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Minimum Implicational Bases of

Affine Convex Geometries

Masataka NAKAMURA

Department of Systems Science, University of Tokyo

153-8902 Komaba 3-8, Meguro, Tokyo, JAPAN

Abstract

Originally. a rooted circuit is defined for a convex geometry. However the definition itself is valid

in closure systems generally. and works very well. We shall show that the system of rooted circuits

of a closure system gives rise to a natural implicational base. In case of an affine convex geometry, it

gives a canonical minimum base.

1 Closure Systems and Implicational Systems

A closure system affords an underlying foundation for a number of systeins, such as implicational systems

(or functional dependencies in relational database theory) [1], knowledge systems [2], formal concept

analysis [3], logic [5], and so on. Here we shall show that the concept of rooted circuits plays a good role

in determining the minimum implicational bases of implicational systems.

Let $E$ be a finite set, and $\mathcal{K}\subseteq 2^{E}$ a fainily of subsets of E. $(\mathcal{K}, E)$ is a closure system if it is closed

under intersection and $E\in \mathcal{K}$ .

A map $\tau$ : $2^{E}arrow 2^{E}$ is a closure operator if the followings hold.

(1) $A\subseteq\tau(A)_{\}$ (2) $A\subseteq B\Rightarrow\tau(A)\subseteq\tau(B)$ , (3) $\tau(\tau(A))=\tau(A)$ $(A, B\subseteq E)$ .

A closure system gives a closure operator $\tau(A)=\cap\{X|A\subseteq X, X\in \mathcal{K}\}$ , and conversely $\mathcal{K}=\{X\subseteq E$ :

$\tau(X)=X\}$ holds. So tliere is a one-to-one correspondence between them. $\tau(X)$ is often denoted $\overline{X}$ .

Note that $A\subset B$ implies a proper inclusion and we write $X,1e$ to denote $X\cup\{e\}$ .

An ordered pair $(A, B)\in 2^{E}\cross 2^{E}$ , written as $Aarrow B$ , is an implication on $E$ with premise $X$ and

conclusion $Y$ . Let $S$ be a family of implications on $E_{7}$ which is called an implicational system. A subset

A C $E$ satisfies $Xarrow\}^{r}$ if $X\subseteq A$ implies $Y\subseteq A$ , i.e. either $X\not\in A$ or $Y\subseteq A$ holds.

Lemma 1.1 If $A,$ $B\subseteq E$ satisfies $Xarrow Y$ , then $A\cap B$ satisfies $Xarrow Y$ .

数理解析研究所講究録
第 1676巻 2010年 66-70 66



Hence $\mathcal{K}_{S}=$ { $A\subseteq E$ : $A$ satisfies all the implications of $S$} is a closure system, whicli is autoinatically

an lattice called an $i$mplicational lattice, and $S$ is said to be an implicatio$7?al$ base of a closure system $\mathcal{K}_{S}$ .

If a pair of implicational bases determine the same closure system, they are called equivalent. Fig. 1 shows

an example of an implicational system and the implicational lattice

Imp l\’icational
Syst em

$\{$ 1, $2\}arrow$ {3}
$\{$ 3, $4\}arrow$ {1}

Implicational
Latt $i$. ce

Figure 1: An implicational system and the implicational lattice

We define an equivalence relation $A\theta B(A, B\subseteq E)$ by $\tau(A)=\tau(B)$ , where $\tau(A)$ is the largestelement

in the equivalence class $[A]$ .
For a closure system $(\mathcal{K}, E)_{t}$ a pair (X, e) with $e\in E$ and $X\subseteq E\backslash e$ , is called a rooted circuit if $e\in\tau(X)$

and $X$ is minimal with respect to this property. $X$ and $e$ are called its stem and its root, respectively. We

will later describe that the collection of rooted circuits automatically provides an implicational base of any

closure system. We define an extreme function $ex$ by $ex(X)=\{x\in X : x\not\in\tau(X-x)\}$ . A subset $A\subseteq E$

is independent if $ex(A)=A$ and dependent otherwise. A minimal dependent set is said to be a circuit.

An (abstract) convex geometry is a closure system $(\mathcal{K}, E)$ if for any $X\in \mathcal{K}$ with $X\neq E$ , there exists

an element $e\in E\backslash X$ such that $X\cup e\in \mathcal{K}$ . Equivalently, a closure system $(\mathcal{K}, E)$ is a convex geometry if

the corresponding closure operator $\tau$ meets the anti-exchange property.

In a convex geometry, a rooted circuit was so far defined as follows [4]. Each circuit $C$ of a convex

geometry has a unique non-extreme element, i.e. $C\backslash ex(C)=\{e\}$ for some $e\in C$ , and $(C\backslash e, e)$ is a rooted

circuit. (Other authors usually designate a rooted circuit by$(C,$ $e)$ rather than the form $(C\backslash e,$ $e)[4]$ et al.)

It is shown in [6] that our general definition of rooted circuits for closure systems coincides with the so far

known definition of rooted circuits in case of convex geometries.
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An implicational system $S$ is nonredundant if for any $Xarrow Y\in S,$ $S’=S\backslash \{Xarrow Y\}$ is not equivalent

to S. $S$ is $\min im?\iota m$ if $|S|\leq|S’|$ for any implicational system $S’$ equivalent to $S$ .
$S$ is optimal if $s(S)\leq s(S’)$ for any $S’$ which is equivalent to $S$ where $s(S)$ implies $\sum_{Xarrow 1’\in S}(|X|+|Y|)$ .

Now we shall define quasiclosed sets and pseudoclosed sets.

$A^{o}=A\cup\cup\{\tau(X)|X\subset A, \tau(X)\subset\tau(A)\}$ (1)

$A^{\cdot}=A^{o}\cup A^{oo}\cup A^{ooo}\cdots$ (2)

Then $A\mapsto A^{\cdot}$ is a closure operator on $E$ , and $A^{\cdot}\subseteq\tau(A)$ .
$W\subseteq E$ is quasiclosed (or q-closed) if $W=W^{\cdot}$ and $W\neq\tau(W)[7]$ . A quasiclosed set $W$ is pseudoclosed

(or p-closed) if $W$ is a minimal q-closed set in the $\theta$-class $[W]$ .
A closed set $T\in \mathcal{K}$ is essential if $[T]$ contains a q-closed set, i.e. there exists a nonredundant generating

set $F$ of $[T]$ with $F^{\cdot}\subseteq T$ . Let Es $(\mathcal{K})$ denote the collection of the essential sets of $\mathcal{K}$ .

Theorem 1.1 (Wild [7]) Let $(\mathcal{K}, E)$ be a closure system.

(1) Let $S$ be a nonredundant base of $\mathcal{K}$ . Then Es $(\mathcal{K})=\{\overline{X}|Xarrow Y\in S\}$ . If $S$ is a nonredundant

implicational base of $\mathcal{K}$ and all the implications of $S$ are of the form $Xarrow\overline{X},$ $S$ is minimum.

(2) $S_{\mathcal{K}}=$ { $Parrow(\overline{P}-P)|P$ is p-closed} $=\cup$ { $Parrow(T-P)|T\in Es(\mathcal{K}),$ $P\in[T]$ , and $P$ is p-closed} is

a canonical minimum base of $\mathcal{K}$ . That is, let $S’$ be an arbitrary base of $\mathcal{K}$ . Then for each implication
$Parrow(\overline{P}-P)$ in $S_{\mathcal{K}},$ $S’$ contains an implication $X_{P}arrow Y_{P}$ such that $X_{P}\subseteq P$ and $\overline{X_{P}}=\overline{P}$ .

(3) Each optimal base of $\mathcal{K}$ is minimum, and the cardinality of $X_{P}$ is uniquely determined as $C_{P}=$

$\min\{|X||X\subseteq P, \overline{X_{P}}=\overline{P}\}=\min\{|X||X\subseteq P, X=P\}$

2 Rooted Circuits and Implicational Bases

Let $\mathcal{K}$ be a closure system on $E$ . Let $\mathbb{C}_{\mathcal{K}}$ be the collection of all the rooted circuits of $\mathcal{K}$ , and $S_{\mathcal{K}}=\{Xarrow$

$\{r\}|(X, r)\in \mathbb{C}_{\mathcal{K}}\}$ is an implicational system given by the rooted circuits.

Lemma 2.1 $S_{\mathcal{K}}$ is an implicational base of $\mathcal{K}$ .

(Proof) Suppose $A$ is $A$ satisfies $Xarrow\{r\}$ for every $(X, r)\in \mathbb{C}_{\mathcal{K}}$ , i.e. $X\not\in A$ or $r\in A$ , and $A\not\in$ K. Then

there exists an element $e\in\overline{A}\backslash A$ . Hence there exists $X\subseteq A$ with $e\in\overline{X}$. Take a minimal $X$ . Then (X, e)

is a rooted circuit in $\mathbb{C}_{\mathcal{K}}$ , Then $A$ does not $SatiS\mathfrak{h}^{r}Xarrow\{e\}$ , a contradiction.

Suppose contrarily that $A\in \mathcal{K}$ and $A$ is not $S_{\mathcal{K}}$-closed. Then there is a rooted circuit $(X, r)\in \mathbb{C}_{\mathcal{K}}$ such

that $X\subseteq A$ and $r\not\in A$ . By definition, $r\in\overline{X}\subseteq\overline{A}=A$ , a contradiction. $\square$

Let $T_{\mathcal{K}}$ denote the collection of all the stems, i.e. $T_{\mathcal{K}}=\{X\subseteq E|\exists e\in E: (X, e) \in \mathbb{C}_{\mathcal{K}}\}$ .
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For each stem $X\in T_{\mathcal{K}}\eta$ let us define $R_{X}=\cup\{e\Vert(X, e)\in \mathbb{C}_{\mathcal{K}}\}$ . Obviously $S_{T}=\{Xarrow R_{X}|X\in T_{\mathcal{K}}\}$

is an implicational base equivalent to $S_{\mathcal{K}}$ , and $|S_{T}|\leq|S_{\mathcal{K}}|$ . We shall call $S_{T}$ a circuit-induced base of $\mathcal{K}$ ,

which seems to be one of the standard forms of implicational bases.

Let $P$ be a finite poset. A subset $A$ of $P$ is said to be closed if for any $a,$ $b\in A$ and $c,$ $a\leq c\leq b$ , then

$c\in A$ . The collection of all the closed sets of $P$ forms a convex geometry, called a poset bishelling convex

geometry.

Let $E$ be a finite set in $\mathbb{R}^{n}$ . $\mathcal{K}_{A}=\{X\subseteq E$ : conv.hull $(X)\cap E=X\}$ is a convex geometry, called an

affine convex geometry.

Proposition 2.1 In a poset double shelling convex geometry, the circuit-induced base $S_{T}=$ {X $arrow$

$R_{X}|X\in T_{\mathcal{K}}\}$ is an optimal implicational base.

(Proof) In a poset double shelling convex geometry, a p-closed set takes the form of $\{a, b\}$ with $a<c<b$

for some $a,$ $b,$ $c\in E$ , while a rooted circuit is $(\{x, y\}, z)$ such that $x<z<y$ and $x,$ $y,$ $z\in E$ . Namely,

a p-closed set is equal to the stem of a rooted circuit. Hence the circuit-induced base is a canonical

minimum base by Theorem 1.1 (1). Furthermore, this base fulfills the condition (3) of Theorem 1.1 and

the conclusions of the implications are all singletons, which implies this base is optimal. $\square$

3 Affine Convex Geometries

Let $E$ be a finite set in $\mathbb{R}^{n}$ . $\tau(A)=conv.hull(A)\cap E(A\subseteq E)$ is naturally an anti-exchange closure

operator, and hence defines a closure system $\mathcal{K}$ , is a convex geometry, called an affine convex geometry.

For a rooted circuit (X, e) of an affine convex geometry $(\mathcal{K}_{7}E)$ , a stem $X$ is said to be pure if $X$ is

equal to the vertex set of the convex hull of $X$ .

Lemma 3.1 In an affine convex geometry $(\mathcal{K}, E)7$ a set $S\subseteq E$ is p-closed if an only if $S$ is a pure stem.

(Proof) Suppose $E\subseteq \mathbb{R}^{n}$ is a nonempty finite set. Let $(\mathcal{K}, E)$ and $\tau$ the affine convex geometry on $E$

and the associated closure operator, respectively.

First, we suppose $S$ is a p-closed set, and show that $S$ is necessarily a pure stem. Let $P_{S}$ be the convex

hull of $S$ which being a d-dimensional polytope, and $T$ be the set of vertices of $P_{S}$ . If $P_{S}$ has a simplicial

decomposition by $T$ into a multiple number of d-simplexes $S_{1},$
$\ldots,$

$S_{k}(k\geq 2)7$ then $S_{i}\subset S,$ $\tau(S_{i})\subset S$ for

each $S_{i}$ , and $S=S^{o}=S$ $= \bigcup_{i=1}^{k}\tau(S_{i})=\tau(S)$ , which contradicts that $S$ is q-closed. Hence $P_{S}$ is a d-

simplex. Similarly, if $P_{S}$ contains an element $a$ in $S$ as a proper interior point of $P_{S}$ , then $S^{o}=S^{\cdot}=\tau(S)$ ,

a contradiction. Let $F_{1},$
$\ldots,$

$F_{d}$ be the facets of $P_{S}$ . If $P_{S}$ does not contain any element in $E\backslash S$ , then

$\bigcup_{i=1\ldots.,d}F_{i}=S^{o}=\tau(S)$ , whi$ch$ contradicts the assumption. Hence $P_{S}$ is a simplex, and contains at least

one proper interior point which is not in $S$ .
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Let us denote the set of vertices of $P_{S}$ by $7=\{L_{1}^{1}, \ldots , n_{d\neq 1}\}C$ S. Suppose $co$ntrarily that tlie

boundary $\partial(P_{5}$
・

$)$ of $P_{S}$ contains a non-vertex elements $lt_{1}\ldots$ . , $w\iota\not\in T^{t}$ .

(i) If $\iota v_{q}\in S$ for some $q$ , then we can $as;n$lne without loss of generality tliat a facet $F=\{11_{1_{I}}\ldots , n_{d}\}$

contains $w_{q}$ . Then Let $l_{j}^{rF}=(F\backslash t^{1j})\cup\{t_{darrow 1}^{1}, w_{q}\}$ for $j=1\ldots..d$ . Tben for $V_{j}^{F}\subset S$ for $j=1,$ $\ldots$ , $d_{t}$ we

have $S^{o}=S^{\cdot}= \bigcup_{j=1}^{d}\tau(l_{j}^{\gamma F})=\tau(S)$ , which contradicts our assumption.

(ii) We suppose $\iota v_{j}\not\in S$ for every $j=1,$ $\ldots$ , $l$ . Then it holds that $S\neq S^{\cdot}$ , wliich contracting our

assumption.

Hence $S$ must be the set of vertices of a simplex and there exisits no element on the boundary $\partial(P_{S})$

except the vertices. Furtherinore, $P_{S}$ contains at least one point not in $S$ , say $e\in E\backslash S$ . Then it is clear

that $(S, e)$ is a rooted circuit and $S$ is a pure stem.

Conversely, it is easy to see that a pure stem is necessarily p-closed. $\square$

Theorem 3.1 In an affine convex geometry $(\mathcal{K}, E),$ $S_{pc\backslash fem}=$ { $Xarrow R_{X}|X\in T_{\mathcal{K}}$ is a pure stem.} is a

canonical minimum base.

(Proof) It immediately follows from Lemma 3.1 and Theorem 1.1 (2). 口

Wild [7] presented $\Sigma_{\mathcal{K}}=\{ex(X)arrow ex(X-ex(X)) : X\in \mathcal{K}\}$ as a natural implicational base

for a convex geometry. In contrast $S_{pste?’ t}=$ { $Xarrow R_{X}|X\in T_{\mathcal{K}}$ is a pure stem.} fulfills the necessary

conditions of optimality in Theorem 1.1 (3). Actually, suppose $P$ to be a p-closed set. Then Lemma 3.1
implies $X_{P}=P$ , and it is obvious that $|X_{P}|= \min\{|X||\overline{X_{P}}=\overline{P}\}=$ miu$\{|X||X\subseteq P, X=P\}$ .
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