
Title Variant and invariant patterns embedded in human locomotion
through whole body kinematic coordination.

Author(s) Funato, Tetsuro; Aoi, Shinya; Oshima, Hiroko; Tsuchiya,
Kazuo

Citation Experimental brain research. Experimentelle Hirnforschung.
Expérimentation cérébrale (2010), 205(4): 497-511

Issue Date 2010-09

URL http://hdl.handle.net/2433/142025

Right The final publication is available at www.springerlink.com

Type Journal Article

Textversion author

Kyoto University



1 

Variant and invariant patterns embedded in 
human locomotion through whole body 
kinematic coordination 

Tetsuro Funato, Shinya Aoi, Hiroko Oshima, Kazuo Tsuchiya 

T. Funato, Department of Mechanical Engineering and Science, Kyoto University, 
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan  
Tel. & Fax: +81-774-65-6489 funato@me.kyoto-u.ac.jp.  

S. Aoi, Department of Aeronautics and Astronautics, Kyoto University, Yoshida-
honmachi, Sakyo-ku, Kyoto 606-8501, Japan.  
H. Oshima, K. Tsuchiya, Department of Energy and Mechanical Engineering, Doshisha 
University, 1-3 Tatara-miyakodani, Kyotanabe-shi, Kyoto 610-0321, Japan  
 
Received: date / Accepted: date 
Abstract Step length, cadence and joint flexion all increase in response to increases in gradient 

and walking speed. However, the tuning strategy leading to these changes has not been elucidated. 

One characteristic of joint variation that occurs during walking is the close relationship among the 

joints. This property reduces the number of degrees of freedom, and seems to be a key issue in 

discussing the tuning strategy. This correlation has been analyzed for the lower limbs, but the 

relation between the trunk and lower body is generally ignored. Two questions about posture 

during walking are discussed in this paper: (1) whether there is a low-dimensional restriction that 

determines walking posture, which depends not just on the lower limbs but on the whole body, 

including the trunk; and (2) whether some simple rules appear in different walking conditions. To 

investigate the correlation, singular value decomposition was applied to a measured walking 

pattern. This showed that the whole movement can be described by a closed loop on a two-

dimensional plane in joint space. Furthermore, by investigating the effect of the walking condition 

on the decomposed patterns, the position and the tilt of the constraint plane was found to change 

significantly while the loop pattern on the constraint plane was shown to be robust. This result 

indicates that humans select only certain kinematic characteristics for adapting to various walking 

conditions. 

Keywords Human locomotion, Walking condition, Slope, Intersegmental 

coordination 

Introduction 

Humans walk on different slopes and with different walking speeds by tuning 

their whole body motion. However, the tuning parameters and the tuning strategy 

remain unclear. An increase in walking length and step rate and a decrease in 

duty-rate have been reported as responses to an increase in walking velocity 
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(Milner and Quanbury 1970; Murray et al. 1984; Winter 1987; Stoquart et al. 

2008). Higher levels and longer duration of EMG activation have been reported as 

collateral effects of increases in velocity and slope (Murray et al. 1984; Stoquart 

et al. 2008; Lay et al. 2007). Some research indicates that step length and cadence 

change depending on the slope of the surface (Leroux et al. 2002) while other 

research indicates that these properties are robust against changes of incline (Lay 

et al. 2006). The difference between these results may be caused by different 

walking speeds (Yamazaki et al. 1984).  

   Change in elevation angles is a common characteristic which originates in 

gradient and speed variation. As the gradient increases, the flexion in the lower 

limbs at step landing time increases (Lay et al. 2006; Leroux et al. 2002), the 

amplitude of the motion of trunk and pelvis increases (Murray et al. 1984; Lay et 

al. 2006), and eventually the body bends forward more deeply (Leroux et al. 2002; 

Vogt and Banzer 1999). Some researchers contend that such body leaning is a 

result of tuning the center of mass (COM) position (Leroux et al. 2002), which is 

based on a report that the COM position is moved forward during walking (Iida 

and Yamamuro 1987). Grasso et al. compared walking in three postures: normal 

walking, walking with knee flexion and walking with knee and hip flexion 

(Grasso et al. 2000). Although an increase in the electromyography (EMG) level 

and variation in the activation pattern of every muscle were observed with body 

flexion, the movement patterns of the joints did not change. Furthermore, in the 

same research, a correlated motion of the lower three limbs was reported: all 

limbs moved as if constrained to lie on a two-dimensional plane in joint space, 

and the change in movement corresponding to change of posture can be expressed 

as a change in the orientation of this constraint plane.  

   Relationships among the movements of joints have been found in many 

studies. One that measured joint movement for 108 subjects (Crosbie and 

Vachalathiti 1997) demonstrated a high correlation between hip flexion and pelvic 

list independent of age and gender. Other reports have shown correlations 

between trunk, neck and head (Cromwell 2003) or between the lower limbs 

(Borghese et al. 1996). Taking all these studies together, movement correlations 

between all parts of the body have been reported. Correlation among joint 

movements has been observed and researched not only for walking but also for 

other whole body motions, like voluntary sway (Alexandrov et al. 1998; Martin et 
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al. 1999, 2000) and reaching movements (Thomas et al. 2005; Berret et al. 2009). 

These studies considered all joints, including those of the trunk.  

   In order to investigate detailed characteristics of these correlations, principal 

component analysis (PCA) is frequently used. For human walking, two principal 

components can be derived from the movement of thigh, shank and foot, and 

these two components create a two-dimensional constraint plane for joint 

movement (Borghese et al. 1996; Mah et al. 1994). In addition to the previously 

described postural change, it has been shown by many groups that gradient and 

walking speed change the tilt of the constraint plane (Bianchi et al. 1998; Noble 

and Prentice 2008; Ivanenko et al. 2008), and the level of tilt is thought to be 

determined by the energy required for the movement (Bianchi et al. 1998).  

   The notion that the movements of the lower limbs are constrained on a 

correlation plane and that the effects of walking conditions are integrated into a 

change of that plane (Grasso et al. 2000; Bianchi et al. 1998; Noble and Prentice 

2008; Ivanenko et al. 2008) leads to the idea that the many joints in the lower 

limbs are tuned together. At the same time, it leads to the idea that humans tune 

only a selected property in response to variations in the walking condition. 

However, the existence of such a robust property has not been confirmed 

statistically, and such confirmation is the primary aim of this research. Another 

unsolved issue is the incorporation of trunk movement. Although the importance 

of trunk movement for walking has been emphasized in many studies (Sartor et al. 

1999; Frigo et al. 2003; Anders et al. 2006), research has focused on the lower 

limbs (Borghese et al. 1996; Mah et al. 1994; Ivanenko et al. 2007; Onge and 

Feldman 2003), and the effect of trunk angle in the joint correlation has rarely 

been discussed (except, for instance, by Courtine and Schieppati (2004)). As 

mentioned above, joint movements in the upper body and lower limbs are closely 

correlated, so the existence of constraint spaces for whole body movement is 

expected, as in the case of the lower limbs. This enables us to bring the COM into 

the discussion, and to consider whether correlation in whole body movement is 

important for the tuning strategy.  

   In this paper, we consider the tuning strategy for the walking condition. We 

analyze the principal components of the whole body movement during walking, 

and discuss the variation of these components with changes of slope and walking 

speed. By performing singular value decomposition (SVD) on the time series of 
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joint motion, the motion is decomposed into principal groups of simultaneously 

active joints (intersegmental coordination) and the activation pattern (temporal 

coordination) of the joint group. The tuning parameter is distilled by testing the 

effect of the walking condition on each intersegmental and temporal coordination. 

The SVD revealed that the movements of the seven measured joints are composed 

of only two principal components, just as in the case of lower limb motion 

(Bianchi et al. 1998; Noble and Prentice 2008; Ivanenko et al. 2008). By 

considering the effect of the walking condition on the extracted constraint plane, 

we show that the coordination pattern composed of the different postures under 

various walking conditions can be classified into variant (environment dependent) 

and invariant patterns.  

Materials and Methods 

Experimental procedure 

The subjects were 10 healthy males with an age range of 21–25, weights of 55–

72[kg] and heights of 165–177[cm]. They walked on a treadmill and the motions 

of their joints were measured with a motion capturing system (Digital RealTime 

System manufactured by MotionAnalysis). Reflective markers were attached to 

the subjects’ skin overlying the following body landmarks of both hemibodies: ear 

tragus, upper limit of the acromion, greater trochanter, lateral condyle of the knee, 

lateral malleolus, second metatarsal head, and heel. We have focused on the 

motion of the joints in the sagittal plane, so the makers are placed to facilitate 

measurements of the motion in that plane.  

   In this research, motion during the double support (DS) phase and the single 

support (SS) phase are analyzed independently as described in the next section. 

The duration of the double support phase is short, so the desired sampling rate is 

higher than usual. For a standard walking cycle, DS lasts approximately 1.0[s] in 

normal gait (Murray et al. 1964) giving 60 data points at the usual 60[Hz] 

sampling rate. When we set the fastest walking speed at 5[km/h], the duration of 

DS was approximately 0.2[s] at pre-test. At a 60[Hz] sampling rate, the motion in 

DS is separated into 12 points, which seems to lead to loss of some information 

about the motion. Therefore, we set the sampling frequency at 300[Hz], so that the 

motion is recorded at 60 points.  



   In order to focus on involuntary action, the ranges of conditions are selected to 

avoid inducing an extreme transformation caused by conscious control. By 

progressively increasing the gradient of the slope and observing the angle of the 

trunk, an apparent change is detected at about 12[%], and the subjects feel a 

strong effect of the slope afterwards. Thus, we set the maximum slope at this 

level, and the interval is discretized into seven conditions: level ground, 2% 

(1.15[ ]), 4% (2.29[ ]), 6% (3.43[ deg ]), 8% (4.57[ deg ]), 10% (5.71[ ]) 

and 12% (6.84[ deg ]). Standard walking velocity is 3–4[km/h], and approximately 

the same level of trunk inclination observed for various inclines at 3[km/h] was 

observed between 3[km/h] and 5[km/h] on level ground. So, the velocity 

condition was set at three levels: 3 0

deg deg deg

[km h]. / , 4 0[k ]m h. /  and . 

Recording started after the subjects had been walking on the treadmill for 

sufficient time for their movement to settle into a regular pattern, and the duration 

for a record of one walking condition was 15[s]. 

5 0[km h]. /

   In order to analyze the whole body movement without considering the motion 

of arms, the arms must be fixed at a certain position. The subjects were requested 

to look forward and place their hands on their waists. This position of the arms 

was selected to include them with the trunk on the sagittal plane.  

   Subjects gave informed consent prior to data collection according to the 

procedures of the Ethics Committee of Doshisha University.  

 

Data preparation 

From the recorded time series of joint positions, we calculated the seven angles of 

segments defined on the sagittal plane as shown in Fig. 1(i). Every angle was 

defined as an elevation angle based on the assumption that the elevation angles 

behave more stereotypically than the relative angles (Borghese et al. 1996; 

Ivanenko et al. 2007).  

   We separated the measurements into the double support (DS) phase and the 

single support (SS) phase because the phases have different dynamic constraints: 

DS requires the distance between the right and left legs to be fixed. This 

difference in constraint will strongly affect the motion and might prevent us from 

clearly interpreting the effect of a condition if we did not make the separation. 
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The DS phase was defined as the time from one heel grounding to the toes of the 

other foot lifting off. The SS phase started at this time and ended with the next 

heel grounding. Every locomotion cycle was taken to consist of two DS phases 

and two SS phases. Cycles not fitting that pattern were rejected as outliers. 

Moreover, the number of data points in one phase was standardized at 300. If the 

number of points in the recorded data was insufficient the extra points were 

constructed using cubic spline interpolation. Figure 1(ii) shows the obtained time 

series of thigh, shank and foot angles. The four phases are labeled DS1 (starting 

with right foot contact), SS (supported on right leg), DS2 (starting from left foot 

contact) and SW (supported on left leg). Because DS1 and DS2 (or SS and SW) 

are the same except for the difference of right or left, we discuss only DS1 and SS 

in this paper.  

 

Extraction of the principal movements by SVD 

By writing the time series data of the angles of each joint as a column, the whole 

movement can be expressed in terms of the matrix  

   (1) 

     right foot     right shank,     

1 1 2 1time

1 2 2 2

( ) ( )
( )

( ) ( )
t t

R t
t t

θ θ
θ

θ θ↓

, ,⎡ ⎤
, = ⎢ ⎥, ,⎢ ⎥

⎢ ⎥⎣ ⎦

where iθ (tj) is the angle for joint i at the j-th point in the time series. Thus, a 

vector drawn from one row of the 300 7×  matrix R  is a set of elevation angles 

at a particular time, and a vector drawn from one column of R  is a time series 

for a particular joint.  

   The whole body motion is decomposed into the time-invariant coordination of 

segments and its time-series gain, by extracting a highly correlated group of joints 

from 0( ) ( ) ( ) ( )TR t R V t Zθ θ, = + ⋅Λ ⋅ θ , as follows.  

1. Principal component analysis is applied to the covariance matrix 
cov( ( ))R θ  with elevation angles θ  as variables. The principal 
components iz  are the vectors with a high correlation among joints and 
describe intersegmental coordination.  

2. The time averages of the elevation angles are written as 
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0 1 7 ]T( ) [r θ θ θ . Then, 0r  represents one posture in the phase, called the 
“mean posture” in this paper. The matrix 0 ( )R

=
θ  is constructed by 

repeating the row 0r
T 300 times.  

3. The covariance matrix cov( )R  is a matrix whose ij element is 
defined by (( )( ))i iE j jθ θ θ− −θ , and it can be written as 

1
0 0( )R R− . Then, the eigenvectors of ( )cov R , iz , can 

be obtained from the right singular vectors of the singular value 
decomposition of 0

7( ) ( )Tcov R R R= −

R R− .  

                0( ) ( ) ( ) (TR t R V t Z )θ θ θ, − = Λ  

                      ( ) ( )i i i
i

v t zλ θ= .∑  (2) 

Here ( )i iv tλ  denotes the (time series) values with the basis ( )iz θ . 
( )i iv tλ  is the coordination pattern of temporal characteristics of the 

motion corresponding to , so iz i ivλ  is referred to as the temporal 
coordination in this paper.  

Thus, by performing SVD on ( )R tθ, , whole body motion is decomposed into 

intersegmental coordination , temporal coordination iz i ivλ  and mean posture 

 (0r 0R ).  

 0( ) ( ) ( ) ( )T
i i i

i
R t R v t zθ θ λ θ, = + .∑  (3) 

Furthermore,  can be decomposed into a normalized part, , and a gain, 

. Then, , where  indicates the intersegmental 

coordination of the mean posture and 

0r 0< r >

0r|| || 0 0 0r r < r=|| || ⋅ > 0< r >

0r|| ||  indicates the bending level. In 

addition,  and  correspond to the intersegmental coordination  

and the singular value 

0 >< r 0r|| ||

i

iz

λ  of the movement components.  

 

Statistical methods for pattern similarity 

In order to measure the effect of walking condition on the walking pattern 

obtained by SVD, a statistical method for determining similarity is applied to the 

patterns recorded under different conditions. The intersegmental coordination ( z  

7 
and ), the temporal coordination ( ), and the singular values (0< r > v λ  and 
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) hav ly

 a quantitative measure for the similarity of 

0r|| || e different statistical natures, being categorized, respective , as 

variate nominal, time series and single variables. Thus, each pattern requires 

a different statistical procedure.  

   The correlation coefficient is

multi

intersegmental coordination under different conditions. The correlation coefficient 

can be calculated using the inner product of the pattern vectors which are obtained 

as normalized vectors by SVD. The significance of the difference between 

patterns is further verified using 2-way ANOVA of the joints and environmental 

factors. The temporal coordination is analyzed using two types of test, each 

focusing on one of the two parts of the pattern. A Kruskal–Wallis rank test 

determines whether the average distribution changes depending on the conditions. 

A 2-way ANOVA with temporal and environmental factors is used to detect 

patterns at some point in time picked up from the whole stance. For the singular 

values λ  and 0r|| || , a 1-way ANOVA can be applied directly. 

   The effect of walking condition on the mean posture is further evaluated by 

the difference in the mean posture 0
krΔ . 0

krΔ  is the difference of the mean 

posture 0r  obtained in conditions k 1−  and k ,  

      ( 1)
0 0 0

ji kkk
i jE r E r
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟r

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

is mean posture of the p recorded in condition ,  is the 

−Δ = − ,  (4) 

where  i th ste0
ikr  k iE

mean over all possible steps i , and k  and 1k −  are limited to jacent 

conditions, such as 2[%] with 4[%] or 4[% with 6 We test whether the mean 

posture changes at different rates among joints, using 2-way ANOVA on 0
kr

  ad

] [%]. 

Δ  

with joint and environmental factors. 

 

 



Results 

Principal segmental and temporal coordination derived by SVD 

Coordination patterns obtained by SVD 

The joint motion was recorded for 10 subjects and the matrices ( )R tθ,  were 

constructed. The coordination patterns i ivλ  and  were obtained by the SVD iz

0( ) ( ) ( ) ( )T
i i ii

R t R v t zθ θ λ, = +∑ θ . The singular value λ  and the cumulative 

proportions 72
1 1

j
ii i

2
iλ λ

= =
/∑ ∑

1 2z z,

 computed through the SVD are listed in Table 

1(i). When DS and SS are treated separately, the cumulative proportion exceeds 

99% by the second coordination for every subject, which indicates that the whole 

body motion can be represented as the sum of only two movements. In addition, 

the SVD decomposes the two movements into the intersegmental coordinations, 

( ), and the temporal coordinations, ( 1 1vλ , 2 2vλ ), as shown in Fig. 2.  

Walking motion in joint space 

By SVD, we found that the motion of DS and SS phases can each be described by 

two intersegmental coordinations ( 1 2z z, ) and two temporal coordinations 

( 1 1vλ , 2 2vλ ). This result indicates that the motion of each support phase is 

constrained on a plane having  and  as its axes. Because whole motion is 

composed of DS and SS phases, there are two constraint planes ( , ) and 

( , ), where both planes are sub-spaces of seven-dimensional joint space. 

Because the motion switches between DS and SS, the two spaces intersect at the 

switching points.  

1z 2z

DS
1z

DS
2z

SS
1z

SS
2z

   In order to consider the space of the whole motion including both DS and SS 

(DS-SS), SVD is applied to the motion of one half of a step cycle (DS1 and SS, 

from the right heel grounding to the left heel grounding). The singular value and 

the cumulative proportions are listed in Table 1(ii). The third singular value of 

DS-SS is between the second singular value of DS and second singular value of 

SS (Table 1(i)), and the cumulative proportion of DS-SS exceeds 99[%] after 

three elements. This result indicates that the whole motion including DS and SS is 
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included in the space spanned by three intersegmental coordinations. We call the 

three intersegmental coordinations ,  and . Then, the space having 

, ,  as its axes includes the motion of DS and SS and the constraint planes 

derived by treating DS and SS separately. Figure 3 shows the walking motion in 

the three-dimensional space spanned by ,  and  (the projection of 

coordinate values is described in detail in the Appendix). The example path 

shown in Fig. 3(i) is the measured posture of one cycle and the two planes are the 

constraint planes for the DS and SS phases. By assuming left–right symmetry of 

the body, the end point of SS and the initial point of DS can be regarded as being 

identical, although they are located at different positions in the space. Thus, by 

jumping from the end of SS to the initial position of DS, the state of the walking 

motion describes a closed loop in the assumed space.  

1z 2z 3z

2

1z 2z 3z

1z z 3z

   The constraint planes calculated from the motion on different slopes (0, 4, 8, 

12[%]) are shown in Fig. 3(ii). The figure shows that the tilt of the plane changes 

as the walking condition changes, but these changes are not large compared to the 

difference between the DS and SS planes.  

  

Effect of walking condition on the patterns 

By describing the whole body movement as a closed loop on two planes (as 

shown in Fig. 3), the nature of walking is determined by four characteristics: the 

tilts of the planes in the seven-dimensional joint space, which is determined by  

and ; the shape and size of the closed loop, corresponding to 

1z

2z 1 1vλ  and 2 2vλ ; 

the location of the origin of the -  plane, ; and the cadence. The last 

characteristic is not considered in this paper.  

1z 2z 0r

   In order to clarify the effect of different walking environments on these 

characteristics, we investigated the environment dependency of the following 

patterns.  

•  Temporal coordination: ( 1 1vλ , 2 2vλ ) 

•  Intersegmental coordination: ( 1z , 2z ) 

•  Mean posture: 0r|| ||  and 0< r > 

The tilt of constraint planes is further analyzed by comparing normal vectors in 

addition to  and . 1z 2z
10 



Temporal coordination: ( 1 1 2 2v vλ λ, ) 

The temporal coordination is averaged for 14 steps recorded under each of the 

[km/h], 4[km/h] and 5[km/h]). Figure 4(i) shows the 

high similarity of the averaged patterns. In order to find any differences among 

three different velocities (3

the patterns exhibited under the different velocity conditions, two different tests 

were performed. The first test deals with differences among average distributions 

(Fig. 4(i)), and the second test discusses the independence of the average 

distribution in 10% segments of the support phase using the variance at the 

appropriate time. For the first test, a Shapiro–Wilk normality test gives 
51 0 10p −< . ×  for every pattern, so a Kruskal–Wallis rank test is applied. The 

results, listed in Table 2(i), show no significant effect of velocity at the 5% level. 

The discretized patterns were compared using 2-way ANOVA with factors time 

. The p-values of the velocity factor, given in Table 3(i), show no 

significant effect of velocity on the patterns apart from in 2 subjects.  

   Turning our attention to the effect of the incline, the average temporal 

coordinations for different slopes are shown in Fig. 4(ii). There are no obvious 

differences between the patterns, and a Kruskal–Wallis rank test

and velocity

 found no 

significant effect of incline (see Table 2(ii)). Applying a 2-way ANOVA with 

factors time and gradient to the discretized distribution indicates that no more than 

2 subjects show a significant effect of gradient (see Table 3(ii)). Thus, temporal 

coordination was demonstrated to be robust against changes in incline.  

Intersegmental coordination: ( 1 2z z, ) 

A typical intersegmental coordination ( , ) computed for speeds of 3[km/h], 1z 2z

4[km/h] and 5[km/h] is shown in .  Fig 5(i). The figure shows a similar shape at 

each velocity, and the high similarity is also supported by the correlation 

y of the patterns, a gradual change 

coefficients shown in Table 4(i). The p-values of the velocity factor for a 2-way 

ANOVA with factors joint and velocity are given in Table 5(i) which shows that 

about half of the subjects exhibit a statistically significant effect of velocity on 

intersegmental coordination at the 1% level.  

   The intersegmental coordinations for different inclines are shown in Fig. 5(ii). 

Although the shape of the patterns in the figure and the correlation coefficients 

listed in Table 4(ii) indicate the high similarit

11 



with incline can be seen, particularly in 2z  (see Fig. 5(ii)). In order to determine 

the statistical significance of this effect of slope, a 2-way ANOVA with factors 

joint and gradient is performed. Table 5(ii) gives p-values of the gradient factor. 

This table shows that, for all subjects, the  is a significant effect of incline on 2z  

in SS; there is also a significant effect on the other coordination for most subjects.  

Mean posture: 0r  

To consider the effect of walking condition on the posture averaged for the 

re
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, the posture was decomposed into the normalized vector 

and the gain .  and 

support phase, 0r 0< r >  

0r |||| 0< r > 0r|| |  | for different velocities are shown in Fig. 

alue

6(i) and Fig. 7(i). Figure 7(i) shows the apparent growth of 0r|| ||  with an 

increase in velocity. The effect of velocity was examined using a 1-way ANOVA 

for r|| ||  and a 2-way ANOVA with factors joints and velocities for < r > . 

Statistically significant differences were found at the 1% level in ||  for all 

subjects and in 0< r >  for 8 subjects.  

   V s for  and 

0 0

 0r||

0< r > 0r|| ||  on various inclines are shown in Fig. 6(ii) and 

Fig. 7(ii). These figures show the growth of 0r|| ||  with an incre  

gradient. A 1-way ANOVA for 

ase in the

0r|| ||  and a 2-way ANOVA for 0< r >  with 

factors joints and inclines found statistically significant differences (at the 1% 

level) in both 0< r >  and 0r|| ||  for all subjects.  

   The above result indicates that t ariation in the mean posture is obvious. In 

order to study the change in each elevation angle of mean posture, the difference 

in mean posture among conditions 0
kr

he v

Δ  was calculated for three walking 

velocities and seven slope conditions (see Fig. 8). No large differences among 

joints were found. In order to study whether or not the mean posture changed at 

different rates among joints, the differences among each joint element of 0
krΔ  

were tested with a 2-way ANOVA with factors of joint and walking condition. 

The level of variation is significantly different among joints ( 0 01p < .  for both 

DS and SS, in all velocity and slope conditions). The most variable joints in both 

DS and SS are the foot of lift-off and the swing leg. The difference between the 

foot and the other joints is clearer in DS than SS. Although statistical uniformity 



among joints was rejected, the similarity of the level among joints is not 

negligible. In particular, although the range of trunk motion is rather small 

compared to the other angles and a difference in the level of trunk is apparent in 

both mean posture and intersegmental coordination, the variation of the trunk in 

the mean posture is not extremely small compared to the other joints.  

   In summary, the mean posture 0r  was affected by changes in walking 

condition. In particular, 0r|| ||  grew with both increasing velocity and increasing 

incline. Variation in the mean posture occurs primarily in the foot of lift-off and 

hereas  and were evaluated independently in the previous section, it is 

coordination under different conditions as 

a property of the constraint planes. In particular, when the constraint planes are 

swing legs, although the other joints also exhibit a certain degree of change.  

 

Normal vectors of constraint planes 

1z 2z  W

possible to evaluate the intersegmental 

embedded in a three-dimensional subspace of the seven-dimensional joint space, 

their tilt is characterized by one normal vector. Thus the relationship between 

planes can be quantitatively evaluated by calculating the angles between normal 

vectors. The relative angles between the normal vectors for level ground and those 

for each gradient are shown in Fig. 9(i). Here, the relative angle between vectors 

a  and b  is ( )1180 cos a b
a bπ

− ⋅  [deg]. The figure shows that the relative angles 

increase with an increase in the gradient, although the standard deviation is large 

because the values are rather different among subjects. In order to compute the 

lative t t of  plane for different conditions while removing the 

effects of differences among subjects, the rank of the relative angles for each 

subject is calculated. Fig. 9(ii) shows the rank of each gradient condition 

summarized by subject and steps. The rank, that is, the relative tilt of the 

constraint planes increases with an increase in the gradient. Testing the difference 

of the rank among conditions using 1-way ANOVA shows that the tilt of the 

constraint plane, which is defined by the intersegmental coordination, depends on 

the walking condition ( 0 01p

re il th nstrainte co

< . ). 
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Discussion 

14 

 this research, seven link-joint movements were measured during walking. The 

time series of the elevation angles were decomposed by SVD after being 

ble and single support phases. The whole movement was 

revealed to be composed of a mean posture and two principal movements which 

 of the planes is determined by 

In

separated into dou

were also divided into two intersegmental coordinations and two temporal 

coordinations. In order to discuss the relationship between the walking condition 

and the joint motions described as decomposed patterns, the consistency of the 

patterns among different conditions was verified.  

   The whole body movement can be described by a closed loop on two 

constraint planes. The spatial nature of the walking motion is characterized by the 

location and tilt of the constraint planes, and the temporal nature is characterized 

by the trajectory on the planes. The position and tilt

mean posture ( 0r ) and intersegmental coordination ( 1z , 2z ), respectively, and the 

trajectory is determined by temporal coordination ( 1 1 2 2,v vλ λ ). We now discuss 

whether each characteristic depends on the walking condition; in other words, 

whether each characteristic is used as a tuning param te for adapting to walking 

 

Effect of wa

e r 

conditions.  

lking conditions 

 the trajectory on the constraint plane affected? 

f temporal coordination calculated from the 

recorded data under different walking conditions, both the average distribution 

rent effect of the walking 

condition. This result implies the trajectory on the plane is maintained even if the 

Is

By considering the similarity o

and the discretized time period data showed no appa

walking condition is changed.  

   There are a few studies, particularly those using statistical methods, that imply 

the existence of a factor in joint movement that is invariant under changing 

walking conditions: that is, a change in condition is not considered to affect the 
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 and , half of the subjects 

te ane , and most of the 

subjects exhibit an effect of gradient on the plane. However, there are large 

pla

 and (ii)).  

as affected by 

change according to 

d . In particular, 

, which represents the average of all elevation angles, grow  with an increase 

emo

angle

alking 

forms a cyclic motion independent of the walking condition (

trajectory on the intersegmental plane directly (Courtine and Schieppati 2004; 

Ivanenko et al. 2007). This supports our result.  

Is the tilt of the constraint planes affected? 

From the result of the independent analyses of 1z

 pl

2z

1z -

z

exhibit an effect of velocity on the coordina  2z

w

correlations between the results for different conditions (Table 4). Thus, it was not 

clear from the independent analyses of 1z  and 2 hether the plane 

(intersegmental coordination) was variant or invariant.  

   By embedding the plane in the three-dimensional space, and comparing the 

normal vectors which represent the tilt of the constraint ne, the plane can be 

shown to be affected by the walking condition (Figs. 9(i)

   The effects on the intersegmental coordination plane of both walking velocity 

(Ivanenko et al. 2007) and the gradient of the slope (Noble and Prentice 2008) 

have been discussed previously. Both papers assert that the plane w

condition. Our results, even though there are several differences in the derivation 

of the intersegmental plane, agree with these conclusions.  

Is the location of the constraint planes affected? 

The locations of the origins of the intersegmental planes 0r  

gain velocity and gradient in both orientation 0< r >  an 0r|| ||

s0

in velocity or gradient. The actual average postures for the 0[%], 4[%], 8[%] and 

12[%] slopes are shown in Fig. 10 which d nstrate the gain of all elevation 

s increases as the incline increases.  

   These results agree with the conventional view that every joint increases its 

angle when walking on slopes (Leroux et al. 2002; Vogt and Banzer 1999). 

r|| ||

Supposed tuning parameters for conditional change 

Based on the above discussion, the whole body movement of human w

1 1vλ , 2 2vλ  are 

constant), while the balance of flexion level among joints (constraint planes 
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he loop pattern on the 

movemen

   The existence of parameters that are robust against changes in velocity and 

nce of the cycle pattern was not shown. The tilt of 

1  velocity and 

slope. Furtherm iginating from the condition affects  in DS 

nd  to an 

of 

nk

intersegme dination is low (Fig. 2), because of the smallness of its motion 

ean posture (Fig. 8) is at a level that is almost equal with other 

defined by 1z , 2z  and 0r ) is tuned. The result that t

constraint plane is not affected by variance in the environment leads to the 

interesting outcome that only some selected factors in whole body t are 

used as tuning parameters.  

gradient has been implied in papers on the intersegmental coordination of the 

joints in the lower limbs (Grasso et al. 2000; Bianchi et al. 1998; Noble and 

Prentice 2008; Ivanenko et al. 2008). However, there was no statistical discussion, 

and evidence of the invaria

pelvis and trunk in response to velocity and gradient escalation has been described 

in several papers (Murray et al. 1984; Lay et al. 2006; Leroux et al. 2002; Vogt 

and Banzer 1999). However, a unified analysis, including the changes in both the 

trunk and lower limbs, has not been previously performed. Therefore, our results 

that the temporal coordination on the intersegmental plane is statistically robust 

against changes in the walking condition and that the variation caused by walking 

condition applies on the level and the balance of joints are new.  

 

The motion of the trunk in comparison to the other joints 

Figure 11 shows the intersegmental coordination for the trunk alone. In DS 

z >z , while z  and z  are almost the same in SS, regardless of2 1 2

2z

 2z

ore, the variation or

the most. It can also be seen that the pattern of responses of 1z  a

increase in load (faster velocity and larger gradient) is independent of the nature 

that load.  

   As mentioned in the previous section, the contribution of the tru  to the 

depicted in Fig. 1(ii). However, when we focus on the mean posture (Fig. 6), the 

trunk shows high values compared to the differences in motion. In particular, the 

change in the m

ntal coor

segments.  

   Although the motion of trunk is small compared to the others, the contribution 

of the trunk to intersegmental coordination and the mean posture has 
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ith respect to the tuning level of the mean posture.  

ses 

In this research, the walking cycles were separated into DS and SS phases and the 

ndently analyzed. The reason for this 

separation is that the dynamic constraint differs between DS and SS, so the 

us system 

 DS and SS seems essential when 

obably the effect of the difference in the dynamic 

discussion of intersegmental 
coordination 

In this research, motion tuning is discussed only in terms of the kinematic aspect 

of the variation, and this has enabled the clear distinction between variant and 

invariant parameters behind the motion. However, it is more natural to regard 

kinematic change as a collateral phenomenon of the kinetic tuning of muscle 

input, because the kinetic elements are more directly connected to the CNS. The 

characteristics that are qualitatively identical and quantitatively similar to those of 

other links w

 

The relationship between the motions of DS and SS pha

motions of the two phases were indepe

recorded motion varies even if the input signal from the central nervo

(CNS) is identical, and this will disturb the identification of the characteristics of 

motion. However, the separate analyses of DS and SS cause the problem that the 

properties obtained for the DS and SS phases are unrelated. We solve this problem 

by embedding the constraint planes of DS and SS into one space as shown in Fig. 

3. This embedding also makes possible a quantitative study of the two constraint 

planes in terms of their normal vectors.  

   Figure 9(iii) shows that the relative angles between the DS and SS planes are 

about 50[deg], while the changes in angle due to differences in condition are less 

than about 15[deg] (Fig. 9(i)).  

   Therefore, the difference between

considering kinematic properties. Even so, this result does not inevitably indicate 

that the control signal is independently generated for DS and SS at the level of the 

CNS. The difference is more pr

constraint, as assumed at the beginning.  

 

Possible problems with the 
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roblem of whether kinematic movement plays a substantial role in control has 

long been discussed (Borghese et al. 1996; Bianchi et al. 1998; Grasso et al. 1998; 

riation of COM position and elevation angles of a standing cat in 

p

Shen and Poppele 1995; Lacquaniti et al. 2002). For example, Lacquaniti et al. 

compared the va

response to weights loaded on its back (Lacquaniti and Maioli 1994) and changing 

slope (Lacquaniti et al. 2002). They showed that the elevation angles are more 

robust to changes in condition than COM position. Based on this result, they 

conclude that the posture control used kinematics as its control variables 

(Lacquaniti et al. 2002). Furthermore, human muscle patterns during backward 

walking differ considerably from those during forward walking. In contrast, the 

joint angular patterns are a quasi reversal of the patterns in forward walking 

(Thorstensson 1996; Grasso et al. 1998). This phenomenon also supports the 

importance of kinematic parameters as the measure of tuning parameters.  

   It is possible that the intersegmental motion might be irrelevant to neural 

signaling and control, but is instead constructed by the physical constraints of the 

joints and environment. Because the same question occurs when considering the 

intersegmental correlation of the lower limbs, this possibility has been discussed 

by Ivanenko et al. (2008). They concluded that the plane is not a trivial 

consequence of the movement by demonstrating that a stoop movement is a 

higher dimensional correlation and stepping is a lower dimensional correlation. 

Furthermore, Barliya et al. (2009) analyzed the reason why the correlation plane is 

formed by the three elevation angles of the lower limbs. They derived the 

condition for the planar trajectory that the frequencies of the motion for the three 

elevation angles are equal, a condition which is roughly satisfied in human 

walking.  

Relationship with the control in muscles and higher center 

It is well known that the correlated activation occurring among joints is also 

observed in the case of muscles. For example, the activation patterns recorded in 

25 muscles during walking can be constructed from five independent patterns 

(Olree and Vaughan 1995; Ivanenko et al. 2004). Similar movements, such as 

obstacle avoidance and ball kicking, can be built by adding one other component 

(Ivanenko et al. 2005). Moreover, signals corresponding to the intersegmental 
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ns of cats 

lpful both when connecting the kinematics 

e whole body, particularly emphasizing the correlation of the 

unk and lower limbs. Our main results are (1) the whole body movement can be 

composed into two intersegmental coordinations, two temporal coordinations 

and the mean posture; (2) the movement can be described as a closed loop on two-

t planes in joint space; (3) under different conditions, the tilt 

 

correlation are observed in the dorsal spinocerebellar tract neuro

(Poppele et al. 2002).  

   Because the characteristics of the correlation between the muscles and neurons 

include information about the control signals, and the characteristics of the 

correlation in the kinematics include information about the resulting action, it will 

be essential to understand the relationship between the two correlations for further 

investigation of the control signal and control procedures. The current research 

presents a characteristic feature for the tuning of posture in response to 

environmental changes. This will be he

and muscles via a common feature and when finally locating the adaptation in the 

control system.   

 

Conclusions 

We have investigated the adaptive changes of the motion pattern during walking 

for different inclines and walking velocities. We focused on the intersegmental 

coordination of th

tr

de

dimensional constrain

and the position of the constraint planes change; and (4) the temporal coordination 

of walking is robust against changes in walking conditions. From these results, we 

conclude that humans tune only some selected properties in response to walking 

conditions. This enables a reduction in the number of control parameters and a 

simple strategy for adaptation.  
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nd SS in the same space, the time series of 

Appendix: Description of walking motion on joint 
spaces

In order to describe the motion of DS a

the motion ( )R t  and the constraint planes ( ), ( ) are embedded 

in the

DS
1z , DS

2z SS
1z , SS

2z

 1 2 3( )z z z, ,  space built by the movem S phases are ent when DS and S

considered together. The posture at time t : ( )R t  in this space is  

0( ) ( ( ) )i iR t R t R z= − ⋅  ,   )( 1 3i =   (5)  

 
where 0R  

   The spa

is the mean posture over both DS and SS phases.  

ces  and  are embedded with origins and DSz SSz 0DSz 0SSz  

determined from the mean postures DS
0R and  SS

0R  by  

 
0

SS
00

i

i iz z

⎞

⎠

⎜ ⎟
⎝ ⎠

⎧

⎩

,   ( 1 3)i
DS0DS

0

0SS

i R Rz z

R R

⎛
⎜ ⎟
⎝

⎛ ⎞

= − ⋅⎪
⎨

= − ⋅⎪
= .  (6) 

T ntal coo on ( jDS
izhe axes of the intersegme rdinati , ) are determined from 

, j = 1,2) when DS and SS are considered separately:  

jSS
iz

DS
jz SS

jz (

 
i j

SSjSS⎨
= ⋅

.   ( 3 1 2)i j
DSjDS

i
1

i ij

zz z

zz z

⎧ = ⋅⎪

⎪⎩
= , = .  (7) 
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(i) Definitions of elevation angles            (ii) Time series of 7 elevation angles (subject: HO, 3[km/h]) 

Fig. 1 (i) Definition of elevation angles, that is, the angle from a vertical line, and (ii) calculated time series of the elevation 

angles. The calculated angles are separated into double support phases (DS1, DS2) and single support phases (SS, SW) 

according to the timing of heel landing and toe lift-off. In (ii) segments of the right lower limbs are depicted by solid lines, and 

left lower limbs are depicted by dotted lines. 
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   (a) Double support phase  (b) Single support phase      (a) Double support phase (b) Single support phase 

         (i) Intersegmental coordination (zi)                      (ii) Temporal coordination (λivi) 

Fig. 2 Intersegmental and temporal coordination obtained by singular value decomposition (SVD). By performing SVD on the 

recorded time series of motion, joint groups and temporal groups with high correlations are extracted. (i) The intersegmental 

coordination shows the groups of segments which activate simultaneously, and (ii) the activation pattern is depicted as a 

temporal coordination. In (i) landing and liftoff are used to indicate the right and left leg in DS1, while stance and swing leg 

indicate the right and left leg in SS. The patterns shown are those of subject HO walking on level ground at 3[km/h]. The charts 

are composed from the average and the standard deviation for 14 cycles calculated from motion under the same condition. 
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Fig. 3(i) The whole body movement can be described in a three-dimensional sub-space of the seven-dimensional joint space. 

The axes are defined by the three intersegmental coordinations calculated from the whole joint movement of DS1 and SS, 

and the path indicated by the arrows shows the time series of the posture R(t). The dashed lines indicate that these lines lie 

beneath one or more overlying planes. Two planes can be built in the three-dimensional space, expressing the movement in 

DS and SS phases. These planes are defined by axes z1(θ ) and z2(θ ) with r0 as the origin. (ii) The planes induced by motion 

under different slope conditions (0,4,8,12[%]). The difference in the tilt of the planes for each phase are small compared to 

the angle between the DS and SS planes. The figure is constructed from the data of subject KU. 

(ii) Constraint planes calculated for various slope 

conditions 

(i) Constraint planes and posture calculated for level 

ground 
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  (a) Double support phase   (b) Single support phase       (a) Double support phase    (b) Single support phase 
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 12[%]  6[%]
  8[%]
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(i) Temporal coordinations obtained at different velocities    (ii) Temporal coordinations obtained on different inclines 

Fig. 4 Temporal coordinations computed for different velocities and slope angles. The pattern shown is the average of many 

patterns obtained per step cycle under the same walking condition. The walking conditions are (i) velocities of 3,4,5[km/h] 

and (ii) inclines of 0-12[%]. Most of the patterns are overlain by others. The data is from subject HO. The charts show the 

average of data obtained under the same walking conditions. 
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(i) Intersegmental coordinations obtained at different velocities (ii) Intersegmental coordinations obtained on different inclines 

Fig. 5 Intersegmental coordinations computed from motion data recorded for (i) different velocities and (ii) different inclines. 

The patterns remain similar even when the walking conditions change, but it is possible to find a few clear effects of condition: 

for example, in (ii)  gradually changes with an increase in the slope angle. The data is from subject HO. The charts show 

the average and the standard deviation of data obtained under the same walking conditions. 
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    (i) Normalized mean posture at different velocities       (ii) Normalized mean posture on different inclines 

Fig. 6 Intersegmental coordination of mean posture ( ). By normalizing the mean posture, the intersegmental 

coordination of the posture can be derived. Differences due to walking condition can be seen, particularly in the trunk and 

thigh. The significance of the difference is confirmed using 2-way ANOVA with factors (joints × conditions). The data is for 

subject HO. The charts show the average and the standard deviation of data obtained under the same walking conditions. 
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    (a) Double support phase    (b) Single support phase       (a) Double support phase     (b) Single support phase 

            
3.0[km/h]
4.0[km/h]

5.0[km/h]
               

0[%]
2[%]
4[%]

 12[%]  6[%]
  8[%]
10[%]  

       (i) Gain of mean posture at different velocities            (ii) Gain of mean posture on different inclines 

Fig. 7 Gain of mean posture ( || ) recorded for various velocities and gradients. The gain apparently grows as the velocity or 

incline increases, and this trend is confirmed by a 1-way ANOVA. The data is from subject HO. The charts show the average 

and the standard deviation of data obtained under the same walking conditions. 
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               (b) Single support phase                                 (b) Single support phase 

                            
3.0-4.0[km/h]
4.0-5.0[km/h]               

0-2[%]
2-4[%]

  8-10[%]
10-12[%]

4-6[%]
6-8[%]  

             (i) Variation at different velocities                        (ii) Variation on different slopes 

Fig. 8 Change in the elevation angles of mean posture. Bars represent the difference in the elevation angles of each joint 

calculated for two conditions. The values for all trials and all subjects are combined and the average and standard deviation 

are displayed. The changes are approximately the same for every joint, while the highest variability occurs for the foot of the 

lift-off and swing legs. 
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(i) Relative angles among different slopes

(ii) Rank of relative angles among different slopes

(iii) Relative angles between 
     DS and SS planes

 

Fig. 9 The relative angles of normal vectors of constraint 

planes. In (i) and (ii) the constraint planes of level gound and 

each gradient are compared. The angles is described by (i) the 

absolute value and (ii) the rank of the value in that subject in 

order to remove the difference among subjects. (iii) displays the 

relative angles between DS and SS. Values for all subjects and 

all trials are summarized and displayed as average values and 

standard deviations. 
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4[%] 8[%] 12[%]0[%]

 

            (i) Double support phase 

4[%] 8[%] 12[%]0[%]

 

           (ii) Single support phase 

Fig. 10 Mean posture of walking on 0[%] to 12[%] inclines 

in the double and single support phases. The amplitudes of 

all elevation angles increase and the bending level of the 

body angle increases as a result. Displayed posture is 

generated from the walking of subject HO at 3.0[km/h]. 
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    (i) Different velocities         (ii) Different slopes 

Fig. 11 Intersegmental coordination of the trunk under 

various conditions. The values of all trials of all subjects are 

combined and the average and standard deviation are 

displayed. This is done in order to absorb the variance caused 

by the minuteness of the intersegmental coordination of the 

trunk. 
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Table 1 Singular value λi and cumulative proportion for 10 subjects on level ground. Listed values are the average of 14 steps 

under the same conditions and values in brackets are the standard deviations.  

 
(i) SVD results for the DS and SS phases (ii) SVD results for DS and SS phases combined 

 

1 

DS-SS 
Singular Value    Cumulative 

Proportion

  DS  SS 
Singular Value    Cumulati-

ve Prop. 
  Singular Value    Cumulati-

ve Prop.
Subject λ1  λ2  λ1 λ2 λ3 1 2 3

13.2(0.3) 4.92(0.2)  2.01(0.1)  0.86 0.98 
1 

1.00 
11.3(0.4) 4.62(0.2)  1.46(0.1)  0.84 0.98 1.00
12.8(0.6) 3.76(0.3)  1.22(0.1) 

2 λ1  λ2 1 2 
HO  6.33(0.2)  1.08(0.1)  0.97 1.00  13.6(0.3) 2.16(0.1) 0.97 1.00 
AD  5.12(0.4)  0.52(0.1)  0.99 1.00  11.9(0.4) 2.01(0.1) 0.97 1.00 
MA  5.20(0.4)  0.61(0.1)  0.99 1.00  12.8(0.5) 1.20(0.1) 0.99 1.00 0.91 0.99 1.00

11.6(0.5) 4.42(0.3) KI  4.66(0.8)  0.58(0.1)  0.98 1.00  12.1(0.4) 1.38(0.1) 1.65(0.1) 0.98 1.00 
KO  5.79(0.3) 

0.86 0.99 1.00
12.5(0.5)0.98(0.1)  0.97 1.00  13.1(0.4) 1.69(0.1) 0.98 4.80(0.4)  1.60(0.1)  0.86 0.98 1.001.00 

MO  3.05(0.5)  0.47(0.1)  0.98 1.00  11.3(0.4) 3.69(0.3)  1.52(0.1)  0.89 0.98 1.00
12.1(1.0)

11.6(0.3) 1.98(0.1) 0.97 0.99 
NA  5.61(0.7)  1.08(0.2)  0.96 1.00  12.8(0.9) 5.16(0.5)  1.46(0.2)  0.83 0.991.83(0.2) 0.98 1.00 
MI  3.19(2.1) 

1.00
0.46(0.4)  0.98 1.00  11.9(0.5) 2.42(1.0) 0.95 11.5(0.5) 4.32(0.2)  1.39(0.1)  0.860.99 0.99 1.00

11.4(0.3) 4.27(0.2)  1.49(0.2) KU  4.09(0.4)  0.59(0.1)  0.98 1.00  12.1(0.4) 1.79(0.2) 0.97 0.99 0.86 0.98 1.00
10.8(0.2) 4.03(0.2) AN  3.94(0.8)  0.60(0.2)  0.98 1.00  11.1(0.2) 1.26(0.1) 1.71(0.3) 0.97 1.00

 
0.87 0.99 1.00

 



 

Table 2 Results of the Kruskal–Wallis rank tests for differences in the average pattern depicted in Fig. 4. Left-hand table shows 

results for changes in velocity; right-hand table shows results for changing incline. There is no clear effect of walking condition 

even at the weaker 5% level of significance. 

     (i) P-values for differences due to change in velocity.          (ii) P-values for differences due to change in incline. 

 
 DS  SS 

Subject λ1V1 λ2V2 λ1V1 λ2V2 

HO 0.996 0.821 0.870 0.783 

AD 0.996 1.000 0.489 0.872 

MA 0.996 0.759 0.985 0.625 

KI 0.980 0.928 0.141 0.605 

KO 0.977 0.983 0.431 0.793 

MO 0.988 0.997 0.931 0.936 

NA 0.839 0.766 0.073 0.564 

MI 0.991 0.883 0.082 0.186 

KU 0.999 0.645 0.903 0.955 

AN 0.980 0.994 0.199 0.879 

 

 

 DS  SS 

Subject λ1V1 λ2V2 λ1V1 λ2V2 

HO 1.000 0.962 0.346 0.980 

AD 1.000 0.997 0.804 0.971 

MA 1.000 0.774 0.400 0.986 

KI 0.942 0.982 0.208 0.910 

KO 1.000 0.979 0.087 0.963 

MO 1.000 0.832 0.733 0.973 

NA 0.999 0.998 0.667 0.993 

MI 0.995 0.912 0.360 0.175 

KU 1.000 0.916 1.000 0.999 

AN 0.994 0.959 0.757 0.797 
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Table 3 Results of 2-way ANOVA to determine the effects of walking condition using the time-discretised pattern. The average 

and the standard deviation are calculated in every 10% segment of the support phase, and the difference is tested using 2-way 

ANOVA with factors (time × walking condition (velocity or gradient)). The listed values are the p-values for factors of walking 

condition. There is no effect of walking condition for more than 80% of subjects. 

(i) P-values for differences due to change in velocity             (ii) P-values for differences due to change in incline 

 

 
 DS  SS 

Subject λ1V1 λ2V2 λ1V1 λ2V2 

HO 0.983 0.051 0.657 0.843 

AD 1.000 0.317 0.353 (< 0.01) 

MA 0.977 0.174 0.152 0.658 

KI 0.991 0.445 0.325 0.878 

KO 0.996 (< 0.01) 0.204 0.730 

MO 1.000 0.474 (< 0.01) 0.724 

NA 0.956 (< 0.05) 0.836 (< 0.05) 

MI 1.000 0.083 (< 0.01) 0.621 

KU 0.523 0.978 0.090 0.692 

AN 0.999 0.353 0.076 0.629 

 DS  SS 

Subject λ1V1 λ2V2 λ1V1 λ2V2 

HO  0.333  0.682  0.147  0.041  

AD  0.616  0.262  0.918  0.230  

MA  0.888  0.789  0.498  0.242  

KI  0.817  0.506  0.908  0.334  

KO  0.710  0.616  0.229  0.092  

MO  1.000  0.702  0.742  0.495  

NA  0.935  (< 0.05)  0.403  0.340  

MI  0.992  0.556  0.631  0.896  

KU  (< 0.05)  0.451  0.220  0.275  

AN  0.933  0.487  0.938  0.268  
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Table 4 Correlation coefficient of intersegmental coordination for different velocities and inclines. Every pair has a high 

correlation coefficient, which indicates high similarity between different patterns. 

   (i) Correlation coeff. at different velocities                    (ii) Correlation coeff. on different inclines 

  DS  SS  

Level-2[%] Z1  0.999  1.000  

 Z2  0.991  0.988  

4[%] -6[%] Z1  1.000  0.999  

 Z2  0.996  0.986  

8[%] -10[%] Z1  0.999  0.999  

 Z2  0.995  0.978  

Level-12[%] Z1  0.988  0.986  

 Z2  0.920  0.904  

  DS  SS  

3.0 - 4.0[km/h] Z1  0.994  0.999  

 Z2  0.975  0.978  

4.0 - 5.0[km/h] Z1  0.997  0.999  

 Z2  0.983  0.991  

3.0 - 5.0[km/h] Z1  0.983  0.996  

 Z2  0.940  0.959  
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Table 5 Results of the ANOVA for the identification of patterns obtained under different conditions. P-values of the condition 

factor (velocity or gradient) in the result of ANOVA with factors (joints × conditions) are listed. There are statistically significant 

differences between subjects at the 1% level.  

    (i) P-values for differences due to change in velocity.          (ii) P-values for differences due to change in incline. 

  DS  SS 

Subject Z1 Z2 Z1 Z2 

HO 0.059 (< 0.01) 0.126 (< 0.05) 

AD (< 0.01) (< 0.05) 0.112 (< 0.01) 

MA 0.293 (< 0.01) (< 0.05) (< 0.05) 

KI (< 0.01) 0.162 (< 0.05) (< 0.05) 

KO (< 0.05) 0.094 0.379 (< 0.01) 

MO (< 0.01) (< 0.01) 0.789 (< 0.01) 

NA (< 0.01) 0.051 (< 0.01) (< 0.05) 

MI 0.053 (< 0.01) (< 0.01) (< 0.01) 

KU (< 0.01) (< 0.01) 0.530 (< 0.05) 

AN (< 0.05) (< 0.01) 0.082 (< 0.01) 

 

 DS SS 

Subject Z1 Z2 Z1 Z2

HO 0.976 (< 0.01) (< 0.01) (< 0.01) 

AD (< 0.01) 0.212 0.167 (< 0.05) 

MA 0.225 0.141 (< 0.01) (< 0.01) 

KI 0.330 0.494 (< 0.01) 0.836 

KO (< 0.05) (< 0.01) 0.098 (< 0.01) 

MO 0.221 0.923 0.082 0.105 

NA 0.274 0.829 (< 0.05) 0.285 

MI 0.246 0.053 (< 0.05) (< 0.05) 

KU (< 0.01) 0.2701 (< 0.01) 0.844 

AN 0.153 0.204 0.163 0.500 
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