous sodium hydroxide and 

then with aqueous saturated sodium chloride, dried overnight over sodium sulfate, and 

distilled twice over calcium hydride before use.  Styrene was dried overnight over calcium 

chloride and distilled twice over calcium hydride before use.  VEP,
5
 BocVE,

6
 a hydrogen 

chloride adduct of 2-chloroethyl vinyl ether (CEVE-HCl),
8
 and sodium diethyl malonate

7
 

were prepared according to literature.  n-Octane (internal standard for gas chromatography) 

was dried overnight over calcium chloride, and distilled twice over calcium hydride before 

use.  Dichloromethane (CH2Cl2; solvent) was purified to be moisture- and oxygen-free by 

passing through a purification column [Solvent Dispensing System; Glass Contour] before 

use.  SnCl4 (1.0 M in CH2Cl2; Aldrich), n-Bu4NCl (Tokyo Kasei; >98%), LiBH4 (2.0 M in 

THF; Aldrich), and HCl (4.0 M in 1,4-dioxane; Aldrich) were used as received. 
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Synthesis of BocVE-Capped Poly(NBVE) 

Polymerization was carried out under dry argon in baked glass flasks with three-way 

stopcocks.  A typical example is given below:  Living cationic polymerization was initiated 

by adding a solution of SnCl4/n-Bu4NCl in CH2Cl2 (0.50 mL) into a mixture (4.5 mL) of 

NBVE (200 mM) and CEVE-HCl (10 mM) in CH2Cl2 at –78 °C by a dry syringe.  Monomer 

conversion was determined from the concentration of residual monomer measured by gas 

chromatography with n-octane as an internal standard.  After near complete monomer 

consumption, BocVE (1.0 M in CH2Cl2; 0.5 mL) was added to the reaction mixture.  The 

polymerization was quenched with an excess of ammonical methanol (2.0 mL) or LiBH4 (2.0 

M in THF; 0.80 mL) at 0 °C.  In the case of the latter, after 1 h from addition of quencher, 

water (1.6 mL) was added to decompose residual LiBH4.  The quenched reaction mixture 

was diluted with n-hexane, washed with water, evaporated under reduced pressure and 

vacuum dried. 

 

Synthesis of BocVE-Malonate Double Capped Poly(NBVE) 

Living cationic polymerization was initiated by adding a solution of SnCl4/n-Bu4NCl 

in CH2Cl2 (0.50 mL) into a mixture (4.5 mL) of NBVE (200 mM) and CEVE-HCl (10 mM) 

in CH2Cl2 at –78 °C by a dry syringe.  After near complete monomer consumption, BocVE 

(1.0 M in CH2Cl2; 0.50 mL) was added to the reaction mixture, and the mixture was stirred 

for additional 2 h.  Then, a solution of sodium diethyl malonate (200 mM in 1,4-dioxane; 2.5 

mL) was added, and the mixture was stirred for 1 h at 0 °C.  The quenched reaction mixture 

was diluted with n-hexane, washed with water, evaporated under reduced pressure and 

vacuum dried. 

 

Deprotection 

The BocVE-capped poly(NBVE) (0.10 g) was treated with HCl (4.0 M in 1,4-dioxane; 

1.8 mL; 200 equiv. for the Boc group) for 24 h at room temperature with stirring.  The 

reaction mixture was diluted with ethyl ether and washed sequentially with NaOH aqueous 

solution (equivalent to the HCl employed) and water, followed by evaporation under reduced 

pressure and vacuum drying. 

In the double deprotection for the BocVE and the malonate terminal units, the polymer 

poly(NBVE)-(BocVE)-(malonate) (0.10 g) was dissolved in ethanol (10 mL) and NaOH (5.0 

equiv. to the COOEt units) was added.  The mixture was magnetically stirred for 3 h, water 
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(10 mL) was added, and stirring was continued for an additional 3 days.  The resulting 

sodium salt was converted into malonic acid by treatment with HCl.  For subsequent 

decarboxylation, the acid-capped product was isolated by evaporation under reduced pressure, 

dissolved in 1,4-dioxane (20 mL), and kept at 90 °C for 1 h.  The product was isolated by 

evaporation, dissolved in CH2Cl2 (50 mL), washed with water to remove the resulting NaCl, 

and then isolated by evaporation followed by vacuum-drying. 

For Boc-deprotection, the decarboxylation product was treated with HCl (2.0 mL; 4 M 

in 1,4-dioxane; 200 equiv. for Boc group) for 24 h at room temperature with stirring.  The 

resulting polymer was isolated by evaporation, dissolved in 1,4-dioxane, and neutralized with 

NaHCO3 aqueous solution, followed by evaporation.  Chloroform was added to the product, 

the soluble part was isolated by filtration, and the filtrate was evaporated to dryness, to give 

the final products. 

 

Measurement 

The Mn, Mw/Mn, and MWD of polymers were determined by size-exclusion 

chromatography in THF at 40 °C using three polystyrene gel columns (Shodex KF-400RL × 2 

and KF-400RH) that were connected to a Shodex DU-H2000 precision pump, a Shodex RI-74 

refractive index detector, and a Shodex UV-41 UV/vis detector set at 250 nm.  The columns 

were calibrated against 13 standard polystyrene samples (Tosoh; Mw = 500-3,840,000; Mw/Mn 

= 1.01-1.14).  
1
H NMR spectra were recorded in CDCl3 at room temperature on a JEOL 

JNM-LA500 spectrometer, operating at 500.16 MHz.  Polymer samples for 
1
H NMR were 

fractionated by preparative SEC.  MALDI-TOF-MS analysis was performed on a Shimadzu 

AXIMA-CFR instrument equipped with 1.2-m linear flight tubes and a 337-nm nitrogen laser. 

 

 

Results and Discussion 

 

1. Screening of “Specific” Monomers in Living Cationic Polymerization of NBVE 

NBVE was first polymerized with SnCl4/n-Bu4NCl,
9
 coupled with adduct CEVE-HCl 

as an initiator in CH2Cl2 at –78 °C: [NBVE]0 = 200 mM; [CEVE-HCl]0 = 10 mM; [SnCl4]0 = 

10 mM; [n-Bu4NCl]0 = 5.0 mM.  The monomer was almost quantitatively consumed within 

1 min (conversion ≈ 100%), and the molecular weight and its distribution of the products 

were precisely controlled (Mn = 2,900; Mw/Mn = 1.08) (entry 1 in Table 1; Figure 1a).  To  
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Table 1.  Living cationic polymerization of NBVE and addition of another monomer.
[a]

 

Entry Added 

Monomer 

[SnCl4]add 

(mM) 

Mn
[b] 

Mw/Mn
[b] 

 

1 – – 2,900 1.08 PNBVE (1st block) 

2 CEVE 0 3,800 1.11 Polymerization
 

3 VEP 0 4,300 1.11 Polymerization
 

4 BocVE 0 3,200 1.08 Monoaddition
[c]

 

5 BocVE 100 3,200 1.08 Monoaddition
[c]

 

6 St 0 3,100 1.09 ~ 0 St unit/chain
[c] 

7 St 100 3,000 1.16 2.57 St units/chain
[d] 

[a]
 
[NBVE]0 = 500 mM, [CEVE-HCl]0 = 10 mM, [SnCl4]0 = 10 mM, [n-Bu4NCl]0 = 5.0 

mM, [added monomer]add = 100 mM in CH2Cl2 at –78 °C.  [b] Measured by SEC.  [c] 

Confirmed by MALDI-TOF-MS.  [d] Measured by 
1
H NMR. 

Figure 1.  SEC curves of PNBVEs (a) before and (b-e) after addition of other monomers 

with (b) CEVE, (c) VEP, (d) BocVE, and (e) St.  See Table 1 for the reaction conditions. 
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these living polymer solutions was added an excess of a “specific” monomer candidate 

(CEVE, VEP, BocVE, or St) (10 molar equiv. to polymer-end or the initiator), and the 

mixtures were kept at –78 °C for additional 2 h.  After quenching ammonical methanol, the 

resultant polymers were analyzed with SEC and 
1
H NMR. 

For CEVE and VEP, SEC curves of the polymers obviously shifted to higher 

molecular weights keeping the narrow MWD (entry 2 and 3 in Table 1; Figures 1b and 1c).  

This indicates that not a single addition but a block copolymerization occurred.  In contrast, 

with BocVE and St, SEC curves of the products neither shifted nor broadened (entry 4 and 6 

in Table 1; Figures 1d and 1e). 

The molecular weights and the terminal structures of the polymers before and after 

BocVE or St addition were more closely analyzed by MALDI-TOF-MS (Figure 2).  In the 

poly(NBVE) samples before the additions (Figure 2a), only a single peak series was detected, 

with a uniform interval of about 100 corresponding to an NBVE repeat unit.  The absolute 

Figure 2.  MALDI-TOF-MS spectra of PNBVEs (a) before and (b, c) after addition of other 

monomers with (b) BocVE and (c) St.  The measured samples are same as entry 1, 4, and 6 

of Table 1. 
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mass number of each peak agreed with that for the structure expected for living NBVE 

polymers: H–CEVE–(NBVE)n–OCH3
10

 with sodium cation. 

The BocVE-treated sample gave a clearly differing MALDI profile (Figure 2b) where 

the peak interval was 100, the same as for the pristine poly(NBVE), but the peaks were totally 

shifted with about 285, close to the mass of a single BocVE unit (287.3).  This result 

demonstrates the single-unit addition of BocVE to all the poly(NBVE) living chains. 

The St-treated samples, in contrast, showed no such a mass change before and after the 

atempted reaction (Figure 2c), and presumably no reaction took place between living 

poly(NBVE) and styrene. 

Addition experiments with BocVE and St were also performed under more vigorous 

conditions i.e., 10 times of the catalyst was injected upon addition of the new monomers 

([SnCl4]add = 100 mM; [monomer]add = 100 mM).  After a 1-hour stirring, the reactions were 

Figure 3.  MALDI-TOF-MS spectra of PNBVEs (a) before and (b, c) after addition of other 

monomers with (b) BocVE and (c) St along with SnCl4.  The measured samples are same as 

entry 1, 5, and 7 of Table 1. 



Chapter 1 

 

 30

quenched with ammonical methanol and the resultant polymers were analyzed with 

MALDI-TOF-MS.  Even upon the co-addition of the catalyst, BocVE quantitatively 

underwent a selective single-unit addition onto the poly (NBVE) (Figure 3b), very similar to 

the reaction without Lewis acid addition (Figure 2). 

For styrene, the original peaks of poly(NBVE) disappeared, and multiple series of 

peaks newly appeared instead (Figure 3c), indicative of the addition of one and two 

monomers (�, �) with the increased concentration of catalyst.  The additional peak series 

(, �) originate from the laser-induced terminal dehydrochlorination of the styrene-capped 

poly(NBVE). 

Thus, BocVE was found to be quite unique to induce a selective monoaddition onto 

the growing living poly(vinyl ether) carbocation.  The author speculates that the specificity 

is brought about by the following electronic and steric features that would effectively keep the 

BocVE-capped cation from further propagation.  Electronically, as illustrated in Figure 4, the 

geminal Boc pendent groups in the terminal BocVE unit, as a built-in “added base”,
11

 would 

intramolecularly stabilize the growing carbocation through a double carbonyl coordination.  

Sterically, the coordination of the two bulky Boc groups renders the circumference around the 

cationic end too crowded for approaching BocVE. 

 

2. Amine-Capped Poly(NBVE) Terminal via Deprotection 

The single BocVE terminal unit was then deprotected to obtain an amine-capped 

poly(NBVE).  Quenched with methanol, the precursor polymer [...–(NBVE)n– 

(BocVE)–OMe] carries an acid-sensitive acetal terminal, while the usual Boc deprotection 

applies acidic conditions, and therefore the terminal acetal was first hydrogenated with LiBH4 

at a final stage of living cationic polymerization of NBVE.
12

  Subsequently, an excess 

amount of HCl (200 equiv. to the Boc group) was added at room temperature into a solution 

of the hydride-capped PNBVE (Mn = 3,400, Mw/Mn = 1.09), and the solution was stirred for 

Figure 4.  Proposed structure of growing carbocation after an addition of BocVE 



Selective Single Monomer Addition in Living Cationic Polymerization 

 31

 

Figure 5.  
1
H NMR spectra (in CDCl3) of PNBVEs obtained via (a) living cationic 

polymerization of NBVE and addition of BocVE, and (b) deprotection of Boc group.  

Polymerization: [NBVE]0 = 200 mM; [CEVE-HCl]0 = 10 mM; [SnCl4]0 = 10 mM; 

[n-Bu4NCl]0 = 5.0 mM; [BocVE]add = 100 mM in CH2Cl2 at –78 °C.  Quenching: 

[LiBH4]add = 300 mM at 0 °C.  Deprotection: HCl (200 eq for Boc groups) was treated in 

1,4-dioxane at r.t. for 24 h. 

Figure 6.  MALDI-TOF-MS spectrum of PNBVE via addition of BocVE, quenching with 

LiBH4 and deprotectino of Boc group (Mn = 3,400; Mw/Mn = 1.09 before the deprotection).  

See caption of Figure 5 for the conditions.   
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24 h.  
1
H NMR analysis of the polymers before and after the HCl treatment confirmed a 

quantitative and complete deprotection; namely, the sharp peak attributed to the t-butyl unit of 

the Boc group (1.5 ppm) disappeared, and instead a new peak, assignable to the methylene 

protons adjacent to an amino group, was appeared at 2.8 ppm (Figure 5).  Furthermore, 

MALDI-TOF-MS assay strongly supported the quantitative formation of amine, since the 

absolute mass agreed with that of the ideal structure with one unit of amino ethyl vinyl ether 

unit (sodium cation adduct) (Figure 6). 

Thus, the author achieved the quantitative amination of PNBVE terminal by the 

selective single addition of BocVE and the subsequent deprotection. 

 

3. Combination with Conventional Capping: Double Functionalization of the Terminal 

Finally, a conventional terminal capping was sequentially performed for the 

BocVE-capped PNBVE with sodium diethyl malonate,
7
 since the growing end should be still 

electrophilic even after the single addition of a BocVE unit.  This would lead to the double 

functionalization of the terminal by an amine (from the terminal BocVE unit) and a 

carboxylic acid (from the malonate capping) via double deprotection for each protecting 

groups (Scheme 3). 

After the living cationic polymerization of NBVE and sequential addition of BocVE 

(10 eq. to the living ends), sodium diethyl malonate (10 eq.) was allowed to react for 1 h at 0 

°C.  Molecular weight of the produced polymer was fairly controlled (Mn = 3,100 and 

Mw/Mn = 1.08), without any adverse effects of the capping agent, and the quantitative 

“double” introduction of a single unit of BocVE and a terminal malonate group was 

Scheme 3.  Double functionalization of PNBVE with amine and carboxylic acid terminal. 



Selective Single Monomer Addition in Living Cationic Polymerization 

 33

confirmed by 
1
H NMR, as indicated by the peaks of the Boc t-butyl group (i, 1.5 ppm) and 

those of the malonate’s methyl (k, 1.3 ppm) and methylene protons (j, 4.2 ppm) (Figure 7a).  

The terminal structure was also supported by the MALDI-TOF-MS m/z values of the products 

(a single series of peaks separated by the NBVE m/z unit) (Figure 8). 

The malonate terminal was converted into carboxylic acid via hydrolysis with NaOH 

and subsequent heating for decarboxylation.  Then, the Boc group was deprotected to amine 

by the treatment with excess HCl.  Clean proceedings of both deprotection steps were 

confirmed by 
1
H NMR, where the characteristic precursor peaks were completely disappeared 

Figure 7.  
1
H NMR spectra (in CDCl3) of PNBVEs obtained via (a) addition of BocVE and 

capping of sodium diethyl malonate, and (b) after deprotections of the malonate terminal and 

the Boc group.  Polymerization: [NBVE]0 = 200 mM; [CEVE-HCl]0 = 10 mM; [SnCl4]0 = 

10 mM; [n-Bu4NCl]0 = 5.0 mM; [BocVE]add = 100 mM in CH2Cl2 at –78 °C, quenched with 

10 eq. (for polymer chain number) of sodium diethyl malonate at 0 °C.  Deprotection of 

malonate group: NaOH (5 eq. for –COOEt) was treated in ethanol/water at r.t. for 3 days, and 

heated in 1,4-dioxane at 90 °C for 1 h.  Deprotection of Boc groups: HCl (200 eq. for Boc 

group) was treated in 1,4-dioxane at r.t. for 24 h. 
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(i-k, Figure 7b).  As a result, the terminal structure of the PNBVE was sequentially regulated 

with a carboxylic acid and an amine. 

 

 

Conclusion 

 

BocVE was found to be a unique monomer to induce a single and selective addition at 

a growing end in the living cationic polymerization of NBVE with SnCl4.  This would be 

due to the bulky pendent group that specifically interacts with the terminal carbocation, via 

double coordination of the two Boc carbonyls (Figure 4), thereby to prohibit further 

propagation.  The Boc group, introduced at the terminal with a single unit, was 

quantitatively deprotected into an amine, and also the combination with a conventional 

capping agent (e.g., sodium diethyl malonate) led to a sequential double functionalization 

with, for example, an amine and a carboxylic acid. 

Such a single addition of BocVE has also opened a way to construct a template 

molecule for a selective radical addition reaction where the selectively introduced amine unit 

is essential to develop a “template-assisted” monomer recognition and a preferential 

propagation of a recognized monomer over a non-recognizable counterpart.
2c

  Alternatively, 

re-initiation (re-polymerization) of NBVE and related monomers from the BocVE-capped 

terminal would be ideal for the introduction of mid-chain functionalities at addressable 

positions.  

 

Figure 8.  MALDI-TOF-MS spectrum of PNBVE via addition of BocVE and capping of 

sodium diethyl malonate (Mn = 3,200; Mw/Mn = 1.08).  See caption of Figure 7 for the 

condition. 
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Living Cationic Polymerization 

of an Azide-Containing Vinyl Ether  

toward Addressable Functionalization of Polymers 

 

 

 

 

 

Abstract 

The author first achieved the living cationic polymerization of azide-containing 

monomer, 2-azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction 

with the HCl adduct of a vinyl ether [H–CH2CH(OR)–Cl; R = CH2CH2Cl, CH2CH(CH3)2].  

Despite the potentially poisoning azide group, the produced polymers possessed controlled 

molecular weights and fairly narrow distributions (Mw/Mn ≈ 1.2) and gave block polymers 

with 2-chloroethyl vinyl ether.  The pendent azide groups are easily converted into various 

functional groups via mild and selective reactions, such as the Staudinger reduction and 

copper-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC; a “click” reaction).  These 

reactions led to quantitative pendent functionalization into primary amine (–NH2), hydroxy 

(–OH), and carboxyl (–COOH) groups, at room temperature and without any acidic or basic 

treatment.  Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl 

ether polymers with well-defined structures and molecular weights. 



Chapter 2 

 

 38

Introduction 

 

The Lewis acid-catalyzed living cationic polymerization of vinyl ethers 

[CH2=CH(OR); VE] offers a versatile precision synthesis of pendent-functionalized polymers 

of controlled architectures.
1
  Therein 2-chloroethyl vinyl ether (CEVE) serves as a 

convenient, versatile precursor (parent) monomer from which a large variety of functionalized 

VE monomers can be obtained by simple but widely applicable nucleophilic substitution 

reactions of the pendent chloroethyl group; note that the intervening ethylene spacer well 

insulates the vinyl ether moiety from the steric and electronic effects of the potentially 

hazardous functionality thus introduced. 

However, as with the conventional counterparts, this living polymerization is not 

always tolerant of polar functions (OH, NR3, CO2H, etc.) that often induce side-reactions with 

the growing carbocations, and sometimes Lewis acidic catalysts are also deactivated 

(poisoned) by these functionalities.  Thus most of useful functions should be protected in the 

monomer stage before polymerization.
2-4

  From these mostly protected functional VEs, a 

wide variety of pendent-functionalized, block or end-functionalized polymers with 

well-defined structures and molecular weights have already been synthesized.  Despite these 

achievements, the protection–deprotection of the pendent functional groups is of course 

cumbersome, and, more seriously, rigorous acidic or basic conditions are often required 

therein, which sometimes deteriorate the polymer backbone and/or other coexisting functional 

groups. 

An attractive alternative for the protected monomer method is a direct living 

polymerization of a pro-functional precursor monomer followed by a post-polymerization 

transformation of its pendent groups into desired functionalities.  This 

pendent-transformation of course involves the post-polymerization modification and, 

therefore, would suffer from its general drawbacks such as poor transformation efficiency and 

the so-called negative neighboring-group participation; namely, the reaction of a particular 

pendent group is severely disturbed by the nearest neighbor that has already undergone the 

same transformation process.
5
  It follows that the key to the success of this alternative 

method is to find an excellent precursor monomer. 

The design criteria for the precursor monomer obviously includes that the pendent 

pro-functional group should not interfere its living polymerization and that its 

post-polymerization reaction should be selective and quantitative under mild conditions 
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without deteriorating the parent polymer architecture.  In this regard, CEVE would be a 

potential candidate: Its chloroethyl group is already known to be perfectly compatible to 

living cationic polymerization, and as demonstrated, a wide variety of pendent transformation 

is already established.  However, nucleophilic substitution is much less productive in 

poly(CEVE) than in its monomer stage, and the author soon discarded this option for the 

polymer-reaction method. 

Azide (–N3) is a versatile reactive group for dipolarophiles, nucleophiles, and 

electrophiles because of the unique mesomeric structure (–N=N
+
=N

–
 ↔ –N

–
–N

+≡N ↔ 

–N
–
–N=N

+
).

6
  For example, an azide compound behaves as a dipole to induce azide-alkyne 

1,3-cycloaddition.
7
  Especially, the copper-catalyzed azide-alkyne 1,3-cycloaddiion 

(CuAAC; Scheme 1A) is highly chemoselective and efficient under mild conditions or in 

aqueous media, which is now regarded as the most popular “click” reaction and is finding 

widespread applications in introducing a functional group via an azide or an alkyne precursor 

[N3–R and HC≡C–R’, respectively] .
8
 

Azides also react with a phosphorous nucleophile (PR3) to give an iminophosphorane 

(–N=PR3), which may spontaneously be converted into a primary amine (–NH2) in the 

presence of water (the Staudinger reduction; Scheme 1B).
9
  All these examples show that 

azide is a very useful precursor for various functional groups, in terms of versatility, 

unusually high chemoselectivity, and, above all, fast and quantitative reactions. 

It is therefore not surprising that CuAAC has been applied for the construction of 

well-defined functional polymers in living (controlled) polymerization.
10

  For example, an 

azide may be incorporated into a monomer
11

 or an end-group
12

 in living radical 

polymerizations, and thereby block,
13

 star,
14

 and macrocyclic polymers
15

 have been obtained.  

In living cationic polymerization, however, the azide-based functionalization has much less 

frequently examined,
16

 and to the author’s knowledge, no direct living cationic 

polymerization of azide-carrying monomers has been reported. 

 

 

 

 

 

 

 

Scheme 1.  Functionalization of azide groups: (a) CuAAC reaction, and (b) Staudinger 

reduction. 
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This chapter reports the first Lewis acid-catalyzed living cationic polymerization of an 

azide-carrying monomer, 2-azidoethyl vinyl ether (AzVE) (Scheme 2), with tin(IV) 

tetrachloride (SnCl4) as a catalyst and the HCl adduct of an alkyl vinyl ether as an initiator.  

AzVE is in fact an excellent precursor monomer for the synthesis of pendent-functionalized 

polymers by the post-polymerization method, as demonstrated herein by the Staudinger 

reduction into amino pendants.  The poly(AzVE) has been reacted by CuAAC with alkynes 

containing either hydroxyl or carboxyl groups, respectively to give functionalized poly(VE)s.  

The conditions for these transformation reactions, were much milder than those for 

conventional methods with protected monomers.  The azide-based VE and its living cationic 

polymerization have thus opened a versatile way for not only pendent-functionalization but 

also the construction of more complicated structures such as graft polymers.  Relative to the 

functionalized monomer method, the post-transformation approach, coupled with living 

polymerization, provides a family of pendent- and/or end-functionalized polymers as well as 

block polymers, statistically random copolymers, and star branched polymers with varying 

functional groups, all derived from a single identical parent precursor such as poly(AzVE).  

Importantly, the members of these families constitute unprecedentedly unique functional 

polymers which are by definition identical and well-defined in all of the following factors 

directly inherited from the parent precursor, except for their functionalities: the degrees of 

polymerization (DP) and narrow polydispersity of the main-chain and/or the segment(s); and 

the compositions and the sequences of pendent and/or terminal functionalities.  With such 

uniformity in multiple structural parameters, in turn, this method will provide a unique set of 

“standard” functional polymers that can be rigorously compared in terms of their physical 

properties and functions without being affected by the variations in their fundamental 

structures. 

Scheme 2.  Living cationic polymerization of AzVE. 
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Experimental Section 

 

Materials 

Commercial CEVE and isobutyl vinyl ether (IBVE) were washed with 10% aqueous 

sodium hydroxide and then with aqueous saturated sodium chloride, dried overnight over 

sodium sulfate, and distilled twice over calcium hydride before use.  Their hydrogen 

chloride adducts (CEVE-HCl and IBVE-HCl, respectively) were prepared according to 

literature.
17

  Tetralin (1,2,3,4-tetrahydronaphtalene; an internal standard for 
1
H NMR) was 

dried overnight over calcium chloride, and doubly distilled from calcium hydride under 

reduced pressure before use.  n-Octane (an internal standard for gas chromatography) was 

purified in the same way but distilled under atmospheric pressure.  Dichloromethane 

(CH2Cl2; solvent) was purified to moisture- and oxygen-free by passing through a purification 

column (Solvent Dispensing System; Glass Contour) before use.  Sodium azide (Wako; 

98%), SnCl4 (1.0 M in CH2Cl2; Aldrich), EtAlCl2 (1.0 M in n-hexane; Kanto Kagaku), 

n-Bu4NCl (Tokyo Kasei; >98%), LiBH4 (Aldrich; 2.0 M in THF), triphenylphosphine (Wako; 

>97%), CuBr (Wako; >99.9%), propargyl alcohol (Aldrich; 99%), and 4-pentynoic acid (Alfa 

Aesar; 98%) were used as received. 

 

2-Azidoethyl Vinyl Ether (AzVE) 

A solution of CEVE (29.5 mL; 0.290 mol) in N,N-dimethylformamide (175 mL) was 

added under dry argon into sodium azide (21.2 g; 0.326 mol) placed in a round-bottom flask.  

The mixture was stirred at 80 °C for 4 h, cooled to room temperature, poured into water (200 

mL), and extracted with diethyl ether (500 mL).  The organic phase was washed twice with 

water (500 mL each) and evaporated into dryness under reduced pressure.  The crude 

product was purified by silica-gel column chromatography [eluent: chloroform/methanol, 

10/1 (v/v)].  The isolated product was dissolved in CH2Cl2 (300 mL), dried with Na2SO4 

overnight, and evaporated to dryness under reduced pressure to give AzVE (purity, >99.5% by 

NMR; isolated yield, 61%).  
1
H NMR (CDCl3): δ 6.50 (dd, 1H, CH2=CH–), 4.23 (dd, 1H, 

cis-CH2=CH–), 4.08 (dd, 1H, trans-CH2=CH–), 3.86 (t, 2H, –O–CH2–CH2–N3), 3.50 (t, 2H, 

–O–CH2–CH2–N3).  
13

C NMR (CDCl3): δ 151.2 (CH2=CH–), 87.4 (CH2=CH–), 66.6 

(–O–CH2–CH2–N3), 50.1 (–O–CH2–CH2–N3). 
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Polymerization 

Polymerization was carried out under dry argon in baked glass flasks with three-way 

stopcocks.  A typical example is given below.  The reaction was initiated by adding a 

solution of SnCl4 in CH2Cl2 into a mixture of AzVE and CEVE-HCl in CH2Cl2 at –78 °C by a 

dry syringe.  Monomer conversion was determined from the residual monomer concentration 

measured by 
1
H NMR for AzVE with tetralin as an internal standard or by gas 

chromatography for CEVE with n-octane as an internal standard.  The polymerization was 

quenched with an excess of ammonical methanol or LiBH4.  In the latter case, the quencher 

addition was at –78 °C, but the termination reaction was run at 0 °C for 30 minutes, and water 

was subsequently added to decompose the residual LiBH4.  The quenched reaction mixture 

was diluted with toluene, washed sequentially with dilute hydrochloric acid, aqueous sodium 

hydroxide, and water, evaporated under reduced pressure, and vacuum dried. 

 

Staudinger Reduction 

Poly(AzVE) [Mn = 2,750, DPn = 23.1 (by 
1
H NMR)] (44 mg; 0.37 mmol of azide 

groups) and triphenylphosphine (0.20 g; 0.76 mmol) were dissolved into a THF/methanol 

mixed solvent (1.5 mL each).  Water (0.15 mL) was added, and the mixture was stirred for 

24 h at room temperature.  The solvent was evaporated, and the crude product was dissolved 

in a small amount of methanol and precipitated into toluene.  The precipitated polymer was 

filtered off and vacuum dried. 

 

CuAAC Reaction 

CuAAC reaction was conducted under dry argon in round-bottomed flask with three 

way stopcocks.  Poly(AzVE) [70 mg; Mn = 3,620; DPn = 31.0 (calculated from 
1
H NMR)], 

an alkyne (propagyl alcohol or 4-pentynoic acid; 1.5 equiv. to the azide groups in the 

substrate), and CuBr (0.1 equiv.) were dissolved into DMSO (4.2 mL).  The reaction mixture 

was stirred at room temperature for 24 h, was concentrated into a small amount by 

evaporation, and poured into excess toluene to precipitate the product. 

 

Measurements 

The Mn, and Mw/Mn of the polymers were determined by size-exclusion 

chromatography (SEC) in THF at 40 °C using three polystyrene gel columns (Shodex 

KF-400RL × 2 and KF-400RH) that were connected to a Shodex DU-H2000 precision pump, 
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a Shodex RI-74 refractive index detector, and a Shodex UV-41 UV/vis detector set at 250 nm.  

The columns were calibrated against 13 standard polystyrene samples (Tosoh; Mw = 

500-3,840,000; Mw/Mn = 1.01-1.14).  
1
H NMR spectra were recorded in CDCl3 or CD3OD at 

room temperature on a JEOL JNM-LA500 spectrometer operating at 500.16 MHz.  

MALDI-TOF-MS analysis was performed on a Shimadzu AXIMA-CFR instrument equipped 

with 1.2-m linear flight tubes and a 337-nm nitrogen laser; the matrix was dithranol. 

 

 

Results and Discussion 

 

1. Cationic Polymerization of AzVE: Effect of Lewis Acids 

SnCl4 and EtAlCl2, representative Lewis acidic catalysts, were employed for cationic 

polymerization of AzVE in conjunction with CEVE-HCl as an initiator in CH2Cl2 at –78 °C: 

[AzVE]0 = 0.20 M; [catalyst]0 = 20 mM; [initiator]0 = 10 mM (Figure 1).  Both catalysts 

induced near quantitative polymerizations but at clearly different rates: 3 min (SnCl4) vs 5 h 

(EtAlCl2) for ~90% conversion.  For the SnCl4-catalyzed system, molecular weight 

distributions (MWDs) of the products were relatively narrow and shifted to higher molecular 

weight with monomer conversion, indicating the intervention of long-lived propagating 

species.  On the other hand, such a peak shift was hardly observed with the aluminum 

system, and MWD was obviously broader than with SnCl4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Comparison between SnCl4 and EtAlCl2 as a Lewis acid activator for living 

cationic polymerization of AzVE with CEVE-HCl in CH2Cl2 at –78 °C: [AzVE]0 = 0.20 M; 

[CEVE-HCl]0 = 10 mM; [Lewis acid]0 = 20 mM. 
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The observed catalytic difference between SnCl4 and EtAlCl2 may be understood by 

considering their “chlorine affinity” (or “chlorophilicity”) and the alternation of their Lewis 

acidity (electrophilicity) in the presence of an electron-donor:  Recently, Aoshima et al. have 

reported that, in the ionization of a dormant poly(VE)–Cl terminal, the “chlorine affinity” or 

“chlorophilicity” is greater for SnCl4 than for EtAlCl2.
18

  In the polymerization of AzVE, the 

electron-rich pendent azide group (either in monomer or in polymer) should interact with a 

Lewis acid, to in-situ weaken the acidity and thereby to require a higher amount of the 

catalyst.
19

  Therefore, though both SnCl4 and EtAlCl2 are regarded as strong or 

electron-deficient Lewis acids in cationic polymerization, they may work as Lewis acids too 

mild to catalyze an efficient ionization of a terminal carbon–chlorine bond as well as its fast 

exchange equilibirum with the active cationic species (i.e., a lower reaction rate and a broader 

MWD). 

The second factor is most likely the case for EtAlCl2, which induced the slow and 

poorly controlled polymerization.  For SnCl4, however, its chlorophilicity is high enough to 

overcome its reduced acidity and in turn to mediate a fast and efficient dissociation of the 

terminal carbon–chlorine bond, albeit it is employed at a high concentration. 

 

2. Cationic Polymerization of AzVE with SnCl4 

Effects of the SnCl4 concentration were thus examined (Table 1).  For two initiators 

of different reactivity (CEVE-HCl < IBVE-HCl), the catalyst concentration was accordingly 

higher for the former (> 10 mM; entry 1-3) than for the latter (< 5.0 mM; entry 4-5).  At the 

highest concentration (100 mM; entry 1), the observed Mn (< 1000) was much lower than the 

calculated value from the monomer/initiator feed ratio and monomer conversion, which 

would be caused by an undesired initiation from impurity water and/or by the chain-transfer 

via β-H elimination, both facilitated by the excess catalyst (or too much ionization of the 

dormant end).  Under these conditions, the polymerization solution was turbid, indicative of 

a considerable complexation of the tin catalyst by the azide group. 

As the catalyst concentration was decreased, the polymerization decelerated, and too 

low of a dose (2.0 mM; entry 5) did not induce polymerization.  In the intermediate range 

(5.0–20 mM), reasonably controlled molecular weights
20

 and fairly narrow MWDs (Mw/Mn ~ 

1.3) were achieved.  Figure 2 shows the conversion–Mn plot and the SEC curves of produced 

polymers with 10 mM of SnCl4.  The molecular weight increased linearly in proportion to 

conversion, and the MWD was consistently narrow and shifted to high molecular weight. 



Living Cationic Polymerization of AzVE toward Addressable Functionalization 

 45

Table 1.  Cationic polymerization of AzVE with SnCl4
[a]

 

Entry Initiator [SnCl4] (mM) Time Conv. (%) Mn Mw/Mn 

1 CEVE-HCl 100 1 min 90 870 1.22 

2  20 3 min 92 3,500 1.33 

3  10 5 min 91 3,400 1.26 

4 IBVE-HCl 5.0 2 h 100 3,500 1.31 

5  2.0 24 h 5.4 ― ― 

[a] [AzVE]0 = 200 mM, [Initiator]0 = 10 mM in CH2Cl2 at –78 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The product was analyzed by MALDI-TOF-MS (Figure 3).  Although the 

signal-noise ratio was low, only a single series of peaks was observed at an almost constant 

interval close to the monomer mass, 113.2.  The absolute m/z value of each peak 

corresponded to the mass of the poly(AzVE) with an initiator fragment 

[CH3–CH(OC2H4Cl)–] at the α-end and a methoxy terminal (–OCH3) at the ω-end derived 

from the methanol quencher.  These results indicate that the polymerization was well 

controlled without side reactions. 

Figure 2.  Conversion-Mn plot and SEC curves for living cationic polymerization of AzVE 

with CEVE-HCl/SnCl4 in CH2Cl2 at –78 °C: [AzVE]0 = 0.20 M; [CEVE-HCl]0 = 10 mM; 

[SnCl4]0 = 10 mM. 
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3. Block Polymerization 

To further examine the “living” nature of the polymerization, block polymerization 

with CEVE was conducted (Figure 4).  When the first-stage polymerization of AzVE was 

almost completed (conversion ~90%), neat CEVE was added to the reaction solution.  The 

second monomer was also smoothly consumed, and its conversion reached 88% in an 

additional 90 min.  The SEC curves shifted to higher molecular weight, while keeping 

narrow distributions (Mw/Mn ≈ 1.2), indicating an almost quantitative block copolymerization. 

Figure 3.  MALDI-TOF-MS spectrum of poly(AzVE) obtained with CEVE-HCl/SnCl4 in 

CH2Cl2 at –78 °C (conversion 59%).  Condition: see caption of Figure 2. 

Figure 4.  Block copolymerization of AzVE and CEVE with CEVE-HCl/SnCl4 in CH2Cl2

at –78 °C: [AzVE]0 = [CEVE]add = 0.20 M; [CEVE-HCl]0 = 10 mM; [SnCl4]0 = 10 mM. 
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4. Staudinger Reduction 

With a controlled poly(AzVE) sample thus obtained with the CEVE-HCl/SnCl4 

system [Mn = 2,750, DPn = 23.1 (by 
1
H NMR)], the transformation of the azide pendent 

groups into amines was then examined by the Staudinger reduction.  Triphenylphosphine 

(PPh3), two equivalents to the pendent azide groups, was added into a polymer solution in 

THF/methanol, and then a small amount of water (5 vol-%) was injected.  After stirring at 

room temperature for 24 h, the polymer was precipitated into toluene, and the recovered 

product was analyzed by 
1
H NMR (Figure 5).  The azide peak at 3.3 ppm (-CH2-N3, e; 

Figure 5a), abundant in the precursor, completely disappeared upon the treatment, and a new 

peak appeared at 2.8 ppm, attributable to a pendent amine (-CH2-NH2, e’; Figure 5b).  The 

integration ratios of the main polymer peaks (b-e, b’-e’) to the α-end (a, a’) were consistent 

with the quantitative transformation of azide to amine without changing the degree of 

polymerization (DPn) or the overall structures of the polymers.  Thus, the transformation 

was quantitative and highly selective even under mild conditions, in sharp contrast to the 

conventional amination (hydrazinolysis) of phtalimides, which requires high temperature and 

toxic hydrazine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  
1
H NMR spectra of (a) poly(AzVE) (in CDCl3), and (b) polymer obtained by 

Staudinger reduction for amination (in CD3OD). 
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5. CuAAC Functionalization 

Finally, the author performed CuAAC for poly(AzVE) to demonstrate versatile 

functionalization of the azide side chain.  Two alkynes with hydroxy (propargyl alcohol) and 

carboxylic group (4-pentynoic acid) were employed as reactants, in conjunction with CuBr 

(without a ligand)
11a

 as catalyst in DMSO.
21

  If the “click” reactions successfully proceed, 

the azide should be converted into a triazole carrying a hydroxyl or a carboxyl function. 

After the reaction at room temperature for 24 h, the product was recovered via 

reprecipitation into toluene, as with the Staudinger reduction.  
1
H NMR analyses confirmed 

quantitative transformations with both alkynes: the azido-methylene at 3.3 ppm (e, Figure 6a) 

disappeared, and instead the characteristic triazole methyne emerged around at 7.8 ppm 

Figure 6.  
1
H NMR spectra of poly(AzVE) [(a), in CDCl3] and converted polymers by 

CuAAC with propargyl alcohol [(b), in DMSO-d6] and 4-pentynoic acid [(c), in DMSO-d6].  

*from unreacted 4-pentynoic acid. 
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(Figures 6b and 6c).  For the reaction with propargyl alcohol, in addition, distinctive peaks 

of the hydroxyl methyl (-CH2OH) were observed at 4.5 and 5.2 ppm (g and h, Figure 6b) 

whose relative intensity is consistent with the unaltered main chain.  In the case with 

4-pentynoic acid, a broad carboxyl peak was certainly observed at 10-14 ppm, but 

unfortunately it was ambiguous whether this originated from the polymer side chains or from 

the unreacted substrate.
22

  However, as a peak from the methylene next to the ring 

(triazole-CH2-CH2-COOH) was observed at 2.8 ppm (g, Figure 6c) along with the triazole 

methyne (f), the carboxyl introduction should be quantitative. 

 

 

Conclusion 

 

The author first achieved living cationic polymerization of azide-carrying vinyl ether 

(AzVE) with the SnCl4/VE-HCl adduct initiating system, to give not only homopolymers but 

block polymers with CEVE.  The azide pendent groups therein were quantitatively and 

mildly converted into amine, hydroxyl, and carboxyl by the Staudinger reduction or CuAAC.  

This system will open a new way to construct functionalized VE polymers.  The method will 

be extended into the precision synthesis of more complicated structures in conjunction with 

other controlled polymerizations. 
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Abstract 

A ruthenium(II)-catalyzed highly selective and quantitative radical addition of an 

alkene (methacrylic acid; MAA) has been achieved by using a template halide (2) where an 

amine group is built-in as a recognition site for the carboxyl group of the substrate.  The 

specific ionic binding of MAA by the amine template (1:1 mole ratio) led to preferential 

formation of the MAA–2 1:1 adduct, whereas a similar halide without a template induced 

MAA oligomerization even in the presence of an externally added amine.  A competitive 

radical addition of MAA versus its ester form (methyl methacrylate; MMA) on the halide 

further demonstrated that the substrate selectivity [k’MAA/k’MMA] for 2 is enhanced over 10 

times by the intramolecular introduction of the template, relative to for the non-template 

halide.  These specificities are most likely triggered by the specific interaction (recognition) 

of the carboxyl group in MAA via the acid-selective template amine, implanted in the close 

vicinity of the radical addition site in 2.  These results intimate possibility of control in 

repeat-unit sequence in precision polymerization. 
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Introduction 

 

In recent years, template-assisted synthesis has been directed toward perfecting 

structural control of molecules, as inspired by biological macromolecules (typically, DNA 

and proteins) that are finely defined in terms of not only molecular weight but “sequence” of 

repeat units or functionality along the backbone.
1
  For such systems, one needs to achieve at 

least two targets: a controlled synthetic reaction of perfect chemo- and regio-selectivity and a 

method (or a reaction field) where a particular substrate (monomer) is specifically recognized, 

allowing structural input to be transcribed and expressed.  For the latter, a promising 

approach is a template-assisted system in which target substrates are efficiently recognized 

via such interactions as hydrogen-bonding, coordination, or ionic or hydrophobic interactions 

for sequence expression. 

For the former target, Sawamoto and co-workers have pioneered two precision 

polymerizations, Lewis acid-catalyzed living cationic
2
 and metal-mediated living radical

3
 

polymerizations, both of which allow syntheses of well-defined polymers with controlled 

molecular weight and narrow molecular weight distribution.  Notably, the radical system is 

important in terms of the wide variety of applicable monomers and tolerance of functional 

groups.  Nevertheless, the sequence of constitutional repeat units along the polymer 

backbone is far more challenging and to date has not been controlled even in these living 

processes, except for rather simple AB- and ABC-alternating copolymerizations.
4
  Previous 

attempts at so-called template polymerizations are abundant but, to the author’s knowledge, 

without remarkable sequence control.
5
 

This chapter reports the author’s initial approach toward the sequence control in living 

radical polymerization via template-bearing initiators coupled with metal catalysts; and the 

Scheme 1.  Template initiators from a heterobifunctional halide for template-assisted living 

radical polymerization. 
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synthesis of the “template” initiator is based on living cationic polymerization (Scheme 1).  

Prior to sequence control in polymerization, the author examined the template-effect for 

metal-catalyzed radical addition (Kharash reaction),
6
 a model for living radical 

polymerization (Scheme 2).  Though conventional radical reactions are performed with an 

excess amount of a halide over an alkene substrate in order to prevent oligomerization, the 

author herein deliberately performed a radical addition under equimolar conditions ([halide]0 

= [substrate alkene]0), to demonstrate the adequacy and potential of this template model. 

Like the transcription and expression of sequence information in natural polymers, the 

introduction of a template into a polymerization field would provide clues about sequence 

control in artificial polymer synthesis.  For this purpose, the author has designed template 

initiators (2) in which a template unit is built into a relatively rigid framework, allowing a 

particular monomer to be recognized and thereby specifically incorporated into the growing 

chain via living radical propagation (Scheme 1).  To construct such a model system, the 

author employed a new heterobifunctional halide (1) derived from 2-hydroxybenzyl alcohol, 

in which two different initiating sites (C–Cl bonds) are placed ortho to each other.  The 

haloether part is for living cationic polymerization to generate an oligomeric template 

component, whereas the haloester part is for a subsequent living radical polymerization to be 

regulated by the neighboring template segment placed in the hairpin-shaped rigid framework.  

In the template segment, the author introduced an oligomeric unit of pendant aminoethyl 

group(s) that would selectively recognize acid-bearing monomers (Scheme 2).   

 

Scheme 2.  Radical addition of MAA with the template halide. 
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Experimental Section 

 

Materials 

2-Hydroxybenzyl alcohol (2-HBA; Aldrich; 99%), 2-chloroethyl vinyl ether (CEVE; 

Tokyo Kasei; >97%), potassium hydroxide (Wako; >85%), and n-Bu4NBr (Tokyo Kasei; 

>99%) were used as received.  α-Chlorophenyl acetyl chloride (Aldrich; 90%) was distilled 

under reduced pressure before use.  Triethylamine was dried overnight over calcium chloride 

and distilled before use. 

Di-tert-butyl {N-[2-(vinyloxy)ethyl]imido}dicarboxylate (BocVE) was prepared 

according to literature.
7
  Chromatography-grade dichloromethane (CH2Cl2; solvent) and 

toluene (solvent) were purified to moisture- and oxygen-free by passing through a purification 

column (Solvent Dispensing System; Glass Contour) before use.  SnCl4 (1.0 M in CH2Cl2; 

Aldrich), n-Bu4NCl (Tokyo Kasei; >98%), LiBH4 (2.0 M in THF; Aldrich), and HCl (4.0 M in 

1,4-dioxane) were used as received. 

Methacrylic acid (MAA; Tokyo Kasei; >99%) was dried overnight over calcium 

chloride and distilled under reduced pressure before use.  Methyl methacrylate (MMA; 

Tokyo Kasei; >99%) was dried overnight over calcium chloride and distilled twice from 

calcium hydride under reduced pressure before use.  Ru(Ind)Cl(PPh3)2 (Strem; >98%) was 

used as received and handled in a glove box under a moisture- and oxygen-free argon 

atmosphere (H2O < 1 ppm; O2 < 1 ppm).  Ethyl 2-chloro-2-phenylacetate (ECPA; Aldrich; 

>97%) was distilled under reduced pressure before use.  Butylamine (n-BuNH2; Tokyo 

Kasei; >99%) was degassed by bubbling dry nitrogen for more than 15 min before use.  

Tetralin (1,2,3,4-tetrahydronaphtalene; 
1
H NMR internal standard for MAA and MMA) was 

dried overnight over calcium chloride and doubly distilled from calcium hydride under 

reduced pressure before use. 

The precursor initiator (1) was synthesized via three steps as shown below (Scheme 3). 

 

{2-[2-(Vinyloxy)ethoxy]phenyl}methanol (3) 

2-HBA (10 g, 80 mmol) was dissolved in 15 ml of KOHaq (22 wt-%).  To the solution 

were added CEVE (12.2 mL, 120 mmol) and n-Bu4NBr (0.54 g; 1.66 mmol), and the mixture 

was heated to reflux for 24 h.  The reaction mixture was diluted with CH2Cl2 (100 mL), 

washed with water for three times, and evaporated to dryness under reduced pressure.  The 

crude product was purified by silica-gel column chromatography [eluent: chloroform/MeOH, 
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100/3 (v/v)].  The isolated product was dissolved in CH2Cl2 (300 mL), dried with Na2SO4 

overnight, and evaporated to dryness under reduced pressure to give 3: yield, 68%.  
1
H NMR 

(CDCl3): δ 7.26 (m, 2H, Ar-H), 6.96 (t, 1H, Ar-H), 6.90 (d, 1H, Ar-H), 6.52 (dd, 1H, 

CH2=CH-), 4.67 (d, 2H, Ar-CH2-OH), 4.25-4.06 (m, 6H, CH2=CH-O-CH2-CH2-), 2.75 (t, 1H, 

-OH).  
13

C NMR (CDCl3): δ 156.62, 129.84, 129.03, 128.89, 121.29, 111.77 (-O-C6H4-CH2-), 

151.73 (CH2=CH-O-), 87.38 (CH2=CH-), 66.78 (CH2=CH-O-CH2-CH2-O-), 66.33 

(CH2=CH-O-CH2-CH2-O-), 62.16 (Ar-CH2-OH). 

 

2-[2-(Vinyloxy)ethoxy]benzyl 2-chloro-2-phenylacetate (4) 

To a solution of 3 (10.5 g, 54.3 mmol) and triethylamine (9.86 mL, 81.4 mmol) in dry 

THF (280 mL) at 0 °C was slowly added α-chlorophenyl acetyl chloride (8.14 ml, 51.5 

mmol) dropwise under dry argon.  The solution was stirred at 0 °C for 30 min and then at 

room temperature for an additional 3 h.  The reaction was quenched with 250 mL of water.  

The quenched solution was diluted with CH2Cl2 (500 mL), washed with water for three times, 

and evaporated under reduced pressure.  The crude product was purified by silica-gel 

column chromatography (eluent: chloroform).  The product was dissolved in CH2Cl2 (300 

mL), dried with Na2SO4 overnight, and evaporated to dryness under reduced pressure to give 

4: yield, 73%.  
1
H NMR (CDCl3): δ 7.50 (m, 2H, Ar-H), 7.36 (m, 3H, Ar-H), 7.30-7.22 (m, 

2H, Ar-H), 6.94-6.88 (m, 2H, Ar-H), 6.48 (dd, 1H, CH2=CH-), 5.41 [s, 1H, Ar-CH(Cl)-CO], 

5.28 (q, 2H, Ar-CH2-O), 4.23 (dd, 1H, cisCH2=CH-), 4.15 (t, 2H, Ar-O-CH2-), 4.06 (dd, 1H, 

transCH2=CH-), 3.94 (t, 2H, CH2=CH-O-CH2-).  
13

C NMR (CDCl3): δ 168.1 

[-O-CO-CH(Cl)-], 156.5, 135.8, 129.8, 129.7, 129.2, 128.7, 128.0, 123.8, 120.9, 111.7 

(-C6H4-O-CO-CH(Cl)-C6H5), 151.7 (CH2=CH-O-), 87.1 (CH2=CH-), 66.8 

Scheme 3.  Synthesis of a hetero bifunctional halide, 1. 
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(-CH2-CH2-O-C6H4-), 66.4 (CH2=CH-O-CH2-), 63.6 [-CO-CH(Cl)-C6H5], 59.1 

(-C6H4-CH2-O-). 

 

2-[2-(1-Chloroethoxy)ethoxy]benzyl 2-chloro-2-phenylacetate (1) 

Compound 1 was prepared by bubbling dry HCl gas into a CH2Cl2 solution of 4, as 

reported.
8
 

 

Precursor (5) of the Template Initiator 

Living cationic “addition” of BocVE was carried out under dry argon in baked glass 

flasks equipped with a three-way stopcock.  The reaction was initiated by adding a solution 

of SnCl4/n-Bu4NCl (in CH2Cl2) into a mixture of 1 and BocVE in CH2Cl2 at –78 °C by a dry 

syringe ([1]0 = 10 mM; [BocVE]0 = 50 mM; [SnCl4]0 = 10 mM; [n-Bu4NCl]0 = 5.0 mM).  

After an hour, LiBH4 (3 equiv. for 1) was added, and the reaction mixture was stirred at room 

temperature for an additional 30 min, followed by addition of water was to decompose the 

residual LiBH4.  The quenched reaction mixture was diluted with n-hexane, washed with 

water, evaporated under reduced pressure, and finally vacuum dried: crude 5 (100% 

conversion).  The crude product was further purified by preparative size-exclusion 

chromatography (column, Shodex KF-5001; eluent, THF): isolated yield, 60%.  
1
H NMR 

(CDCl3): δ 7.48 (m, 2H), 7.36 (m, 3H), 7.30-7.18 (m, 2H), 6.89 (m, 2H), 5.39 (s, 1H), 5.24 (q, 

2H), 4.03 (m, 2H), 3.75-3.50 (m, 9H), 1.74-1.63 (m, 2H), 1.48 (s, 18H), 1.15 (d, 3H).  
13

C 

NMR (CDCl3): δ 168.30, 156.87, 152.81, 136.00, 129.87, 129.59, 129.35, 128.92, 128.16, 

123.77, 120.72, 111.75, 82.33, 73.22, 69.05, 67.98, 67.70, 66.98, 63.77, 59.26, 45.57, 36.95, 

28.19, 19.94. 

 

Template Initiator (2). 

The precursor 5 was treated with HCl (4 M in 1,4-dioxane; 200 equiv. to the Boc 

group in 5) for 24 h at room temperature with stirring.  The product was isolated by 

evaporation, dissolved in 1,4-dioxane, treated with NaHCO3 aqueous solution for 

neutralization, and then isolated by evaporation.  Chloroform was added to the product and 

the soluble part was isolated by filtration.  Then the filtrate was evaporated to dryness to 

obtain 2: yield, 89%.  
1
H NMR (CDCl3): δ 7.48 (m, 2H), 7.34-7.18 (m, 5H), 6.89 (m, 2H), 

5.40 (s, 1H), 5.30 (m, 2H), 4.01 (m, 2H), 3.72-3.48 (m, 7H), 2.98 (s, 2H), 1.69 (m, 2H), 1.13 

(m, 3H).  LR MS (ESI) (m/z): [M + H]
+
 calcd for C23H30ClNO5, 436.18; found, 436.0. 
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Radical Addition 

The reaction was carried out under dry argon in baked and sealed glass tubes.  A 

typical example with the template initiator 2 is given below:  In a 50-mL round-bottomed 

flask was placed 2 (0.085 g), and toluene (3.42 mL), tetralin (0.100 mL), solutions of MAA (1 

M in toluene; 0.195 mL) and MMA (1 M in toluene; 0.195 mL) were added sequentially in 

this order at room temperature under dry argon.  The resulting mixture was totally 

transferred by syringe under dry argon to a 50-mL round-bottomed flask containing 

Ru(Ind)Cl(PPh3)2 (12.1 mg).  The total volume of the reaction mixture was thus 3.90 mL.  

Immediately after mixing, aliquots (0.40 mL each) of the solution were injected into baked 

glass tubes, which were then sealed and placed in an oil bath kept at 80 °C.  At 

predetermined intervals, the reaction was terminated by cooling the reaction mixtures to –78 

°C.  Monomer conversion was determined from the concentration of residual monomer 

measured by 
1
H NMR with tetralin as an internal standard. 

 

Measurements 

1
H NMR spectra were recorded in CDCl3 at room temperature on a JEOL JNM-LA500 

spectrometer, operating at 500.16 MHz.  Electrospray-ionization mass spectra (ESI-MS) 

were measured on a Waters Quattro micro API. 
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Results and Discussion 

 

1. Synthesis of Template Initiators 

For the template introduction, the author first performed living cationic polymerization 

from the precursor 1 using di-tert-butyl {N-[2-(vinyloxy)ethyl]imido}dicarboxylate (BocVE), 

a vinyl ether with a protected amino pendent function.
7
  The reaction was catalyzed with 

SnCl4 in conjunction with n-Bu4NCl as an additive.
9
  As shown in Chapter 1, some specific 

conditions turned out to allow a selective single monomer addition to the cationic site 

generated from the haloether in 1: [BocVE]0 = 50 mM; [1]0 = 10 mM; [SnCl4]0 = 10 mM; 

[n-Bu4NCl]0 = 5.0 mM in CH2Cl2 at –78 °C (5; Figure 1a).  Quenching of the cationic 

intermediate with LiBH4, followed by deprotection of the Boc site with excess HCl to afford 

the corresponding amine, gave the target template initiator 2, as verified by 
1
H NMR analysis 

(Figure 1b).  Importantly, the haloester moiety in 1 remained intact during these addition and 

work-up steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  
1
H NMR spectra (in CDCl3) of (a) the precursor halide, 5, and (b) the template 

halide, 2. 
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2. Selective Radical Addition via Template Recognition 

With the template-bearing halide 2, radical addition of methacrylic acid (MAA) was 

initiated in toluene at 80 °C (1:1 2/MAA molar ratio) with the ruthenium complex catalyst 

[Ru(Ind)Cl(PPh3)2; Ind = η5
-C9H7], one of the most useful catalysts for metal-catalyzed living 

radical polymerization
10

 and radical addition.
11

  Through its acid function, MAA is expected 

to be “recognized” by the amine template located in the vicinity of the initiating site. 

MAA was consumed at almost the same rate as the halide, as monitored by 
1
H NMR 

spectroscopy, suggesting the predominant formation of a 1:1 adduct, rather than oligomeric 

products (Figure 2a).  On average, the isolated product contained 1.22 units of MAA per 

haloester moiety in 2 (Figure 3).  Furthermore, the molecular mass determined by 

electrospray ionization mass spectrometry (ESI-MS) was 522.0, close to 522.2 for [M+H]
+
 of 

the adduct. 

In sharp contrast, in a control radical addition with a haloester without a built-in 

template amino group [ethyl 2-chloro-2-phenylacetate (ECPA)] in the presence of an 

externally added amine (n-BuNH2), MAA was consumed much faster than the initiating site, 

resulting in oligomers rather than a 1:1 adduct (Figure 2b).  Actually, ESI-MS analysis 

detected only a minor amount of the adduct. 

From these results, the preferential formation of the 1:1 addition is most likely 

triggered by the specific interaction (recognition) of the template amine with the acid in MAA, 

which brings the monomer into the close vicinity of the radical site in 2.  Separate 
1
H NMR 

experiments also confirmed the specific acid-base interaction between MAA and the amine in 

2 (Figure 4). 

Figure 2.  Time-conversion curves in radical addition of a halide (C-Cl compound) to MAA 

in toluene at 80 °C, based on consumption of C-Cl bond in halide (H) and C=C bond in 

MAA (J).  [halide]0 = [MAA]0 =100 mM; [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM; [n-BuNH2]0 = 

(a) 0 or (b) 100 mM. 
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Figure 3.  
1
H NMR spectra (in CD3OD) of the product obtained by template 

initiator-assisted radical addition of MAA in toluene at 80 °C: [MAA]0 = 100 mM; [2]0 = 100 

mM; [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM.  The average number of MAA units per halide was 

calculated from the integral ratio of a, d, e, m, and o. 

Figure 4.  
1
H NMR spectra of MAA with amine-template halide (2) in toluene-d8 at room 

temperature: (a) [MAA] = 100 mM; (b) [2] = 100 mM; (c) [2] = [MAA] = 100 mM. 
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3. Competitive Radical Addition via Template Recognition 

To further prove the template effect, the author examined the competitive radical 

addition to 2 of MAA and methyl methacrylate (MMA) in toluene at 80 °C [1:1:1 

MAA/MMA/2 molar ratio, Ru(Ind)Cl(PPh3)2 catalyst].  As shown in Figure 5a, the acid 

monomer reacted much faster than the ester counterpart.  More quantitatively, the initial 

first-order rate constant (k’) was ~40 times greater for the acid form: k’MAA = 0.679 h
-1

; k’MMA 

= 0.0184 h
-1

; k’MAA/k’MMA = 36.9 (Figure 5c). 

When the MAA/MMA competitive addition was performed under the identical 

conditions but with a template-free initiator (ECPA/n-BuNH2), MAA reacted just a little faster 

than MMA [k’MAA/k’MMA = 2.99] (Figure 5b, c).  Therefore, in terms of substrate selectivity 

expressed via the rate ratio, the template recognition enhanced MAA incorporation by more 

than 10 times relative to MMA.  Such a template effect was also observed in other solvents 

(Table 1).  Because the recognition is based on ionic interactions, the template effect would 

be sensitive to solvent polarity.  The concentrations of substrates would also be crucial in the 

selective addition, where oligomerization might also occur.  In fact, additional experiments 

indicated that less polar solvents (e.g., toluene) and lower concentrations (< 50 mM) facilitate 

the specific monoaddition (Table 1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  (a, b) Time-conversion curve with (a) template (2) and (b) ECPA, and (c) 

comparison of reaction selectivity determined by kinetic analysis between 2 and ECPA for 

competing radical addition with MAA and MMA in toluene at 80 °C: [MAA]0 = [MMA]0 = 

[2 or ECPA]0= 50 mM; [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM; [n-BuNH2]0 = 0 or 50 mM (for 

ECPA). 
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Table 1.  Template-assisted competitive radical addition of MAA and MMA with 

concentration of 50 mM.
[a]

 

Entry Halide/Additive Solvent k’MAA 

(h
-1

) 

k’MMA 

(h
-1

) 

Selectivity
[b] 

Template 

Effect
[c] 

1 2 toluene 0.679 0.0184 36.9 12.3 

2 ECPA/n-BuNH2  0.657 0.220 2.99  

3 2 THF 0.182 0.0375 4.85 4.11 

4 ECPA/n-BuNH2  0.511 0.430 1.18  

5 2 DCE
[d] 

0.575 0.338 1.70 1.34 

6 ECPA/n-BuNH2  0.481 0.378 1.27  

7 2 EtOH 0.365 0.332 1.10 1.28 

8 ECPA/n-BuNH2  0.570 0.663 0.859  

[a] Reaction conditions: [MAA]0 = [MMA]0 = [halide]0 = 50 mM [n-BuNH2]0 = 0 or 50 mM, 

[Ru(Ind)Cl(PPh3)2]0 = 4.0 mM at 80 °C.  [b] [Selectivity] = k’MAA/k’MMA.  [c] The ratio of 

Selectivity between the template system and the corresponding non-template one; [Template 

Effect] = [Selectivity]2/[Selectivity]ECPA.  [d] dichloroethane. 

 

Table 2.  Template-assisted competitive radical addition of MAA and MMA with 

concentration of 100 mM.
[a]

 

Entry Halide/Additive Solvent k’MAA 

(h
-1

) 

k’MMA 

(h
-1

) 

Selectivity
[b] 

Template 

Effect
[c] 

1 2 toluene 0.857 0.172 4.98 1.49 

2 ECPA/n-BuNH2  1.62 0.485 3.34  

3 2 THF 0.251 0.0897 2.80 2.15 

4 ECPA/n-BuNH2  0.463 0.357 1.30  

5 2 DCE
[d] 

0.254 0.0781 3.25 1.43 

6 ECPA/n-BuNH2  0.862 0.379 2.27  

7 2 EtOH 0.324 0.183 1.77 1.95 

8 ECPA/n-BuNH2  0.454 0.500 0.908  

[a] Reaction conditions: [MAA]0 = [MMA]0 = [halide]0 = 100 mM [n-BuNH2]0 = 0 or 100 

mM, [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM at 80 °C.  [b] [Selectivity] = k’MAA/k’MMA.  [c] The 

ratio of Selectivity between the template system and the corresponding non-template one; 

[Template Effect] = [Selectivity]2/[Selectivity]ECPA.  [d] dichloroethane. 
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Conclusion 

 

The author has demonstrated a quantitative and highly selective radical addition using 

a template initiator (2) containing a built-in amine group as the recognition site for the 

carboxyl group of the substrate in the close vicinity of the radical-forming site.  Obviously, 

the designed placement of the recognition site is important, and it should also be noted that 

both the radical formation and the subsequent addition are finely controlled by the ruthenium 

complex, are free from undesirable side-reactions, and maximize the expression of template 

recognition.  Another contributing factor is that the template initiator can be cleanly and 

conveniently synthesized by living cationic addition/polymerization reactions. 

These results for the model addition reactions were extended to “template-assisted” 

polymerizations as described in Chapter 5. 
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Template-Assisted Radical Addition: 

Size-Selective Lariat Capture 

with Crown Ether Template Initiator 

 

 

 

 

 

Abstract 

Surprisingly high monomer selectivity was demonstrated in competitive radical 

addition with two kinds of methacrylates carrying sodium and ammonium cation.  Crucial is 

size-specific recognition by lariat crown ether, embedded close to reactive halide in a designer 

template initiator.  Especially, a combination with active ruthenium catalyst led to 

outstanding selectivity at low temperature.  This template system will open the way to 

unprecedented sequence-regulated polymerization.
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Introduction 

 

The repeat-unit sequence, or monomer sequence, in proteins, genes, and other natural 

polymers is perfectly controlled by template molecules that carry predetermined sequence 

information through which substrate monomers are selectively recognized and connected 

(“sequence-regulated” polymerization).  Sequence regulation in macromolecules implies that 

functional groups are placed at specific positions in a polymeric framework in order to 

express specific structures (conformations) and, in turn, particular functions.  Thus, 

sequence-regulated macromolecules may work as autonomous single molecules that function 

without depending on assembly, aggregates, or other multimolecular architectures. 

In contrast, with repeat units just randomly and averagely incorporated conventional 

synthetic polymers (e.g., plastics in solid state) mostly work as a multimoleular assemblies 

where simple amplification of intermolecular interactions among repeat units leads to superior 

mechanical properties.  If the repeat-unit sequence is precisely controlled in artificial 

polymers, more sophisticated and perhaps unprecedented functions or properties may emerge, 

rivaling natural polymers.  Therefore, sequence regulation is no doubt one of the most 

challenging subjects in contemporary polymer science, and some efforts, including the 

author’s,
1-4

 have now been directed to achieve this ultimate goal, although it has not yet been 

perfectly achieved. 

In Chapter 3, the author started to examine the possibility of template-assisted
5
 

sequence regulation in chain-growth polymerizations (Scheme 1a).
3a

  Therein the author 

utilized living polymerizations
6, 7

 with “template initiators” that carry not only an initiating 

site but also a built-in template for sequence regulation.  Such initiators may be synthesized 

from a heterobifunctional precursor (1) carrying two carbon–chlorine bonds ortho to each 

other in a rigid benzene framework: the haloether part is for embedding of a template 

molecule by living cationic polymerization or related reactions, and the haloester is for 

metal-assisted living radical propagation toward sequence control.  Obviously, the close 

proximity of the template and the radical-growing sites within the rigid aromatic framework is 

designed to maximize the so-called “template effect” in sequence regulation. 

As illustrated in Scheme 1a, living cationic polymerization is promising for template 

synthesis, as it allows precise single monomer-additions, as the author’s group demonstrated;
2, 

3b
  moreover living radical polymerization is suitable for template-assisted propagation 

because the growing radicals are highly tolerant of polar functionalities within the monomers 
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and templates. 

The author’s first study in this lines
3a

 in fact demonstrated a clear template effect in a 

selective radical addition
8
 of methacrylic acid (MAA) over methyl methacrylate with an 

amino-functionalized template initiator (2; Scheme 1b).  Specifically, the built-in amino 

group recognized the acid monomer over the ester derivative via ionic interaction and thereby 

enhanced the former’s radical reactivity by more than an order of magnitude relative to the 

corresponding non-template systems.  In order to achieve a truly sequence-controlled 

polymerization, however, this heralding finding should be generalized, i.e., the 

substrate−template “recognition combination” should be diversified beyond the acid–amine 

pair.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.  (a) Conceptual sequence-regulated radical polymerization with a template 

initiator (1) carrying two reactive C–Cl bonds for living cationic and radical polymerizations; 

(b) Selective radical addition of MAA with an amino-functionalized template initiator (2) via 

ionic recognition. 
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Experimental Section 

 

Materials 

Heterobifunctional (radical/cationic) initiator 1 was prepared as reported in Chapter 

3.
3a

  Triethylamine was dried overnight over calcium chloride and distilled before use.  

Chromatography-grade dichloromethane (CH2Cl2) was purified to moisture- and oxygen-free 

by passing through a purification column (Solvent Dispersing System; Glass Contour) before 

use.  2-Hydroxymethyl-15-crown 5-ether (Tokyo Kasei) was used as received. 

Sodium methacrylate (NaMA; Aldrich, >99%), methacryloyloxyethyltrimethyl- 

ammonium chloride (ACMA; Wako; >97%), Ru(Ind)Cl(PPh3)2 (Strem, >98%) and 

Ru(Cp*)Cl(PPh3)2 (Aldrich) was used as received and handled in a glove box under a 

moisture- and oxygen-free argon atmosphere (H2O < 1 ppm; O2 < 1 ppm).  Ethyl 

2-chloro-2-phenylacetate (ECPA; Aldrich; >97%) was distilled under reduced pressure before 

use.  Tetralin (1,2,3,4-tetrahydronaphtalene; 
1
H NMR internal standard for NaMA and 

ACMA) was dried overnight over calcium chloride and doubly distilled from calcium hydride 

under reduced pressure before use.  Ethanol (solvent; Wako; >99.5%) was degassed by 

bubbling dry nitrogen for more than 15 min before use.  15-Crown-5 (Alfa Aesar; 98%) was 

used as received. 

 

Template initiator, CEI 

To a solution of 2-hydroxymethyl-15-crown 5-ether (0.90 g, 3.60 mmol) and 

trimethylamine (0.502 mL, 3.60 mmol) in CH2Cl2 (9.14 mL) was added a solution of 1 (840 

mM in CH2Cl2; 2.86 mL) at r.t. under dry argon, and the solution was subsequently stirred for 

6 h (100% conversion).  The solvent was evaporated under reduced pressure, and the crude 

product was purified by preparative size-exclusion chromatography (column, Shodex 

KF-5001; eluent, THF): isolated yield, 57%.  
1
H NMR (CDCl3): δ 7.49 (m, 2H), 7.35 (m, 

3H), 7.30-7.18 (m, 2H), 6.88 (m, 2H), 5.40 (s, 1H), 5.27 (m, 2H), 4.79 (m, 1H), 4.07 (t, 2H), 

3.90-3.47 (m, 23H), 1.32 (d, 3H).  
13

C NMR (CDCl3): δ 168.14, 156.66, 135.84, 129.74, 

129.46, 129.21, 128.78, 128.01, 123.68, 120.68, 111.66, 78.83, 71.33, 71.10, 70.92, 70.81, 

70.59, 70.54, 70.51, 70.37, 70.23, 67.71, 65.24, 63.57, 59.11, 19.54.  A representative 
1
H 

NMR spectrum is shown in Figure 1.  LR MS (ESI) (m/z): [M + Na]
+
 calcd for C30H41ClO10, 

619.24; found 619.1. 
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Radical addition 

The reaction was carried out under dry argon in sealed glass tubes.  A typical 

example with the template initiator CEI is given below:  In a 50-mL round bottomed flask 

was placed CEI (97.9 mg), Ru(Ind)Cl(PPh3)2 (27.6 mg), NaMA (48.0 mg), ACMA (92.3 mg), 

and then ethanol (8.72 mL), tetralin (0.10 mL) and ECPA (0.075 mL) were added sequentially 

in this order at room temperature under dry argon.  The total volume of the reaction mixture 

was thus 8.90 mL.  Immediately after mixing, aliquots (0.40 mL each) of the solution were 

injected into baked glass tubes, which were then sealed and placed in an oil bath kept at 

80-40 °C or ice bath kept at 0 °C.  At predetermined intervals, the reaction was terminated 

by cooling the reaction mixtures to –78 °C  Monomer conversion was determined from the 

concentration of residual monomer, measured by 
1
H NMR with tetralin as an internal 

standard. 

 

Measurements 

1
H NMR spectra were recorded on a JEOL JNM-LA500 spectrometer, operating at 

500.16 MHz.  Electrospray-ionization mass spectra (ESI-MS) were measured on a Waters 

Quattro micro API.  
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Results and Discussion 

 

1. Synthesis of CEI 

In this chapter, a crown ether moiety was newly embedded as an alternative 

recognition site in the template initiator (CEI; Figure 1) to recognize ionic monomers 

according to their cation size.
9
  Thus, a crown ether alcohol, 2-hydroxymethyl-15-crown 

5-ether, was allowed to react with the haloether C–Cl bond in 1, at room temperature in the 

presence of triethylamine, to give the target initiator CEI in high yield (Figure 1). 

While starting with the same precursor 1 as before, the author incorporated the 

recognition site the electrophilic substitution of the haloether C–Cl bond rather than 

electrophilic addition across a C=C bond as done previously.
3a

  It should be noted that the 

latter is a propagation model for cationic polymerization, whereas the former is for 

cation-quenching, thus showing the versatility of the haloether function in template 

construction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Competitive Radical Addition via Size-Selective Template Recognition 

Sodium methacrylate (NaMA) was selected as a targeting monomer for the 15-crown 

5-ether site, as sodium cation is known to be specifically recognized by this crown ether via 

its ion-fitting size.  Methacryloyloxyethyltrimethylammonium chloride (ACMA) was 

examined as a competing ionic monomer carrying an unfitted larger cation.  First, the 

size-specific recognition by 15-crown-5 was monitored by 
1
H NMR spectroscopy in EtOH-d6 

Figure 1.  Synthetic scheme and 
1
H NMR spectrum of CEI in CDCl3. 
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at 40 °C (Figure 2).  When NaMA was mixed with an equimolar amount of the ether 

([NaMA] = [15-crown-5] = 50 mM), the methylene peak d of the latter was clearly shifted 

downfield from 3.64 to 3.70 ppm, and those of the NaMA olefin (a) were shifted upfield from 

5.73/5.13 to 5.70/5.10 ppm (Figure 2a, c, d).  These shifts show some interaction between 

the two components and most likely indicate capture of the sodium cation into the cyclic ether 

moiety.  On the other hand, such peak shifts were not observed with ACMA (Figure 2b, c, e), 

indicating that no recognition or capture of the ammonium cation occured.  More 

importantly, and relevant to competitive reactions with the two monomers (see below), the 

selective recognition of NaMA occurred even in the presence of ACMA (Figure 2f).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  
1
H NMR spectra of cationic monomers and 15-crown-5 in EtOH-d6 at 40 °C: (a) 

[NaMA] = 50 mM; (b) [ACMA] = 50 mM; (c) [15-crown-5] = 50 mM; (d) [NaMA] = 

[15-crown-5] = 50 mM; (e) [ACMA] = [15-crown-5] = 50 mM; (f) [NaMA] = [ACMA] = 

[15-crown-5] = 50 mM. 
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Encouraged by these findings, the author carried out a competitive radical addition of 

NaMA and ACMA with CEI in ethanol at 40 °C via coupling with Ru(Ind)Cl(PPh3)2 (Ind = 

η5
-C9H7), one of the active catalysts for radical addition

10
 and living radical polymerization

11
 

(Scheme 2).  Figure 3a shows time–conversion curves during the initial 4 h.  NaMA was 

smoothly consumed, while an induction period was observed for the consumption of ACMA 

during which only the sodium monomer was specifically incorporated into the radical site of 

CEI.  The apparent rate constants (k’) of the two monomers were calculated from the initial 

slopes of first-order plots and found to have the values: k’NaMA = 0.186 h
-1

 and k’ACMA = 5.10 

× 10
-3

 h
-1

.  These results show that NaMA reacted ~36 times faster than ACMA 

(k’NaMA/k’ACMA = 36.4). 

As a control experiment, a similar competitive reaction was performed with a 

template-free initiator, ethyl 2-chloro-2-phenylacetate (ECPA), in the presence of 15-crown-5 

(Figure 3b).  Importantly, a definitely opposite tendency was observed: NaMA consumption 

was slower than that of ACMA (k’NaMA = 4.28 × 10
-2

 h
-1

, k’ACMA = 0.119 h
-1

, k’NaMA/k’ACMA = 

0.359), and thus, the selectivity enhancement by the template was more than 2 orders of 

magnitude: 36.4/0.359 = 101.4.  From these results, the crown ether moiety on the initiator 

was found to selectively accelerate the addition of NaMA via specific recognition (template 

effect) by the crown ether, which approximates the substrate to the radical reaction site (or its 

dormant C–Cl form). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 2.  Ruthenium-catalyzed competitive radical addition of NaMA and ACMA with 

crown template initiator or template-free initiator (ECPA). 
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Here the author expediently defines the ratio k’NaMA/k’ACMA with CEI (template) to 

that with ECPA (non-template) as “template effect factor (TE)”.  Thus, TE was evaluated as 

101.4 for the above-described competitive reactions at 40 °C.  As expected, decreasing the 

reaction temperature increased TE (Figure 4 and Table 1), but at all of the temperatures 

examined, the template effect was indeed operable (TE >> 1) and beyond the experimental 

errors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Time–conversion curves in competitive radical addition of NaMA and ACMA 

with (a) CEI and (b) ECPA in EtOH at 40 °C: [NaMA]0 = [ACMA]0 = [initiator]0 = 50 mM; 

[Ru(Ind)Cl(PPh3)2]0 = 4.0 mM; [15-crown-5]0 = 50 mM (only when ECPA was used as an 

initiator). 

Figure 4.  Monomer selectivity on competitive radical addition of NaMA and ACMA with 

CEI or ECPA in EtOH at (a) 80, (b) 60, and (c) 40 °C: [NaMA]0 = [ACMA]0 = [initiator]0 = 

50 mM; [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM; [15-crown-5]0 = 50 mM (only when ECPA was used 

as an initiator). 
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Table 1.  Template-assisted competitive radical addition of NaMA and ACMA with 

Ru(Ind)Cl(PPh3)2.
[a]

 

Entry Initiator Temp 

(°C) 

k'NaMA 

(h
-1

) 

k'ACMA 

(h
-1

) 

Selectivity
[b] 

Template 

Effect
[c] 

1 CEI 80 4.06 0.526 7.72 
12.6 

2 ECPA  0.724 1.18 0.613 

3 CEI 60 0.855 0.0928 9.21 
14.7 

4 ECPA  0.211 0.338 0.624 

5 CEI 40 0.186 0.00510 36.4 
101.4 

6 ECPA  0.0428 0.119 0.359 

[a] Reaction conditions: [NaMA]0 = [ACMA]0 = [initiator]0 = 50 mM; [Ru(Ind)Cl(PPh3)2]0 = 

4.0 mM; [15-crown-5]0 = 50 mM (only when ECPA was used).  [b] [Selectivity] = k'NaMA/ 

k'ACMA.  [c] The ratio of Selectivity between the template system and the corresponding 

non-template one; [Template Effect] = [Selectivity]CEI/[Selectivity]ECPA.  [d] 

[Ru(Ind)Cl(PPh3)2]0 = 10 mM. 

 

 

3. Competitive Radical Addition with Active Catalyst in Lower Temperature 

Sawamoto and co-workers recently found that in living radical polymerization 

pentamethylcyclopentadienyl ruthenium complexes [Ru(Cp*)Cl(PR3)2; Cp* = η5
-C5(CH3)5; R 

= phenyl etc.] are active enough to catalyze living radical polymerization in ethanol even at a 

temperature as low as 40 °C.
12

  Therefore, Ru(Cp*)Cl(PPh3)2 was next employed for the 

NaMA/ACMA competitive addition at temperatures lower than 60 °C (Figure 5).  For 

example, as shown in Figure 5a, NaMA was smoothly and quantitatively consumed at 40 °C 

(conv. ≈ 100% in 7 h), with k’NaMA = 1.27 h
-1

, still higher than that with Ru(Ind)Cl(PPh3)2 at 

60 °C (0.855 h
-1

).  On the other hand, ACMA reacted slower (conv. ≈ 30% in 7 h at 40 °C; 

k’ACMA = 0.108 h
-1

): the selectivity k’NaMA/k’ACMA was thus estimated to be 11.8. 

At 0 °C (Figure 5b), the rate difference between NaMA and ACMA was more 

outstanding: the former reacted smoothly and had k’NaMA = 0.0157 h
-1

, whereas the latter was 

hardly consumed and had k’ACMA = 0.0003 h
-1

, leading to a much higher selectivity 

(k’NaMA/k’ACMA = 52.3).  A similar trend was obtained at 25 °C (Table 2).  All of these 

results demonstrate a superior recognition effect of CEI for NaMA. 
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Table 2.  Template-assisted competitive radical addition of NaMA and ACMA with 

Ru(Cp*)Cl(PPh3)2.
[a]

 

Entry Temp. (°C) k'NaMA (h
-1

) k'ACMA (h
-1

) Selectivity
[b] 

1 40 1.27 0.108 11.8 

2 25 0.197 0.0074 26.6 

3 0 0.0157 0.0003 52.3 

[a] Reaction conditions: [NaMA]0 = [ACMA]0 = [CEI]0 = 50 mM; [Ru(Cp*)Cl(PPh3)2]0 = 4.0 

mM.  [b] [Selectivity] = k'NaMA/ k'ACMA. 

 

 

Figure 5.  Time-conversion curves in competitive radical addition of NaMA and ACMA 

with CEI in EtOH at (a) 40 and (b) 0 °C: [NaMA]0 = [ACMA]0 = [CEI]0 = 50 mM; 

[Ru(Cp*)Cl(PPh3)2]0 = 4.0 mM. 
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Conclusion 

 

The author has demonstrated a highly selective radical addition with a template 

initiator (CEI) that carries a crown ether embedded close to a radical initiating site.  Such a 

“lariat capture” of the sodium cation monomer (NaMA) by a crown macrocycle is therefore 

crucial for the observed size-specific molecular recognition (Figure 6), and the proximity 

effect allows surprisingly high substrate selectivity (TE > 100) in comparison with the 

non-template system. 
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Chapter 5 

 

 

Template-Assisted Radical Addition and Copolymerization: 

Adequate System Design of Template Initiators 

for High Substrate Selectivity 

 

 

 

 

 

Abstract 

“Template initiator” platforms (1) have been designed for expressing the sequence 

information in a template in radical polymerization.  Thus, the author demonstrated the 

structural adequacy of 1 consisting of two initiating sites placed ortho to each other in 

benzene: one for living cationic polymerization to introduce a template carrying 

substrate-recognition tags, and the other for metal-catalyzed living radical polymerization to 

achieve sequence regulation.  For example, for two positional isomers with an amine 

template for an acid monomer, only the ortho initiator induced selective radical addition of 

methacrylic acid (MAA; recognizable) over methyl methacrylate (MMA; non-recognizable).  

Another version was an oligo(vinyl ether) with a multiple amine template, which 

demonstrated template effects for MAA recognition over benzyl methacrylate (BzMA) in 

copolymerization. 
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Introduction 

 

Nature skillfully utilizes template systems to produce well-defined biopolymers, and 

they possess incomparably more advanced functions than synthetic polymers.  Among the 

controlled structural factors typical in biopolymers, monomer sequence (the order of 

constitutional repeat-units along a polymer backbone) is essential to express specific 

three-dimensional structures and thereby the structure-based functions.  On the other hand, 

in artificial polymerizations, the sequence control is still undeveloped, although the precision 

control of chain length as well as terminal, block (segmental), and branch structures have 

been achieved by living polymerization techniques.
1, 2

  Recently, sequence regulation in 

polymerization has begun to be intensively investigated,
3-6

 but, no general and efficient ways 

have been achieved yet.   

A promising way to realize sequence control would be to mimic template systems in 

nature.  The author has thus embarked template-assisted living radical polymerization with 

designer “template initiators” carrying recognition units (template) in the vicinity of a radical 

initiating site (Scheme 1).
5a, 5c

  “Template polymerization” has indeed been studied for some 

time with templates that are mostly added into a polymerization mixture separately from an 

initiating system, but their so-called template effects are limited to enhancement of 

polymerization rate or yield and rather minor stereochemical control.
7
  To the author’s 

knowledge, there have been few reports on the sequence regulation by template systems, 

presumably because of difficulty in template synthesis and in demonstrating a truly 

template-driven substrate-selective polymerization. 

 

 

 

 

 

 

 

 

 

 

 
Scheme 1.  Template-assisted living radical polymerization. 
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In Chapter 3 and 4, the author has proposed “template initiator” platforms, 

heterobifunctional (radical/cationic) initiators (1) that carry two vicinal carbon–chlorine bonds 

placed ortho to each other in a rigid aromatic framework.  In the author’s strategy, 

“template” is synthesized and built-in within the platform via living cationic polymerization 

from the chloroether part, and sequence control is to be achieved via metal-catalyzed living 

radical polymerization from the neighboring chloroester that triggers a quantitative initiation 

from the edge of the ortho-template within the same platform.   Here, as the author’s group 

demonstrated,
4, 5c

 the cationic system is suitable for the construction of a template, since it 

allows a controlled single addition of a selected monomer (or “step-growth” propagation) 

that is also functionally tolerant and precisely tunable in accordance with the substrate's 

reactivity and/or bulkiness. 

The author has already reported the initial work in this line to demonstrate the 

“template effect” on monomer selectivity with a template initiator carrying one amino unit (2; 

Figure 1) for ruthenium-catalyzed competitive radical addition of methacrylic acid (MAA; 

recognizable) over methyl methacrylate (MMA; non-recognizable).
5a

  Namely, the 

template-amino moiety recognized the acid monomer via an ionic interaction 

(–NH3
+
...

–
OCO–) to allow its preferential incorporation. 

In this chapter, the author now examined the structural design adequacy of his 

template initiators, especially for the proximity effect of the ortho-positioned template and 

radical initiating site.  Thus, the author prepared the meta counterpart (3) consisting of the 

same template and initiator components, chemically identical but positionally different, to 

compare with the ortho isomer in terms of the monomer selectivity in competitive radical 

addition.  Also, to examine the template effects in a “polymerization” with this platform, the 

author newly prepared an oligo(vinyl ether) (4) to which multiple amino pendent groups as a 

template are introduced via living cationic polymerization, and employed it for the 

ruthenium-catalyzed radical copolymerization of MAA and benzyl methacrylate (BzMA). 

In the ortho versus meta adequacy comparison, little selectivity was observed with the 

meta-based initiator, as with a non-template model initiator, indicating that the ortho 

placement within 2 is critical to induce a selective radical addition through the proximity 

effect of the recognition site (amine) relative to the initiating site (C–Cl).   With the multiple 

tag system (4), the recognizable monomer (MAA) was consumed clearly faster than the 

non-recognizable partner (BzMA).  This specific trend was definitely opposite to the 

copolymerizations with a non-templated model initiator.  
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Experimental Section 

 

Materials 

Methacrylic acid (MAA; Tokyo Kasei; >99%) was dried overnight over calcium 

chloride and distilled under reduced pressure before use.  Methyl methacrylate (MMA; 

Tokyo Kasei, >99%) was dried overnight over calcium chloride and distilled twice from 

calcium hydride under reduced pressure before use.  Benzyl methacrylate (BzMA; Tokyo 

Kasei; >98%) was purified by passing through an inhibitor removal column (Aldrich) and was 

subsequently degassed by triple vacuum-argon bubbling cycles before use.   2-Azidoethyl 

vinyl ether (AzVE),
8
 a heterobifunctional initiator (1),

5a
 a hydrogen chloride adduct of 

2-chloro ethyl vinyl ether (CEVE-HCl),
9
 and an amine-carrying template radical initiator (2)

5a
 

were prepared according to literatures.  Meta-substituent model initiator (3) was synthesized 

as same as 2, starting from 3-hydroxybenzyl alcohol.  Ethyl 2-chloro-2-phenylacetate 

(ECPA; Aldrich; >97%) was distilled under reduced pressure before use.  Ru(Ind)Cl(PPh3)2 

(Ind = η5
-C9H7; Strem; >98%) was used as received and handled in a glove box under a 

moisture- and oxygen-free argon atmosphere (H2O < 1 ppm, O2 < 1 ppm).  Butylamine 

(n-BuNH2; Tokyo Kasei; >99%) and ethanol (solvent) were degassed by bubbling dry 

nitrogen for more than 15 min before use.  Tetralin (1,2,3,4-tetrahydronaphtalene, 
1
H NMR 

internal standard for MAA, MMA and BzMA) was dried overnight over calcium chloride and 

doubly distilled from calcium hydride under reduced pressure before use.  

Chromatography-grade dichloromethane (CH2Cl2; solvent) and toluene (solvent) were 

purified to moisture- and oxygen-free by passing through a purification column (Solvent 

Dispensing System; Glass Contour) before use.  SnCl4 (1.0 M in CH2Cl2; Aldrich), LiBH4 

(2.0 M in THF; Aldrich), and triphenylphosphine (Wako; >97%) were used as received. 

 

Template Macroinitiator (4) and Initiator-Free Template (5) 

Living cationic polymerization of AzVE was performed under dry argon in baked 

glass flasks equipped with a three-way stopcock.  A typical one is given below.  The 

reaction was initiated by adding a solution of SnCl4 (in CH2Cl2) into a mixture of an initiator 

(1) and AzVE in CH2Cl2 at –78 °C by a dry syringe ([1]0 = 10 mM; [AzVE]0 = 100 mM; 

[SnCl4]0 = 20 mM).  After 5 min, LiBH4 (3 equiv. for the initiator) was added, and the 

reaction mixture was stirred at 0 °C for an additional 30 min, followed by addition of water to 

decompose the residual LiBH4.  The quenched reaction mixture was diluted with 
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toluene/n-hexane [1/1 (v/v)], washed sequentially with dilute hydrochloric acid and aqueous 

sodium chloride, evaporated under reduced pressure, and finally vacuum dried.  The crude 

polymer was further purified by preparative size-exclusion chromatography (column: Shodex 

KF-5003; eluent, THF).  The obtained polymer [Mn = 1,860, DPn = 13.4 (by 
1
H NMR), 

Mw/Mn = 1.18] (0.167 g; 1.20 mmol of azide groups) and triphenylphosphine (0.644 g; 2.45 

mmol) were dissolved into DMF (5.0 mL).  Hydrochloric acid (36 wt.-%; 0.25 mL) was 

added, and the mixture was stirred for 24 h at room temperature.  The solvent was 

evaporated, and the crude product was dispersed in 1,4-dioxane, treated with NaHCO3 

aqueous solution for neutralization, and then isolated by evaporation.  Methanol was added 

to the product and the soluble part was isolated by filtration.  Then, the filtrate solution was 

concentrated by evaporation, and doubly precipitated into toluene.   

 

Radical Addition/Polymerization 

The reaction was carried out under dry argon in baked and sealed glass tubes.  A 

typical example with the template initiator 2 is given below:  In a 50-mL round-bottomed 

flask was placed 2 (0.085 g), and toluene (3.42 mL), tetralin (0.100 mL), solutions of MAA (1 

M in toluene; 0.195 mL) and MMA (1 M in toluene; 0.195 mL) were added sequentially in 

this order at room temperature under dry argon.  The resulting mixture was totally 

transferred by syringe under dry argon to a 50-mL round-bottomed flask containing 

Ru(Ind)Cl(PPh3)2 (12.1 mg).  The total volume of the reaction mixture was thus 3.90 mL.  

Immediately after mixing, aliquots (0.40 mL each) of the solution were injected into baked 

glass tubes, which were then sealed and placed in an oil bath kept at 80 °C.  At 

predetermined intervals, the reaction was terminated by cooling the reaction mixtures to 

–78 °C.  Monomer conversion was determined from the concentration of residual monomer 

measured by 
1
H NMR with tetralin as an internal standard. 

 

Measurements 

The Mn and Mw/Mn of the polymers were determined by size-exclusion 

chromatography (SEC) in THF at 40 °C using polystyrene gel columns (Shodex KF 400RL × 

2 and KF-400RH) that were connected to a Shodex DU-H2000 precision pump, a Shodex 

RI-74 refractive index detector, and a Shodex UV-41 UV/vis detector set at 250 nm.  The 

columns were calibrated against 13 standard polystyrene samples (Tosoh; Mw = 

500-3,840,000; Mw/Mn = 1.01-1.14).  
1
H NMR spectra were recorded on a JEOL 
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JNM-LA500 spectrometer, operating at 500.16 MHz.  

 

 

Results and Discussion 

 

1. Template effects in competitive radical addition: Ortho versus Meta Template 

Placement 

Competitive radical additions of MAA and MMA were performed with three initiators, 

i.e., the ortho-templated (2), its meta isomer (3), and a non-templated version (ECPA) with an 

identical initiating site, in conjunction with a ruthenium catalyst [Ru(Ind)Cl(PPh3)2 (Ind = 

η5
-C9H7)]

10
 in toluene at 80 °C: [initiator]0 = [MAA]0 = [MMA]0 = 50 mM; [Ru(Ind)]0 = 4.0 

Figure 1.  Template initiator-assisted competitive radical addition of MAA and MMA with 

Ru(Ind)Cl(PPh3)2 in toluene at 80 °C: (a-c) Time–conversion curves using the various 

initiator [(a) 2, (b) 3, and (c) ECPA] and (d) comparison of the reaction selectivity using 

various initiating systems: [Initiator]0 = [MAA]0 = [MMA]0 = 50 mM; [n-BuNH2]0 = 50 mM 

(when using ECPA as the initiator); [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM. 
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mM.  The reactions were conducted deliberately under equimolar conditions to evaluate 

template effects, different from typical metal-catalyzed radical additions in which an excess 

amount of an initiator (halide) was used over monomers to prevent oligomerization.
11

  The 

template initiators (2 and 3) were synthesized via cationic selective monoaddition of a 

Boc-protected vinyl ether with the dual initiator platform (1) and the subsequent deprotection 

to embed a single unit of an amino group.
5a, 5c

 

As shown in Figure 1a, with the ortho initiator (2), the addition of MMA was inhibited 

during the first one hour, while MAA was smoothly consumed.  The selectivity for MAA 

over MMA, estimated from the ratio of the initial-first order rate constant (k’MAA/k’MMA), 

reached about 40 (k’MAA/k’MMA = 36.9: k’MAA = 0.679; k’MMA = 0.0184; Figure 1d).  On the 

other hand, in the case with the meta initiator (3), MMA reacted without such an induction 

period, although the rate was smaller than MAA (Figure 1b).  The calculated selectivity 

(k’MAA/k’MMA) was about 3.48 (k’MAA = 0.657; k’MMA = 0.189), which was similar to that with 

non-template initiator [ethyl 2-chloro-2-phenyl acetate (ECPA)] in the presence of n-BuNH2 

(k’MAA/k’MMA = 2.99: k’MAA = 0.657; k’MMA = 0.220; Figure 1c).  These results indicate that 

the distance between the recognition site (amine) and the reactive site (C–Cl), or the 

proximity to the recognition site, is essential to induce the high selectivity of 2.  

 

2. Template effects on radical copolymerization of MAA and BzMA 

To establish a truly sequence-controlled “polymerization” with the template initiator 

platform (1), ideally, an array of multiple and different recognition sites should be 

sequentially introduced into the template part via living cationic polymerization from the 

haloether initiator site.  Here, prior to such a promising but laborious attempt, a single kind 

of a recognition group (amine) was repetitively embedded into the template to examine the 

“template effects” on copolymerization of a recognizable monomer (methacrylic acid: MAA) 

with a non-recognizable comonomer (benzyl methacrylate: BzMA) (Scheme 2). 

Multiple amine groups were embedded via direct living cationic polymerization of an 

azide-carrying vinyl ether (AzVE), which was developed by the author toward a universal 

syntheses of functional poly(vinyl ether)s.
8
  The pendent azide groups in poly(AzVE) can be 

converted into amines by Staudinger reduction under mild conditions.
12

 

Living cationic polymerization of AzVE with 1 was carried out in conjunction with 

SnCl4 (catalyst) in CH2Cl2 solvent at –78 °C: [AzVE]0 = 100 mM; [1]0 = 10 mM; [SnCl4]0 = 

20 mM (Scheme 2).  The obtained poly(AzVE) was well-controlled with narrow molecular 
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weight distribution (Mn = 2,200; Mw/Mn = 1.18; Figure 2).  The pendent azides were then 

converted into primary amines with two equivalents of triphenylphosphine in DMF/HClaq; the 

acidic condition was essential to avoid a decomposition of the α-haloester radical initiating 

site.  The quantitative conversion into amine groups was verified by 
1
H NMR spectroscopy, 

to show that the resultant template macroinitiator (4) possessed on average 15 amine units per 

molecule (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.  Synthesis of the template macroinitiator and ruthenium-catalyzed radical 

copolymerization of MAA and BzMA. 

Figure 2.  SEC curve of the poly(AzVE) as the precursor for the template macroinitiator 

synthesized by SnCl4-mediated living cationic polymerization of AzVE in CH2Cl2 at -78 °C: 

[AzVE]0 = 100 mM; [1]0 = 10 mM; [SnCl4]0 = 20 mM. 
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Using this macroinitiator (4), 1:1 radical copolymerization of MAA and BzMA was 

examined under the catalysis by Ru(Ind)Cl(PPh3)2 in ethanol (Scheme 2).  The initiator 

concentration was set so that the pendent amine in 4 be equimolar to MAA and BzMA: 

[MAA]0 = [BzMA]0 = 150 mM; [4]0 = 10 mM (i.e., the total amine concentration is 150 mM 

for the initiator with DPn = 15).  As shown in Figure 4a, the conversion of MAA was fast 

and smooth, whereas that of BzMA was slow and retarded.  On the other hand, the 

copolymerization with a non-template initiator (ECPA) gave a diametrically opposite 

tendency: BzMA was more reactive than MAA (Figure 4b).  Such a reactivity inversion with 

the macroinitiator would indicate a template effect: MAA was selectively recognized by the 

template via ionic interaction with the pendent amines and was thereby condensed around the 

initiating site or the growing radical. 

Importantly, the template initiator system with 4 should be differentiated from more 

conventional “initiator-free” template systems where a template and an initiator are separate 

Figure 3.  
1
H NMR spectra of (a) the precursor poly(AzVE) in CDCl3 and (b) the template 

macroinitiator in CD3OD. 
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molecules.  Thus, MAA–BzMA copolymerization was carried out with ECPA, a 

template-free initiator with the identical initiating site as in 4, in the presence of a poly(vinyl 

ether) carrying pendent amino groups [5; Mw/Mn = 1.15 (SEC); DPn = 11.2; Mn = 1100 (
1
H 

NMR)] as a template for MAA (Figure 4c).  Although the conversion of MAA was a little 

higher with the ECPA/5 pair than with ECPA alone without 5, the relative reactivity order for 

the former was opposite (BzMA > MAA) to that for the system with 4.  In the ECPA/5 

system, the initiating site and the template were separate from each other, rendering specific 

substrate recognition by 5, if any, less effectively expressed in the reaction. 

These comparative experiments demonstrate the placement of the initiating site close 

to the recognition sites (as in 4) to be essential to express template effects as well as specific 

monomer recognition.  This point should be more important when template initiator 

platforms are applied for sequence-regulated polymerization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Time–conversion curves of ruthenium-catalyzed radical copolymerizaion of 

MAA and BzMA with various initiating systems in ethanol at 80 °C: [MAA]0 = [MMA]0 = 

150 mM; [Ru(Ind)Cl(PPh3)2]0 = 4.0 mM; (a) the template initiator: [4]0 = 10 mM; (b) 

non-template system: [ECPA]0 = 10 mM; [n-BuNH2]0 = 150 mM; (c) initiator-free template: 

[ECPA]0 = 10 mM; [pendent amine]0 = 150 mM. 
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Conclusion 

 

The structural adequacy of the template initiator platform (1) was studied in regard to 

sequence-controlled polymerization.  Comparative experiments with similar but 

non-templated initiators in competitive radical addition and copolymerization indicated that 

the ortho position design and the guaranteed initiating point at the edge of the template were 

crucial to induce desired template effects, i.e., recognized monomers selectively reacted or 

polymerized.  In the future, more sophisticated design and synthesis of the template 

component in 1 would open the door to truly sequence-regulated polymerization. 
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