
Title

Challenging Non-Euclidean Geometry of Irregular Objects in
University Education : the Fractal Objects (Computer Algebra
Systems and Education : A Research about Effective Use of
CAS in Mathematics Education)

Author(s) Tomida, Akemi Galvez

Citation 数理解析研究所講究録 (2010), 1674: 68-81

Issue Date 2010-01

URL http://hdl.handle.net/2433/141214

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

Challenging Non-Euclidean Geometry of
Irregular Objects in University Education:

the Fractal Objects

Akemi G\’alvez Tomida
Department of Applied Mathematics and Comp. Sciences

University of Cantabria, Avda. de los Castros
s/n, E-39005, Santander, Spain

galveza@unican.es

Abstract

The present work describes author’s experience in developing a problem-solving
environment (PSE) to analyze and display fractal objects. The PSE has been im-
plemented by the author in the popular CAS Matlab as a module of an introductory
course on nonlinear systems for undergraduate students of Mathematics, Physics
and Engineering. Such a course has been designed to fully comply with Bologna’s
Declaration principles and regulations in the sense that it allows self-learning and
promote active participation of students in the learning process. In this paper the
architecture of this computer system along with a description of its main function-
alities and some illustrative examples are briefly reported.

1 Introduction
Bologna’s declaration -seen today as the well-known synonym for the whole process
of reformation in the area of higher education -was signed in 1999 by 29 European
countries with the objective to create “a European space for higher education in order
to enhance the employability and mobility of citizens and to increase the international
competitiveness of European higher education” [1]. Its upmost goal is the commitment
freely taken by each signatory country to reform its own higher education system in
order to create overall convergence at European level. This process encompasses the
adoption of a common framework of readable and comparable degrees as well as the
introduction of undergraduate and postgraduate levels in all countries along with ECTS
(European Credit Transfer System) credit systems to ensure a smooth transition from
one country’s system to another one, thus enforcing free mobility of students, teachers
and administrators among the European countries.

An important issue in this process is to provide students with a good collection of
scholar materials that enable them to accomplish the learning process by themselves.
During the last few years, the author has been involved in the development of computer
software for an introductory course on nonlinear systems for undergraduate students of

数理解析研究所講究録
第 1674巻 2010年 68-81 68

Mathematics, Physics and Engineering. The course has been designed in a modular
form, so that chapters describing different subjects are associated with different com-
puter programs and materials. Some chapters (related to discrete and continuous chaotic
dynamical systems) have already been described in [8, 10, 11]. This paper is specifically
focused on fractal objects.

Although smooth curves and surfaces are the most usual graphical objects displayed in
scientific documents, it is also interesting to represent graphically irregular mathematical
objects, such as fractals [24]. Among them, the Iterated Function Systems (IFS) models,
popularized by Barnsley in the $1980s$, are particularly interesting due to their appeal-
ing combination of conceptual simplicity, computational efficiency and great ability to
reproduce natural formations and complex phenomena [2]. For instance, the attractors
of nonlinear chaotic systems exhibit a fractal structure [9, 13, 14, 18, 20, 21, 22, 26]. IFS
fractals are typically made up of the union of several copies of themselves, where each
copy is transformed by a function (function system). In the two-dimensional space such
a function is mathematically a $2D$ affine transformation (see Section 3 for details), so the
IFS is defined by a finite number of affine transformations (rotations, translations, and
scalings), and therefore represented by a relatively small set of input data [15, 16, 17].
This fact has been advantageously used in the field of fractal image compression, an effi-
cient image compression method that uses IFS fractals to store the compressed image as
a collection of IFS codes [3, 6, 23]. The method, based on the idea that in images, certain
parts of the image resemble other parts of the same image, has the great advantage that
the final image becomes resolution independent. Moreover, this compression method is
able to achieve higher compression ratios than conventional methods and still offer better
visual quality.

In this paper, we describe a problem-solving environment (PSE) to analyze and display
fractal objects. The PSE has been implemented by the author in the popular CAS Matlab
as a module of an introductory course on nonlinear systems for undergraduate students
of Mathematics, Physics and Engineering. Such a course has been designed to fully
comply with Bologna’s Declaration principles and regulations in the sense that it allows
self-learning and promote active participation of students in the learning process. To this
purpose, some specialized numerical libraries have been developed. Further, to provide
end-users with a nice navigation and intuitive access to the main methods and routines,
a powerful graphical user interface (also described in this paper) has been implemented.
To show the good performance of this program, some illustrative examples discussing its
use at the classroom are also reported.

The structure of this paper is as follows: in Section 2 the portfolio of the introductory
course on nonlinear systems is portrayed. Then, some basic definitions and concepts
about IFS are given in Section 3. The chaos game algorithm and the optimal choice of the
probabilities required by the algorithm are also briefly discussed in that section. Section
4 describes the software introduced in this paper, including the description of system
components, some implementation issues and a typical session workflow. Some illustrative
examples showing the good performance of our program are reported in Section 5. The
paper closes with the main conclusions and our future work.

69

2 Course Portfolio

As above-mentioned, the problem solving environment described in this paper is part
of the material designed for the course ”Introduction to Nonlinear Systems”, offered as
elective course for sophomore, junior and senior students from Maths, Physics and En-
gineering (Civil, Naval, Mechanical, Chemical, Electrical, Electronical, Telecommunica-
tions, Mines and Computer Science) degrees. The course is scheduled to have 50 hours at
the classroom, including theoretical classes, computer labs, final project discussion and
evaluation, and 75 hours for students homework, practical assignments and final project.
Main challenges for instructors are the high heterogeneity of students, as they come from
different degrees and have different (although usually close) ages but also have different
background, interests, goals and vision. It is an introductory course about the subject
and hence students have no background on the field. The only requirements to access
the course are some basic computer skills, such as a programming language and a fluent
use of some CAS. The computer tool used in this course is the popular CAS Matlab,
whose advantages for this course will be explained in Section 4. To teach this course, the
author applies an educational strategy based on computer problem-solving environments
specially designed to fulfill students’ needs.

In this paper we focus on a particular topic of the course: the analysis of irregular
objects and fractal geometry, with emphasis on the Iterated Function Systems (see Section
3 for details). This topic is explained in the course during three hours for the theoretical
background, 3 hours for computer training with the program described in this paper and
7.5 hours of personal homework. The goal of this topic is to allow students to:

\bullet understand the intrinsic complexity of fractal objects,

\bullet capture the beauty of fractals objects in both Nature and Science,

\bullet know some mathematical techniques to analyze them,

\bullet discuss critically how to implement them on a CAS (pross and cons),

\bullet identify relevant examples in their field,

\bullet conduct further study by themselves about the topic and, finally

\bullet integrate this topic into the knowledge core of the course.

3 Iterated Function Systems

3.1 Basic definitions
From the mathematical point of view, an Iterated Function System (IFS) is a finite set of
contractive maps w_{i} : $Xarrow X,$ $i=1,$ $\ldots,$

n defined on a complete metric space (X, d) .
We refer to the IFS as $\mathcal{W}=\{X;w_{1}, \ldots, w_{n}\}$. In the two-dimensional case, the metric
space (X, d) is typically \mathbb{R}^{2} with the Euclidean distance d_{2} , which is a complete metric
space, so the affine transformations w_{i} are of the form:

70

$[x^{*}y^{*}]=w_{i}[xy]=[a_{i}c_{i}$ $d_{i}b_{i}]\cdot[xy]+[f_{i}e_{i}]$ (1)

or equivalently:

$v_{i}^{\gamma}(x)=A_{i}.x+b_{i}$

where b_{i} is a translation vector and A_{i} is a $2\cross 2$ matrix with eigenvalues $\lambda_{1},$ λ_{2} such that
$|\lambda_{i}|<1$. In fact, $|det(A_{i})|<1$ meaning that w_{i} shrinks distances between points. Let us
now define a transformation, T , in the compact subsets of $X,$ $\mathcal{H}(X)$, by

$T(A)= \bigcup_{i=1}^{n}w_{i}(A)$. (2)

If all the w_{i} are contractions, T is also a contraction in $\mathcal{H}(X)$ with the induced Hausdorff
metric [2, 19]. Then, T has a unique fixed point, $|\mathcal{W}|$, called the attractor of the IFS.

3.2 Chaos game

Let us now consider a set of probabilities $\mathcal{P}=\{p_{1}, \ldots,p_{n}\}$, with $\sum_{i=1}^{n}p_{i}=1$. We refer

to $\{\mathcal{W}, \mathcal{P}\}=\{X;w_{1}, \ldots, w_{N};p_{1}, \ldots,p_{n}\}$ as an IFS with Probabilities (IFSP). Given \mathcal{P} ,
there exists a unique Borel regular measure $\nu\in\Lambda t(X)$, called the invariant measure of
the IFSP, such that

$\nu(S)=\sum_{i=1}^{n}p_{i}\nu(w_{i}^{-1}(S))$, $S\in \mathcal{B}(X)$,

where $\mathcal{B}(X)$ denotes the Borel subsets of X . Using the Hutchinson metric on $M(X)$,
it is possible to show that M is a contraction with a unique fixed point, $\nu\in \mathcal{M}(X)$.
Furthermore, support(v) $=|\mathcal{W}|$. Thus, given an arbitrary initial measure $\nu_{0}\in \mathcal{M}(X)$

the sequence $\{\nu_{k}\}_{k=0,1,2},\ldots$ constructed as $\nu_{k+1}=M(\nu_{k})$ converges to the invariant measure
of the IFSP. Also, a similar iterative deterministic scheme can be derived from Eq.(2) to
obtain $|\mathcal{W}|$.

However, there exists a more efficient method, known as probabilistic algorithm, for
the generation of the attractor of an IFS. This algorithm follows from the result $\overline{\{x_{k}\}}_{k>0}=$

$|\mathcal{W}|$ provided that $x_{0}\in|\mathcal{W}|$, where (see, for instance, [4]):

$x_{k}=w_{i}(x_{k-1})$ with probability $p_{i}>0$. (3)

Picking an initial point, one of the mappings in the set $\{w_{1}, \ldots, w_{n}\}$ is chosen at random
using the weigths $\{p_{1}, \ldots , p_{n}\}$ according to Eq. (3). The selected map is then applied
to generate a new point, and the same process is repeated again with the new point
obtaining, as a result of this iterative process, a sequence of points. The sequence obtained
using this stochastic process converge to the fractal as the number of points increases.
This algorithm is known as probabilistic algorithm or chaos game [2] and generates a
sequence of points that are randomly distributed over the fractal, according to the chosen
set of probabilities. Thus, the larger the number of iterations (a parameter we can freely

71

set up), the bettcr thc resolution of the resulting fractal image. As it will bc shown later
on, input data of main commands in our program includc the nurnbcr of iterations used
to display the final image along with the method applied to generate the sequence of data
points.

3.3 Optimal choice of probabilities

The fractal image is determined only by the set of contractive mappings; the set of
probabilities gives the efficiency of the rendering process. Thus, a good choice for the
probabilities is relevant for the efficiency of the rendering process, since the random
sequence of points is generated according to these probabilities. One of the main problems
of the chaos game algorithm is that of finding the optimal set of probabilities to render the
fractal attractor associated with an IFS. Several different heuristic methods for choosing
efficient sets of probabilities have been proposed in the literature [5, 7, 12]. The most
standard of these methods was suggested by Barnsley [2] and has been widely used in the
literature. For each of the mappings, this method (called Barnsley’s algorithm) selectes
a probability value that is proportional to the area of the figure associated with the
mapping. Since the area filled by a linear mapping w_{i} is proportional to its contractive
factor, s_{i} , this algorithm proposes to take:

$p_{i}= \frac{s_{i}}{\sum_{j=1}^{n}s_{j}}$

; $i=1,$ $\ldots,$
n . (4)

Another algorithm, proposed in 1996 and known as multifractal algorithm [16, 17],
provides a method for obtaining the most efficient choice for the probabilities as: $log(p_{i})=$

$Dlog(w_{i})$ $\Leftrightarrow p_{i}=w_{i}^{D},$ ($whereD$ is a real constant) along with $\sum_{i=1}^{n}w_{i}^{D}=1$. Then, the

most efficient choice corresponds to

$p_{i}=s_{i}^{D};i=1,$
$\ldots,$

N (5)

where D denotes the similarity dimension. This method will be called optimal algorithm
onwards.

4 Program Architecture and Implementation

4.1 Program Architecture
The problem solving environment introduced in this paper for generating and rendering
IFS fractals consists basically of two major components:

1. a computational library (toolbox): it contains a collection of commands, functions
and routines implemented to perform the numerical and graphical tasks.

2. a graphical user interface (GUI) : this component is responsible for input/output
windowing and smooth interaction with the user.

72

Our numerical functions have been implemented by using the native Matlab program-
ming language. They take advantage of the large collection of numerical routines available
in this system. Usually, these built-in Matlab routines provide extensive control on a num-
ber of different options and are fully optimized to offer the highest level of performance.
In fact, this is one of the major strengths of the program and one of the main reasons to
choose Matlab as a convenient programming environment.

On the other hand, the powerful Matlab graphical capabilities exceed those commonly
available in other CAS such as Mathematica and Maple. Although our current needs do
not require to apply them at full extent, they avoid us the tedious and time-consuming
task to implement many routines for graphical output by ourselves. In fact, some nice
viewing features such as $3D$ rotation, zooming in and out, labeling, scaling, coloring and
others, which are automatically inherited from the Matlab windows system, have been
intensively used in our system.

Although this toolbox is enough to meet all our computation needs, potential end-
users might be challenged for using it properly unless they are really proficient on Matlab’s
syntax and functionalities and the toolbox routines. This kind of limitations can be over-
come by creating a GUI; a well-designed GUI uses readily recognizable visual cues to help
the user navigate efficiently through information. Fortunately, Matlab provides a mech-
anism to generate GUIs by using the so-called guide (GUI kvelopment environment).
This feature is not commonly available in many other CAS so far. Although its imple-
mentation requires- for complex interfaces- a high level of expertise, it allows end-users
to deal with the toolbox with a minimal knowledge and input, thus facilitating its use
and dissemination.

Based on this idea, a GUI for the already-generated toolbox has been implemented.
Figure 1 shows an example of a typical window. It allows an effective use of powerful
interface tools designed according to the type of values being displayed $(e.g.$, drop-down
menu for a choice list, radio buttons for single choice from multiple options, text boxes
for displaying messages, list boxes for input/output user interaction, etc.). In general,
functions associated with each topic under analysis have been grouped and arranged in
a rectangular area with an indicative title on the top, such as: code, initial set, method
and iterations (see Figure 1 and subsequent description in Section 4). They are also
labeled with numbers in red from 1 to 4 in Figure 1 for prompt identification. Thus,
in the upper part of area 1 you can see some boxes and buttons for input/output user
interaction. Below those boxes, some buttons for additional tasks and a list box to display
generated IFS code are also included (see Section 4 for further description). Additional
functionalities are also provided in hidden menus or in separate windows which can be
invoked at will if needed so as to keep the main window streamlined and uncluttered. For
instance, all graphical output is displayed in separate windows so that the information
is better organized and (flows” in a natural and intuitive way. As a result, this GUI
presents an interface which is both aesthetic and very functional to the user.

4.2 Implementation Issues

Regarding the implementation, this program has been developed by the author in Matlab
[25] $v2008a$ on Windows XP operating system by using a PC with Intel Core 2 Duo
processor at 2.4 GHz. and 2 GB of RAM. However, the program supports many different

73

File Examples Tools Help
ew eq $m_{\theta}\}$

Figure 1: Screenshot of main window of our program

platforms, such as PCs (with Windows $9x$, 2000, NT, Me, XP and Vista) and UNIX
workstations. A version for Apple Macintosh with Mac OS X system is also available
provided that Xll (the implementation of the X Window System that makes it possible
to run Xll-based applications in Mac OS X) is properly installed and configured. Figures
in this paper correspond to the PC platform version.

The graphical tasks are performed by using the Matlab GUI for the higher-level func-
tions (windowing, menus, or input) while the OpenGL-based built-in graphics Matlab
commands are applied for rendering purposes. All our numerical functions have been
implemented in the native Matlab programming language.

74

Table 1: IFS code of Barnsley’s fern

5 Some Illustrative Examples

In this section the main features of the program are described through its application to
generate and render several IFS fractals.

5.1 Session Workflow
A typical session in our problem solving environment for fractals begins by writing the
IFS code of a fractal. To this purpose, some input boxes are provided in the IFS code
area (labeled as 1 in Figure 1). They reproduce the typical structure of an IFS code, with
input boxes for the coefficients of the IFS functions, namely, values for $a_{i},$ $b_{i},$ $c_{i},$ $d_{i},$ e_{i} and
f_{i} arranged in a two-dimensional matrix and vector according to Eq. (1). Once a new
function is inputted, it can be added to the list of iterated functions by pressing button
“Add” This action is immediately reflected in the list box below such a button since
the new iterated function shows up. For instance, Figure 3 displays the IFS code of the
famous Barnsley’s fern, given by Table 1. Such a fractal is represented graphically in
Figure 2.

We can modify any already created function through the button “Modify”. To this
aim, it is enough to click on the list box at the location of the contractive function we
wish to modify and its parameter values will be placed back onto the input boxes for
further modification. Finally, clicking on the button “Update” returns the new function
code to its former position at the list box. User is kindly warned at this point about the
possible confusion between pressing button “Add” or “Update” once function parameters
are modified. The former button adds a new function, so the IFS is enlarged regarding
the number of iterated functions, while the latter one replaces the former function by the
modified one, so the number of iterated functions for the IFS does not change. We can also
remove any contractive function of an IFS at any time (button “Remove”). Alternatively,
button “Remove All” removes the codes of all contractive functions of current IFS.

Once we know how an IFS describe a fractal image, the next step is introducing
a rendering method. Equation (2) provides us with the simplest rendering algorithm,
called deterministic algorithm. It works by generating a sequence of images obtained by
iterating (2) starting on an initial set in the plane. This sequence will converge to the
attractor of the IFS independently on the initial set meaning that we can start with any
arbitrary set or image. Our program allows us to start with several initial set s , ranging
from a single point to a polygon or a picture (see labe12 in Figure 1). Figure 3 shows an
example of a picture as initial set. As the reader can see, the program allows us to choose
any arbitrary picture from our storage units or devices by simply selecting or writing the

75

.\cdot

$s_{\backslash m^{\gamma_{i}\not\in^{n_{\vee\backslash }^{i_{\vee}}}}’}j_{i^{yl}\sim}^{\prime r^{l^{\prime\kappa^{\ovalbox{\tt\small REJECT}^{V}}}}}$

i_{\vee}

.
$\backslash \searrow_{r^{i}}arrow.4\}r^{L}- f’f_{\{tR}$

$\backslash _{*_{\wedge^{\backslash }}}arrow\searrow\tau.\swarrow,.11^{l}\dot{d}_{r_{\overline{r}}^{\triangleright}}.’\#:_{\star^{f_{\backslash }}\sim^{4_{-}}}\backslash ^{u_{\backslash }\sim}\backslash \star^{\ltimes}\backslash ^{r,}\backslash \backslash \forall a_{Y_{r_{\nwarrow*\sim^{\wedge}}}^{t_{s}^{?b\dagger\nwarrow^{*}\aleph^{\hat{\backslash }\not\in}}}}$$\oint_{i,\searrow F^{\vee}}r_{1}\searrow_{A_{t\}_{\sim}^{\}}}}J_{i}\dot{t}a_{\#}\backslash y_{\approx*\wedge}^{l}\searrow_{4}:.t_{\nu^{\psi^{\oint_{\wedge}^{\swarrow}}}}^{}\acute{g}\swarrow\backslash _{\ovalbox{\tt\small REJECT}}K\nwarrow\nwarrow\backslash *\cdot\cdot.\cdot$

$*\mathfrak{U}\acute{g}g_{d}^{q\nwarrow}$

$t^{\beta\acute{f_{\tau}}’\swarrow\swarrow\not\leq*\theta^{p^{\swarrow}}}\kappa_{\aleph}\mathbb{R}_{R}^{t}\nwarrow^{\urcorner}\nwarrow\backslash$

Figure 2: Bernsley’s fern (left) and its contractive functions in color (right)

filename and its path from current directory and the initial region where such a picture
is going to be displayed before iteration.

It is worthwhile to mention that, while the final image (the attractor, shown in Figure
2 $)$ will always be the same regardless the initial set we select, the computational com-
plexity to get such an image will not. So, instead of dealing with pictures or complicated
shapes as initial sets, it is more convenient to use very simple sets (preferably a single
point, like in Figure 4) to that purpose.

Another factor to alleviate the computational load concerns the rendering algorithm.
In spite of the beauty and simplicity of the deterministic algorithm, it is computationally
expensive and, hence, practically useless. A more efficient algorithm can be obtained by
attaching real weightsp_{i} to each of the transformations in the IFS, such that:

$\sum_{i=1}^{n}p_{i}=1$ (6)

Picking an initial point, one of the mappings in the set $\{w_{1}, \ldots, w_{n}\}$ is chosen at random
using the weigths $\{p_{1}, \ldots , p_{n}\}$ according to Eq. (3). The selected map is then applied
to generate a new point, and the same process is repeated again with the new point
obtaining, as a result of this iterative process, a sequence of points. The sequence obtained
using this stochastic process converge to the fractal as the number of points increases.
This algorithm is known as probabilistic algorithm or chaos game [2]. Third area in our
main window (label 3 in Fig. 1) allows us to select the probabilities in four different
modes: randomly or according to Barnsley’s algorithm, multifractal algorithm or user’s
choice. In the later case, user writes the probabilities in an input box as a list of values
separated by commas. In the three former cases, probabilities are normalized to ensure
Eq. (6) holds.

The chaos game algorithm generates a sequence of points that are randomly dis-
tributed over the fractal, according to the chosen set of probabilities. Thus, the larger
the number of iterations, the better the resolution of the resulting fractal image. Input
data for our program also includes the number of iterations used to display the final

76

$\backslash .\backslash \sim c|.- re^{-\cap}|$. 1.1_{\subset}

1

Figure 3: Choosing a picture as the initial set

image (labe14 in Figure 1). Ractal images in this paper have been generated with about
$2\cross 10^{5}$ iterations. It is also convenient to consider a transient of m initial iterations (set
to $m=10$ in all our pictures) that are not displayed in order to skip points that do not
really belong to the attractor and might otherwise be displayed before convergence.

One of the most surprising properties of IFS models is their ability to capture the
main features of some natural formations. For example, it is not difficult to realize at
first glance that the fractal images given in Figure 5 resemble leaves (top) and trees
(bottom), respectively. Note also the amazing realism of Figure 2.

77

. ’ ’

File Exarnples Tools Help

$\ovalbox{\tt\small REJECT} \mathfrak{B}^{v\{}8^{w}$

Figure 4: Choosing a point as the initial set

6 Conclusions and Further Remarks
In this paper a Matlabbased problem solving environment for analyzing and displaying
IFS fractals is presented. The program allows us to display any two-dimensional IFS
fractal through a wealth of graphical and numerical options. Additional options for
the determination of the fractal dimension, the best probabilities for the IFS rendering
algorithm and other numerical tasks have also been incorporated. The program have
exhibited a very good performance in all our examples described here and many others
not reported because of limitations of space. In author’s opinion, this program has been
very useful to introduce our students into the fractal geometry world, and instruct them

78

$f_{f_{\searrow},*_{\dot{*}_{\wedge^{\wedge:}}}.\cdot.n_{\tilde{\infty}\aleph}^{i}\#}s_{k\dot{*}}^{k_{=b^{\psi}}}\grave{\Re}\^{\backslash }\nwarrow e*$

$\xi_{\wedge}r\searrow_{vm-}\swarrow^{w}\rangle$

$\backslash !i|^{\uparrow\prime}t_{i}\ddot{t}_{b,}$

$|^{!}!u’.|^{i}1!$

$-\cdot\infty^{r--}\prime 3\prime u^{e}rightarrow\hat{\ovalbox{\tt\small REJECT}}_{l}..\wedge\vee/\searrow_{\backslash }\approx-\cdot\dot{m}\sim\gamma_{\mu}\dot{\infty}R^{w}\triangleleft\searrow-R\swarrow$

$q_{t\searrow ’_{\backslash }\mu_{j}\grave{\frac{}{\lambda^{\backslash }}}\varpi_{S_{\nwarrow}}^{c}}\cross_{\nwarrow\S_{\backslash }}R_{\searrow}\nwarrow\iota_{\}.’,/^{\swarrow..\ovalbox{\tt\small REJECT}}xrt_{1}\searrow\int\nwarrow\nwarrow\backslash$

Figure 5: IFS models associated with two different natural formations

what for and how fractals are used.
Regarding the educational issues, the described PSE has been very well welcome by

my students. They were enthusiastic about this computer-based approach and become
engaged from the very beginning. On the other hand, students’ projects and assignments

showed that the software effectively help the students to grasp the main concepts and
techniques in the subject under study. In general, it can be said that students feedback
has been very positive and encourages me to keep creating new computer tools for this
and other courses on similar topics. It is author’s hope that this experience can also be
useful to other teachers and educators pursuing to follow a similar approach. Feedback
about those similar experiences would be kindly welcome.

Acknowledgments
The author would like to express her sincere acknowledgment and appreciation to Prof.
Setsuo Takato for his kind invitation to participate in this RIMS workshop by delivering
this talk and visit the lovely cities of Kyoto and Uji (and it s impressive Byodo-in) and for
creating such a wonderful atmosphere during all my stay in Kyoto. Special thanks are
also due to Prof. Takato and all $Iqr_{P}ic$ members for making my birthday such a special
day $(Ookini/!.)$.

79

This research has been supported by the Computer Science National Program of
the Spanish Ministry of Education and Science, Project Ref. #TIN2006-13615 and the
University of Cantabria.

References
[1] The Bologna Declaration on the European space for higher education: an explanation.

Association of European Universities&EU Rectors’ Conference (1999) pp. 4 (available
at: $http.\cdot//ec.europa.eu/education/policies/educ/bologna/bologna.pdf)$.

[2] Barnsley, M.F.: Fractals Everywhere, Second Edition. Academic Press (1993)

[3] Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters, Wellesley, MA.
(1993)

[4] Elton, J.H.: “An Ergodic Theorem for Iterated Maps,” Ergodic Theory Dynam. Syst.,
7 (1987) 481-488

[5] Falconer, K.: Fractal Geometry; Mathematical Foundations and Applications. Wiley
(1990)

[6] Fisher, Y.: Fractal Image Compression: Theory and Applications. Springer-Verlag
(1995)

[7] Forte, B. Vrscay, E. R.: “Solving the inverse problem for measures using iterated
function systems: a new approach”. Adv. Appl. Prob., 27, (1995) 800-820

[8] G\’alvez, A.: “Numerical-symbolic Matlab program for the analysis of three-
dimensional chaotic systems”. Lectures Notes in Computer Science, 4488 (2007) 211-
218

[9] G\’alvez, A., Iglesias, A.: “Symbolic/numeric analysis of chaotic synchronization with
a CAS”. Future Generation Computer Systems 25(5) (2007) 727-733

[10] G\’alvez, A.: “Matlab Toolbox and GUI for Analyzing One-dimensional Chaotic
Maps, Computational Science and its Applications-ICCSA ‘2008. IEEE Computer So-
ciety Press, Los Alamitos, California, USA (2008) 321-330

[11] G\’alvez, A.: A Matlab Problem-Solving Environment for Nonlinear Systems Edu-
cation in Mathematics, Physics and Engineering, RIMS Kokyuroku Journal Series,
1624 (2009) 129-144.

[12] Graf, S.: “Barnsley’s scheme for the fractal encoding of images” Journal of Com-
plexity, 8 (1992) 72-78

[13] Guti\’errez, J.M., Iglesias, A., Rodr\’iguez, M.A.: “Logistic Map Driven by Correlated
Noise”. Second Granada Lectures in Computational Physics. Garrido, P.L., Marro, J.
(Eds.) World Scientific, Singapore (1993) 358-364

80

[14] Guti\’errez, J.M., Iglesias, A., Rodr\’iguez, M.A.: (Logistic Map Driven by Dichoto-
mous Noise”. Physical Review E, 48(4) (1993) 2507-2513

[15] Guti\’errez, J.M., Iglesias, A., Rodr\’iguez, M.A., Rodr\’iguez, V.J.: “Fractal Image Gen-
eration with Iterated Function Systems”. In “ Mathematics With Vision”. In: Proceed-
ings of the First International Symposium of Mathematica, V. Keranen and P. Mitic
(Eds.), Computational Mechanics Publications (1995) 175-182

[16] Guti\’errez, J.M., Iglesias, A., Rodr\’iguez, M.A.: “A Multifractal Analysis of IFSP
Invariant Measures with Application to Fractal Image Generation”. Fractals, 4(1)
(1996) 17-27

[17] Guti\’errez, J.M., Iglesias, A., Rodr\’iguez, M.A., Rodr\’iguez, V.J.: ”Efficient Rendering
in Fractal Images”. The Mathematica Journal, 7(1) (1997) 7-14

[18] Guti\’errez, J.M., Iglesias, A.: “A Mathematica package for the analysis and control
of chaos in nonlinear systems” Computers in Physics, 12(6) (1998) 608-619

[19] Hutchinson, J.: “Fractals and Self-Similarity”. Indiana Univ. Math. Jour., 30 (1981)
713-747

[20] Iglesias, A., G\’alvez, A.: “Analyzing the synchronization of chaotic dynamical sys-
tems with Mathematica: Part I”. Lectures Notes in Computer Science 3482 (2005)
472-481

[21] Iglesias, A., G\’alvez, A.: “Analyzing the synchronization of chaotic dynamical sys-
tems with Mathematica: Part II”. Lectures Notes in Computer Science 3482 (2005)
482-491

[22] Iglesias, A., Galvez, A.: “Revisiting some control schemes for chaotic synchronization
with Mathematica”. Lectures Notes in Computer Science 3516 (2005) 651-658

[23] Jacquin, A.E.: “Image Coding Based on a Fractal Theory of Iterated Contractive
Image Transformations”. IEEE Transactions on Image Processing, 1(1) (1992) 18-30

[24] Mandelbrot, B. B.: The Fractal Geometry of Nature. W. H. Freeman and Co. (1982)

[25] The Mathworks Inc: Using Matlab. Natick, MA (1999)

[26] Peitgen, H. O., Jurgens, H. and Saupe, D.: Chaos and Fractals. New Frontiers of
Science. Springer-Verlag (1993)

81

