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1 Introduction.

1.1 Problem:

We consider
H : Schrodinger operator with variable coefficients,
Hy, = ~%A : Free Schrodinger operator.

We are interested in the following problems:

Q1 : W(t) = eitfoe=H jg a Fourier integral operator (F10)?
If so, we have a representation:

et — itHopr(¢)  with W(t) an FIO.
(Not obvious even if H = Hy+ V(x)).

Q2 : W, = s-lim e e 0 jg an F1I0?

t—+toac

Answer: Yes (under certain assumptions).

*This note is an edited version of the slides used in the seminar talk given by Nakamura.



1.2 Model:

The equation is
1,—'(/1(t z) = HyY(t,z), teR,zeR"

with (0, z) = ¢¥o(z) € L?(R"). The Hamiltonian is

1 0 0
H——§ 7z, ajk(x) +V(x)

7,k=1
where a;, V € C*(R%R), (ajx(z))x > 0 (Vz).
Assumption (A):
102 (asx(2) — 84)| < Cal@) ™7, |82V ()] < Calz)? =7

for any a € Z7 with some p > 1 (short range).

1.3 Classical flow:
The classical hamiltonians are:
1 n
k(2,6) =5 Y an(@)6&h,  p(e,€) = k(z,€) + V(2).
I k=1
Hamilton vector fields on T*R"™ are
“[8k 8 ok O "8p8 8p3]
H, = —_ e — |, H,= _—— -
g ;[agj dz; 0z; ag,-] P Z;[agj oz, Oz, OE;

and their Hamilton flows are denoted by exp(¢Hy) and exp(tH,). We write:

(Yt z,€),n(t, z,£)) = exp(tHi)(z,€), teR,(z,§) € T'R™

1.4 Nontrapping condition:

Our main geometrical assumption is the global nontrapping condition:

Assumption B: For any (z,£) € T*R", £ # 0, |y(t,z,£)| — 0o as t — +oo.



1.5 Classical scattering:
Under Assumptions A and B,
2o = lim (y(t,2) — tn(t,2,8)), &= lim n(t,2,6)
exist. Moreover,
ly(t, =, &) — (2+ +t€x)| > 0 ast — oo,
We write:
(s, 62) = wa(2,) = lim exp(—tHy) o exp(tH)
where py = 1|¢|?. Note wy is homogeneous in &:
wa(z, A) = (2+(z, £), M (z, §)).

since k(z, £) is homogeneous in £ (scaling property).

1.6 Main result:
Theorem 1: Suppose Assumptions A and B with g = 2. Then for t € Ry,

W(t) — eitHoe—itH

are FIOs associated to wy.

1.7 Application to the propagation of singularities:

We note
e~itH — g=itHoy ()
and
WF(W (t)u) = wi(WF(u))
where WF(-) denotes the wave front set. This implies
WE(e™0u) = WE(W (—t)e™#u) = w(WF(e™*#u))
and hence ‘

WF (e~ u) = wZ' (WF(e7"oqy)).



1.8 Wave operators:
In order to study wave operators, we need to assume stronger assumption on V:
Assumption (C):
102 (a5x(z) — 1) < Cala)™71, 182V (2)] < Cofz) ™+
for any o € Z7; with some p > 1 (ajx and V are both short range).
Theorem 2. Suppose Assumption B and C. Then

W, = s-lim e*HeitHo

t—+oo

exist and are FIOs associated to wi'.

2 Beals-type characterization of FIOs.
2.1 Standard definition of FIOs:

We first recall the definition of FIOs (following Hormander).
Definition: (Besov space: By*(R™)) Let o € R. For u € 8/(R™), 4 € L% (R™), we set

loc
1/2 1/2
r.o0 = 3(€)[%d 277 "’d)
lulag= = ([ _taceiag) e[ jamaofas

and define

Bg=(R™) = {u € S(R™) | [lullpg= < o0}.

Definition: (Lagrangian submanifolds) A C T*R™\ 0 is called a Lagrangian submanifold,
if A is an m-dimensional C*°-submanifold in R™, and is conic, i.e.,

(z, ) e A = (z,X) e A (A>D0).

Moreover the pull-back of wy = dxz A d€ to A vanishes, i.e., i*wy = 0.

Definition: (Lagrangian distribution) Let A C T*R™\ 0 be a conic Lagrangian submani-
fold, and let u € §'(R™), o € R. u is called a Lagrangian distribution of order o associated
to A, or equivalently, u € I°(R™, A), if for any p;,ps,...,py € S? such that the principal
symbol of p; vanishes on A,

p1(z, Dz)p2(z, D;) - - - pn(x, Dy)u € By 2™ 4 (R™).

2,loc



(S™ is the classical symbol class.)

Remark: If u € I°(R™, A), then there exist N < m, ¥(z,#) which is homogeneous in ¢
and a(z,0) € S73™/*V*(R™ x RY) such that

u(z) = (27r)‘m/4_N/2/ eV @ (z,0)do
RN

where ¥(z, 0) is related to A by
A ={(z,8,%(z,0)) € T'R™ | 8,¥(z,0) = 0}.
(Typically N = m/2, and hence a € S7,(R™).)

Definition: (Fourier integral operator) Let U : 8(R™) — 8'(R") and let u be its distri-
bution kernel. Let S : T*R™ — T*R" be a canonical transform which is homogeneous of
order 1 in &. Let

As={(,z,n,—E) | (y,n) = S(z, )} C T'R™.

U is called a Fourier integral operators of order o € R associated to S if u € [ 7(As, R?").

2.2 Beals-type characterization:

Let S : T*R® — T*R"™ be a homogeneous canonical diffeomorphism, and let Ag as
above. Suppose a € S}’O(Rn) is supported in compact set in z, and supported away from
{€ = 0}. For such a, we set

Ads(a)U = (a0 S ) (z,D,;)U — Ua(z, D,)
Theorem 3. Let S and Adg be as above. Let U € L(L2,,(R™), L2 (R")). U is an FIO of

cpt loc
order 0 associated to S if and only if for any a1, as, ...,ay € S*(R™) satisfying the above

condition,

Ads(a1)Ads(az) - - - Ads(an)U € L(L3(R™), Li,(R™)).
Remark: If S = Id, then Ads(a)U = |a(z, D;), U] and the above result is (a variation
of) the Beals characterization of pseudodifferential operators.

The following simple consequence of Theorem 3 is useful in applications.

Corollary 4. Let S and U as in Theorem 3. If U is invertible, and for any a € S*(R")
there is b € 57 ((R") such that

Ua(z, D,)U™! = (a0 S7')(z, D,) + b(z, D),
then U is an FIO associated to S.

Remark: This result may be considered as a converse of the Egorov theorem.



3 Proof of Theorem 1.

Now we know that it is sufficient to show the Egorov theorem. It was essentially done
in [N1] in semiclassical setting. We recall the result in the form we need here.
We use the notation: The Weyl quantization of a symbol a is

a(z, D)y (z) = (2m)™" / / "= VL (ZEY £y (y)dydE

for ¢ € §(R™).
We consider the evolution

-(%W(t)w = —ie™(H — Ho)e ™"y
= —ie™ o (H — Hy)e oW () = —iL(t)W (t)v.
We note e*foqW¥(z, D,)e~ o = a¥(z — tD,, D,) and hence,
15~ 0 W

0
L(t) = —= "(z —tD;) — 65 ) — —tD,).
(t) 2jk=1 oz, @ —tDy) ’k)c'?zk +V(z —tD,)

In particular, if we set

e(t> T, f) = % Z (ajk(x - t&) - 6jk)€j€k + V(.’II - tf))

k=1
then L(t) — £™(t,z, D;) € OPS] ((R™). Note £(t, z, £) generates the evolution
w(t) = exp(—tHp,) o exp(tHp).
For a € S'(R™), we set
A(t) = W(t)a(z, D)W (t)~L.

A(t) satisfies the Heisenberg equation

% A(t) = —i[L(8), A®)], A(0) = a™(z, D).

Then it is natural to expect
A(t) ~ af(t,z, D,),

where ag(t, z,€) = (a o w(t)!)(z, £). In fact, we can construct an asymptotic solution:

a(t,z,€) ~ > _a;(t,x,£), a;t,-,-) € Sip’ (R™)
j=0



solving transport equations along w(t), so that
9 - _
cTﬁA(t) + i[L(t), A(t)] € OPS™*°(R"),

where A(t) = a%(¢,z, D,) and A(0) = a"(z, D,). Hence A(t) — A(t) € OPS™, and in
particular

At) = (aow(t) Yz, D,) € OPS(l),O(]R").
For &t > 0, we have
w(t,z,€) — wi(z,§) = O(I]'™*) as |§] — oo
by scattering relations. This implies
aow(t)™ —aowz! € STHR™).
So far, we need only p > 1. If u = 2, then
A(t) — (a o wi')(z, D;) € OPS) ((R™)

and the condition of Corollary 4 follows from this with U = W (t), S = wy+ where £t >
0. O

4 The case p € (1,2).

In the proof of Theorem 1, we used the assumption only at the last step. So it is natural
to expect:

Theorem 5. Suppose Assumption A with u € (1,2) and Assumption B. Then W(t) is
an FIO associated to w(t).

The problem is that w(t) is canonical, but is not homogeneous in €. So usual definition
of FIOs does not apply. However, w(t) is asymptotically homogeneous in the following
sense: wy is homogeneous in £ and

18208 (w(t, 2,€) — w(z, )] < Cap(€)™

for any o, 8 € Z7, with some v = p—1>0
We can define asymptotically conic manifolds, and if S is asymptotically homogeneous
in the above sense, then we can show

As ={(y,z,n,—€)| (y,n) = S(z,€)} € T*'R*"

is an asymptotically conic Lagrangian manifold. We can define



e Lagrangian distribution associated to an asymptotically conic manifold;

e Fourier integral operators associated to an asymptotically homogeneous canonical
transform.

(We omit the precise definitions here. )
Theorem 5 makes sense using above definitions. O

5 Other Remarks.

1. Theorem 2 does not require p = 2 to show W are FIOs associated to wi'. This
is because (at least formally) W} is associated to wi = tginoow(t), and it is already
homogeneous in €. Instead, we need precise time-dependence of estimates. Also, we
cannot use Corollary 4 directly because W is not invertible.

2. We believe the results can be extended to Schrodinger equations with “long-range”
perturbations. (cf. [N2])

3. We also believe the results can be extended to Schrodinger equations on “scattering
manifolds”. (cf. [IN1])
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