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0/\R + Nash ¥ RIED ¥ 1F E (@M RIEA DT

FTHARREL (FK)  vakdsE —
FECREE - ECEVTZERE MK 1B
FERRE - AR REHER

Abstract. FRTIE, 7L 1V —O¥E L HFOMIIC T HREENEEND XS5 K7 —
LU, ©/8Z b Nash ¥#i & O S ESZEAT 5. WNK b Nash &%, &7
LAY—, IS 3RBOMBREREELT, $bbunA MNEBEEOEZHTE -
THREZHRE LTZBRICHEC 0 5 Z2EHREDC L TH 3. X 5ic, FHEEMESHHRIET
RINBEHI, BTLAV—OMRL N E BB LRIEA H EE @RS (Semi-Definite
Programming problem: SDP) & UTHERILTE, ZO#E, 1/3A + Nash HI%RIE
T OB O IEE EAEFMERIE (Semi-Definite Complementarity Problem: SDCP) &
LTRETESD T LERT.

1 Introduction

Robust Nash equilibrium, which attracts much attention recently, is a new concept
of equilibrium for games with uncertain data. Hayashi, Yamashita and Fukushima [5],
and Aghassi and Bertsimas [1]*! have proposed the model in which each player makes
a decision according to the idea of robust optimization. Aghassi et al. [1] considered
the robust Nash equilibrium for N-person games in which each player solves a lin-
ear programming (LP) problem. Moreover, théy proposed a method for solving the
robust Nash equilibrium problem with convex polyhedral uncertainty sets. Hayashi
et al. [5] defined the concept of robust Nash equilibria for bimatrix games. Under
the assumption that uncertainty sets are expressed by means of the Euclidean or the
Frobenius norm, they showed that each player’s problem reduces to an SOCP and the
robust Nash equilibrium problem can be reformulated as a second-order cone com-
plementarity problem (SOCCP) (3, 4]. In addition, Hayashi et al. [5] studied robust
Nash equilibrium problems in which the uncertainty is contained in both opponents’
strategies and each player’s cost parameters, whereas Aghassi et al. [1] studied only

the latter case. More recently, Nishimura, Hayashi and Fukushima [6] extended the

*1In [1] a robust Nash equilibrium is called a robust-optimization equilibrium.
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definition of robust Nash equilibria in [1] and [5] to the N-person non-cooperative
games with nonlinear cost functions. In particular, they showed existence of robust
Nash equilibria under the milder assumptions and gave some sufficient conditions
for uniqueness of the robust Nash equilibrium. In addition. they reformulated cer-
tain classes of robust Nash equilibrium problems to SOCCPs. However, Hayashi et
al. [5] and Nishimura et al. [6] have only dealt with the case where the uncertainty
is contained in either opponents’ strategies or each player’s cost parameters, in refor-
mulating the robust Nash equilibrium problem as an SOCCP.

In this paper, we first focus on a special class of linear programs (LPs) with
uncertain data. To such a problem, we reformulate its robust counterpart as an
SDP. Especially, when the uncertainty sets are spherical, we show that those two
problems are equivalent. We then show that the robust Nash equilibrium problem in
which uncertainty is contained in both opponents’ strategies and each player’s cost
parameters can be reduced to a semidefinite complementarity problem (SDCP) [2, 8].

Throughout the paper, we use the following notations. For a set X, P(X) denotes
the set consisting of all subsets of X. R? denotes the nonnegative orthant in R™,
that is, R} := {r e R* | x; > 0 (i = 1,....,n)}. S™ denotes the set of n x n real
symmetric matrices. SV denotes the cone of positive semidefinite matrices in S™.
For a vector x € R™, |lz|| denotes the Euclidean norm defined by ||z| = VT z.
For a matrix M = (M;;) € R™*™, || M||F is the Frobenius norm defined by | M| F :=
(o 2201 (M;)?) /2 || M |2 is the €o-norm defined by [|M |2 := max; 4o || Mzl|/||z|,
and ker M denotes the kernel of matrix M, ie., ket M := {x € R® | Mz = 0}.

B(x.r) denotes the closed sphere with center & and radius r, ie., B(z,r) := {y €

R" | |ly — z|| < r}. For a problem (P), val(P) denotes the optimal value.

2 Preliminary: SDP reformulation technique

In this section, we review the SDP reformulation technique for a class of robust LPs

discussed in [7]. Counsider the following uncertain LP:
minimize (3°)7 (A% + 8°)
X

subject to (3)T(A'z+b)<0 (i=1,....K) (2.1)
x € Q,
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where  is a given closed convex sct with no wncertainty. Let U, and V; be the uncer-

tainty scts for 4° € R™ and (A7, b') € R+*0 1D qatisfying the following assumption.

Assumption 1. Fori=0,1...., K, the uncertainty scts U; and V; are expressed as

U =<4 (A, D) (Ai,(;i'):(Aio.,bio)+Z'1,L;(Aij,bij), () u <1
j=1

Vii=q 7|7 = ”/io + 'l’}'yijﬂ ('z!i)T/zri <1

respectively, where AV € R™*" piJ ¢ R™ (j = 0,1,...,8;) and vV € R™ (j =

1.....,t;) are given matrices and vectors.
Then, the robust counterpart (RC) for (2.1) can be written as

minimize sup (30T (A% + b%)
* (A0 b9YelUo, A€ V0
subject to  (5)T(A'z +b') <0 VALV)el;, V¥ eV, (i=1,...,K)
x € (.

(2.2)

According to the reformulation technique in [7], we introduce the following SDP
related to RC (2.2):

minimize — Ao
xr,03, Ao

N BO(z) ) PY 0 P9 0
subject to [qo(x)T rO(z) — Ag =~ Qg 0 1 + 3o o 1|’

5(x) ' () . P 0 [P o] . . (2.3)
{:qz(w)T ri(m):| Zai| g g ~+ 3 0 1 (i=1,....K),

a= (a0, 1,....ax) €ERETL 3= (8o, 51,...,0Kk) € REHT,
MMER, xze€,

where P}(x),¢'(x) and 1/(x) are defined by

,' B 1 0 (FIT(I);(T))T iy 1 (I)i(iB)T’)’i'
Fi(x) = =3 {1“7@,-(@ 0 =5 A 450 |

i i i i i I, 0 ! 00 24
- (x):_(,\/ )T(A 04E+b0), Pl - l: 0 0:| S P2 = |i0 —It} s ( )

L= [y .- Y, @i(x) = [AMs + b1 .. Altip 4 b,
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Then, we can show that RC (2.2) and SDP (2.3) are equivalent under the following

assumption:

Assumption 2. Let 2* := (x*.a*, 3*. A§) be an optimum of SDP(2.3). Then, there
exists £ > 0 such that

dim(ker(Pi(z) — o P} — 3iPd)) #1 (i =0,1,...,K)
for all (x,a, B, A§) € B(z2*.,¢).

Theorem 2.1. Suppose that Assumption 1 holds, and (x*,a*.3*.A;) be the opti-
mum of SDP (2.3), then x* is feasible in RC(2.2) and val (2.3) is an upper bound of

val (2.2). Moreover, t* solves RC(2.2) if Assumption 2 further holds.

When the uncertainty sets U; and V; are spherical, Assumption 2 also holds auto-

matically.

Assumption 3. Suppose that Asswmption 1 holds. Moreover, for each 1
0.1..... K, matrices (A7, 07) (j = 1,....mi(n + 1)) and vectors ~7 (j =
1,....t;) (t; > 2) satisfy the following.

o For (k,l)e{l,....m;} x{1,...,n+ 1},
(AY.b7) = piel™ ("N T with § = m,l + k,

where p; is a given nonnegative constant, and eP ) is a unit vector with 1 at
r-th element and 0 elsewhere.
e For any (k. 1) € {1,....t;} x {1,.... ¢},

(A/ik)Tﬁ/il — 0_;.‘26]”’

where o; is a given nonnegative constant, and dp; denotes Kronecker’s delta,
t.e., 0t =0 fork #1 and oy =1 for k =1.

Theorem 2.2. Suppose Assumption 3 holds. Then, x* solves RC(2.2) if and only if

there exists (a*, 3*, A§) such that (x*. o™, 3*,A8) is an optimal solution of SDP(2.3).

Note that Assumption 3 claims that U; is an m;(n + 1)-dimensional sphere with

radius p; in the m;(n + 1)-dimensional space and V; is a t;-dimensional sphere with
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radius o; in the m;-dimensional space, i.e.,

U = {(A ) | (A1) = (A, 6°) + (A", 5b), [|(5A7,8b')|F < pi} € R™ (D),
Vi = {A/I I '3/1‘ = ,71'0 + (5"/1', “(5’“/” < 0'1-,(5'7”. € span {A/ij}zi;l} C R™:,

3 SDCP reformulation of robust Nash equilibrium
problems

In this section, we apply the idea in the previous section to the robust Nash equi-
librium problem, and show that it can be reduced to a semidefinite complementarity
problem (SDCP) under some assumptions.

Consider an N-person non-cooperative game in which each player tries to minimize
his own cost. Let ' € R™¢, S§; C R™¢, and f; : R™! x --- x R™¥ — R be player i’s

strategy, strategy set, and cost function, respectively. Moreover, denote

Z:={1,....,N}, Z_,:=Z\{i}, m:= ij, meo; 1= Z mj,

JET JET_;
T = (mj)jel' cR™, $—i = (Lﬂj)jel_i c R™¢,
s:=[]s;cr™, 5.i:= ] S; cR™

J€T jeT_;

When the complete information is assumed, each player ¢ decides his own strategy by
solving the following optimization problem with the opponents’ strategies ! fixed:
minimize fi(z', z7")

I’L

_ (3.1)
subject to z' € S;.

A tuple (T',72,...,T") satisfying ' € argmin,.cg, fi(z!,T") for each player i =
1,..., N is called a Nash equilibrium. In other words, if each player ¢ chooses the
strategy T', then no player has an incentive to change his own strategy. The Nash equi-
librium is well-defined only when each player can estimate his opponents’ strategies
and can evaluate his own cost exactly. In the real situation, however, any information
may contain uncertainty such as observation errors or estimation errors. Thus, we

focus on games with uncertainty.
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To deal with such nncertainty, we introduce nucertainty sets U; and X;(x ™), and

assumne the following statements for each player i € Z:

(A) Player ¢'s cost function involves a parameter 4/ € R%, i.e., it can be expressed
as ff‘i : R™ x R™-+ — R. Although player ¢ does not know the exact value of
@' itself, he can estimate that it belongs to a given nonempty set U; C R%:.

(B) Although player i knows his opponents’ strategies ', his actual cost is evaluated
with 77 replaced by £~ = 27/ 4+ dx ™, where dx ™! is a certain error or noise.

Player ¢ cannot know the exact value of £7'. However, he can estimate that 77

belongs to a certain nonempty set X;(z™').

Under these assumptions, each player encounters the difficulty of addressing the

following family of problems involving uncertain parameters 4' and £7':

minimize f,"l (', 277
T ' (3.2)
subject to ' € S;,

where @' € U; and 277 € X;(x~?). To overcome such a difficulty, we further assume

that each player chooses his strategy according to the following criterion of rationality:
(C) Player i tries to minimize his worst cost under assumptions (A) and (B).

From assumption (C), each player considers the worst cost function f; : R™i x R™—i —
(—o00, +00] defined by

fila' z™) s=sup{fi(x .27 | 4 € Uid™ € X; (=)} (3.3)

and then solves the following worst cost minimization problem:

minimize f, (', ")
o | (3.4)
subject to ' € S;.

Note that, for fixed 7/, (3.4) is nothing other than the robust counterpart of the
uncertain cost minimization problem (3.2). Also, (3.4) can be regarded as a complete
information game with cost functions f;. Based on the above discussions, we define

the robust Nash equilibrium.

Definition 3.1. Let f; be defined by (3.3) fori=1....,N. A tuple (T');er is called
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a robust Nash equilibrivm of game (3.2), if 7' € argmin.cgq, fi(x'.T7') for all 7, i.e.,
a Nash equilibrinm of game (3.4). The problem of finding a robust Nash equilibrium

is called a robust Nash equilibriuin problemn.

Now, we focus on the games in which each player takes mixed strategy and min-
imizes a convex quadratic cost function with respect to his own strategy. For such
games, we will show that cach player’s optimization problem can be reformulated as
an SDP, and the robust Nash equilibrium problem reduces to an SDCP.

Originally, SDCP [2, 8] is a problem of finding, for a given mapping F : S x 8™ x
R™ — 8™ x R™, a triple (X, Y, 2) € ™ x 8™ x R™ such that

S"5X 1LYeS?, F(X.Y,2)=0,

where X | Y means tr(XY) = 0. SDCP can be solved by some modern algorithms
such as a non-interior continuation method [2].
In the remainder of this section, the cost functions and the strategy sets satisfy

the followings.

(i) Player i’s cost function ff‘i is defined by*?

S 1, .v 4 T
fila o) = 5@ T A+ 30 (@) T Ay, (3.5)
- JET ;
where A;; € R"™*™i (j € T_;) are given constants involving uncertainties.

(ii) Player i takes mixed strategy, i.e.,

>0, 10 2t =1} (3.6)

mg

S; = {z' € R™

where 1,,, denotes (1,1,...,1)T € R™:,
(iii) m; > 3 for alli € .

We call A;; a cost matrix. Note that these constants correspond to the cost function

parameter 4!, i.e.,
' = vec [A“ - ,AI-N} e R™™

where vec denotes the vectorization operator that creates an nm-dimensional vector

*2 Although we can consider the additional term ¢ x, for simplicity, we omit the term.
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()T - @5,)7]7 from a matrix P € R"*™ with column vectors pS. . .. 5, € R™

For the robust Nash equilibrium problem with the above cost functions and strat-

egy sets. Hayashi et al. [5] and Nishimura et al. [6] showed that it can be reformulated

as an SOCCP. Since the SOCCP can be solved by some existing algorithms, we can
calculate the robust Nash equilibria efficiently. However, they have only dealt with
the case where the uncertainty is contained in either opponents’ strategies or each
player’s cost matrices and vectors.

In this subsection, we consider the case where each player cannot exactly estimate
both the cost matrices and the opponents’ strategies. For such a case, we first show
the existence of a robust Nash equilibrium, and then. prove that the robust Nash
equilibrium problem can be reformulated as an SDCP. To this end, we make the

following assumption.

Assumption 4. For each i € I, the uncertainty sets X;(-) and U; are given as

follows.

(2) Xi(z™") =Tl ez, Xij(x)), where X;;(z7) = {x/ + 62V | |6z < 0;. 1,13.&& =
0(j € Z-:)} for some nonnegative scalar oj.

(b) Ui = Il;ez_, Dij, where Di; := {Ai; + 6A;; € R™>™ | |I5A;|F < pij} for
some monnegative scalar p;;. Moreover, A;; + p;;I is symmetric and positive

semidefinite.

Assumption 4 claims that X;;(z’) is the closed sphere with center 7/ and radius
oi; in the subspace {r € R™ | 1m x = 0}, and D;; is also the closed sphere with
center A;; and radius p;;. Note that Assumption 4 is milder than the assumptions
made by Hayashi et al. [5] and Nishimura et al. [6]. Indeed, Assumption 4 with either
pij =0or g;; =0 for all (i,j) € I x I corresponds to their assumptions.

Under Assumption 4, we rewrite each player ¢'s optimization problem (3.4). Note
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that the worst cost function f, can be written as

fi(z' 2™
LT A T 4 ai| Aii €D,
=max<{ —=(x') Az’ + (') Az’ L i N
2 jez:;i J A,ﬁj & Djj, ) e Xij(xj) (j € I__i)
= max { —;‘(wi)TAiz’CCi Aj; € Dy } + > max{ ()T A;;37 | Aij € Dyj, 87 € Xij(a?) }

JET_;

= -L')-(LEI)T(A'i'i + piuil)x' + Z max{ (iJ)TA?;-:cl l Aij € Dy;, 3 € Xi5(x?) } ,

JET 3
(3.7)
where the last equality holds since
LT ila 1 T i 1o T i
max 5((1} ) A”‘ZJ A” € Dii = '?:(11} ) AiiCE —+ max §($ ) 5Aiix ||5A”“ S Pii
1 T i 1 5 i
= -2-(113 ) A;;xt + max §(I Rz )vec(éAii) HéAn” < pii

1, i, 1 i
= 5(90 )T Azt + §Pz‘i||$ I

1, ;
= 5(@") " (Aii + pu D)

Hence, each player ¢’s optimization problem (3.4) can be rewritten as follows:

minimize = (2") 7 (Ais + pul)a’ + Y max { (@) T A2’ | Ay € Dij. &' € Xi5(a?) |
JET_;

subject to 1) zi=1, z'>0.

mg

(3.8)
Now we show the existence of a robust Nash equilibrium under Assumption 4.

Theorem 3.2. Suppose that the cost functions and the strategy sets are given by (3.5)
and (3.6), respectively. Suppose further that Assumption 4 holds. Then, there erists

at least one robust Nash equilibrium.

Next we show that problem (3.8) can be rewritten as an SDP. We note that
problem (3.8) has a structure analogous to problem (2.2), and X;;(x?) and D;; satisfy
Assumption 3. Indeed, X;;(z?) can be constructed by the vectors v/* (k = 1,...,m;—

1) which from orthogonal bases of the subspace {z | 1] x = 0} with ||y*/*|| = o;; for
m; J
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all k. Thus, by Theorem 2.2 problem (3.8) can be rewritten as the following SDP:

. L ;
minimize 5(;r’)T(A,-i+p,-,-I);n’ — Z Aij

rta i3t ad

JET _;
. P (z") gz z)) PY o], . [RPY o] .
s = ;|1 e (eI,
subject to q’J(T‘ o) T rii(aiel) — Ay | = il g + Bij 0 1 (e
o' = (qij)jer ; € RN—1~ B = (Bij)jer_; € Ri\.]—la
= (Aij)jer, € RN,
12, =1, z' >0,
(3.9)
where
ij ] 1 0 pl(‘-‘ ((E < I m; ))TJ
Py (x' —= - ; J ,
0 ( ) 2 liPzJ:,—S((-T T N ImJ) 0
. 1 [pi;((x ) &I )T } o T AT
g’ (') = —= [TV 2 e o ed) = —(2)) " AL,
P ) = -3 [P B ) = =@ AL

1o m;m; jo_
Pl [ 0 O} ’ 2 [O _L"j—l} ‘
EIJ = [&I.Il PR 6'.]("77_1)] .
Finally, we show that the robust Nash equilibrium problem reduces to an SDCP.
Since the semidefinite constraints in (3.9) are linear with respect to !, a~%, 3~ and

A~!, we can rewrite the constraints as

D M (@) + A MY = o MY+ B MY. (e I-y).

k=1
with M € ™0t D) (k= 1. ;). MY MJ MY € S50+ defined by
( (nn)) qij(eggni),l'j)
q,J( (m;) ) ’I'ij(eimi),f[?j)

rij . (mj(m;+1)+1) (mj(m;+1)+1) £ij . Pij 0 ij . jj 0
AI/\ T _emjzmﬁ-l)ﬂ (eijmL-+1)+l ) ’ ]\'[ij T {Ol 11" A[B T 5 1l

MY (z?) = {
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respectively. Then, the Karush-Kuhn-Tucker (KKT) conditions for (3.9) are given by
((A;; + pi ')y — Z tl‘(ZijAf,i;j(;l:j)) — (;Lf[)k +vi=0, (k=1,...,m;).
JeT_;
t(ZUMY) — (i), =0, (j €T ),
t(ZYMY) = (uh); =0, (j €Ty,
tr(Z;M?)+1=0, (jeI_,),

m
" (Zl] (D @M (7)) + Ay MY — oy MY — @'jA[»’;J)) -
k=1

(ko) Ta™ =0, (uy)TB7 =0, (u)Ta' =0,
m;

D @ MP (27) + A MY = o MY+ B MY, (j eIy,
k=1

1;rni$" =1. &'>0, a'>0 B >0,
ZY =0, ,u,; >0, H; > 0, M;3 > 0,

where Z € Smitmitl) i Rme 1 p3 € RV~ and v’ € R are Lagrange multipli-

ers. Eliminating p!, 1!, and u)’é, we obtain the following conditions for each ¢ € Z:

Syt 5 20 | ST el M (7)) + Ay MY — MY~ Bi M7 € ST (e Ty,
k=1
RY S @' L(((Aii + piul)x' ) — Y e(ZYMJ (2))) +0%),_, eR™,

JET;
RY™'sa " Ltr(ZVMY)er , e RV, RY-!3 BT Ltr(Z9 MY )jer, € RY
tr(Z9 M) = -1, (j€ZI_y), 1),z =1
(3.11)
Noticing that the above KKT conditions hold for all players simultaneously, the
robust Nash equilibriuin problem can be reformulated as the problem of finding
(' ™, BT A7, (Z9) ez, v)ier such that (3.11) for all i € Z. Thus, we obtain
the following theorem.

Theorem 3.3. Suppose that the cost functions and the strategy sets are given by
(3.5) and (3.6), respectively. Suppose further that Assumption 4 holds. Then, x*
s a robust Nash equilibrium if and only if (x',a ™, 37, A7 (Z9) ez _,,v)ier is a
solution of SDCP (3.11).
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