

Title	On the principal series representation of \$SU(2,2)\$ (Automorphic representations, automorphic \$L\$-functions and arithmetic)
Author(s)	Bayarmagnai, G.
Citation	数理解析研究所講究録 (2009), 1659: 157-165
Issue Date	2009-07
URL	http://hdl.handle.net/2433/140926
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On the principal series representation of SU(2,2)

G. Bayarmagnai

1 Introduction

Let G denote the special unitary group SU(2,2). In the paper, we will deal with the principal series representations of G which are parabolically induced by the minimal parabolic subgroup P_{min} with Langlands decomposition $P_{min} = MAN$;

$$\pi_{\sigma,\nu} = \operatorname{Ind}_{P_{min}}^G (\sigma \otimes e^{\nu+\rho} \otimes 1_N),$$

where ρ is the half sum associated to the root system of the pair (G, A), ν is a complex valued real linear form on $\mathfrak{a} = Lie(A)$, σ is a unitary character of M.

Let η be a continuous unitary character of N. We then have the Jacquet functional $J_{\sigma,\nu}$ on the space of differentiable functions of $L^2_{\sigma}(K)$, the representation space of $\pi_{\sigma,\nu}$, such that $J_{\sigma,\nu}(\pi_{\sigma,\nu}(n)f) = \eta(n)J_{\sigma,\nu}(f)$ for any $n \in N$. The functional defines an intertwiner J from $\pi_{\sigma,\nu}|_K$ to $A_{\eta}(N \setminus G)$ by sending any $v \in \pi_{\sigma,\nu}|_K$ to the function $J_v(g) := J_{\sigma,\nu}(\pi_{\sigma,\nu}(g)v)$, $(g \in G)$. Here the subspace of all K-finite vectors of $\pi_{\sigma,\nu}$ is denoted by $\pi_{\sigma,\nu}|_K$ and $A_{\eta}(N \setminus G)$ is the subspace of $C^{\infty}(G)$ consisting of all moderate growth functions f(g) such that $f(ng) = \eta(n)f(g)$ for $n \in N$ and $g \in G$. In fact, J is an intertwiner of K and g-equivariant, and hence the study of the image of J (the Whittaker model) leads us to the problem of the investigations of the (\mathfrak{g}, K) -module structure and the functions $J_v(g)$ for certain K-types of $\pi_{\sigma,\nu}$.

The main goal of this paper is to describe the above mentioned objects in terms of parameters of the principal series representation $\pi_{\sigma,\nu}$ explicitly. Note that our results are quite similar to that of Ishii [4] and Oda [5], for both $Sp(2,\mathbb{R})$ and SU(2,2) have the same restricted root system.

We also consider a matrix representations of the Knapp-Stein intertwining operator which have been motivated by a result of Goodman-Wallach [2].

2 Preliminaries

Let K be the compact group $S(U(2) \times U(2))$. Then K is the maximal compact subgroup of G fixed by the Cartan involution θ for G given by

$$\theta(g) = {}^t \bar{g}^{-1}, \quad g \in G.$$

We fix the following basis for the 7 dimensional Lie algebra $\mathfrak{k}_{\mathbb{C}}$, the complexification of $\mathfrak{k} = Lie(K)$:

$$h^{1} = \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix}, \qquad h^{2} = \begin{pmatrix} 0 & 0 \\ 0 & h \end{pmatrix}, \qquad I_{2,2} = \begin{pmatrix} 1_{2} & 0 \\ 0 & -1_{2} \end{pmatrix},$$

$$e^{1}_{\pm} = \begin{pmatrix} e_{\pm} & 0 \\ 0 & 0 \end{pmatrix}, \qquad e^{2}_{\pm} = \begin{pmatrix} 0 & 0 \\ 0 & e_{\pm} \end{pmatrix},$$

where
$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $e_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $e_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

For every K-module V, it is clear that $I_{2,2} \in \mathfrak{k}_{\mathbb{C}}$ commutes with the action of K on V. If V is irreducible, then by Schur's lemma, the operator is a scalar of the identity map.

Lemma 2.1 Let m_1, m_2 be positive integers and l be an integer. If $m_1 + m_2 + l$ is an even integer, then there is an irreducible K-module $(\tau_{[m_1,m_2;\ l]}, V_{m_1m_2})$ with a basis $\{f_{pq} \mid 0 \le p \le m_1, 0 \le q \le m_2\}$ of $V_{m_1m_2}$ such that $I_{2,2}f_{pq} = lf_{pq}$ and

$$h^{1}(f_{pq}) = (2p - m_{1})f_{pq}, e^{1}_{+}(f_{pq}) = (m_{1} - p)f_{p+1,q}, e^{1}_{-}(f_{pq}) = pf_{p-1,q},$$

$$h^{2}(f_{pq}) = (2q - m_{2})f_{pq}, e^{2}_{+}(f_{pq}) = (m_{2} - q)f_{p,q+1}, e^{2}_{-}(f_{pq}) = qf_{p,q-1}.$$

It follows from the fact that $SU(2) \times SU(2) \times \mathbb{C}^{(1)}$ is a twofold covering of K with the projection given by

$$pr(g_1, g_2; u) = diag(ug_1, u^{-1}g_2), \ g_1, g_2 \in SU(2), \ u \in \mathbb{C}^{(1)}.$$

3 K-finite vectors in the principal series

In this section, for each simple K-module $\tau \in \hat{K}$, we associate a matrix function $\mathbf{S}_{\sigma,\nu}^{(\tau)}(k)$, $k \in K$, whose entries give a basis for the τ -isotypic component of $\pi_{\sigma,\nu}$. The main feature of this basis is that the both \mathfrak{g} and K-actions on $\pi_{\sigma,\nu} \mid_K$ have simple expressions in terms of parameters of given representation. For more details about this theme, we refer to [5] which is our main reference.

Proposition 3.1 Let $H(\tau)$ be the τ -isotypic component of $L^2(K)$, and put $\dim(\tau) = n$. There exists a unique square matrix function $\mathbf{S}^{(\tau)}(k)$, $k \in K$, of size n with entries in $H(\tau)$,

$$\mathbf{S}^{(au)}(k) = egin{bmatrix} f_{11}(k) & \cdots & f_{n1}(k) \ dots & \ddots & dots \ f_{1n}(k) & \cdots & f_{nn}(k) \end{bmatrix} = \{f_{ij}(k)\}_{1 \leq i,j \leq n},$$

satisfying the following two conditions:

- 1. $\mathbf{S}^{(\tau)}(1_K) = \text{diag}(1, ..., 1) \in M_n(\mathbb{C}),$
- 2. For each α $(1 \le \alpha \le n)$, the set $\{f_{\alpha 1}(k),...,f_{\alpha n}(k)\}$ is a basis for τ as in Lemma 2.1. Moreover, we have

$$H(\tau) = \bigoplus_{\alpha} W_{\alpha},$$

where W_{α} denotes the space spanned by $f_{\alpha 1}(k), ..., f_{\alpha n}(k)$.

Proof. The existence of the matrix function is similar to that of [5]. We consider the uniqueness. Assume that there exist two matrices $\mathbf{F}^{(\tau)}(k) = \{f_{ij}(k)\}$ and $\mathbf{G}^{(\tau)}(k) = \{g_{ij}(k)\}$ as required. Denote by F_{α} the isomorphism between τ and the space spanned by $\{f_{\alpha j}(k), ..., f_{\alpha n}(k)\}$. Similarly, we define G_{α} for the α -th column of $\mathbf{G}^{(\tau)}(k)$. As a result, we obtain two ordered bases $\{F_{\alpha}\}_{\alpha}$ and $\{G_{\alpha}\}_{\alpha}$ for the n-dimensional vector space $\mathrm{Hom}_{K}(\tau, H(\tau))$. Then we have the n by n matrix $A = \{a_{\alpha\beta}\}$, the change of coordinate matrix, such that

$$F_{\alpha} = \sum_{eta} a_{lphaeta} G_{eta}.$$

For a basis $\{f_{\gamma}\}\$ of τ , one obtains

$$f_{lpha\gamma}(k) = F_{lpha}(f_{\gamma}) = \sum_{eta} a_{lphaeta} G_{eta}(f_{\gamma}) = \sum_{eta} a_{lphaeta} f_{eta\gamma}(k).$$

Evaluation at the point 1_K shows that

$$a_{\alpha\gamma} = \delta_{\alpha\gamma}$$
.

If $v \neq 0 \in W_{\alpha} \cap W_{\beta}$, then $Kv = W_{\alpha} = W_{\beta}$. Schur's lemma and second condition imply that $\alpha = \beta$. Assume there is a matrix $\mathbf{S}^{(\tau)}(k)$ as required, we then have the direct sum decomposition of $H(\tau)$. \square

For each $\tau_m = \tau_{[m_1,m_2;l]} \in \hat{K}$, define a finite set $I(\tau_m)$ to be the collection of indices α such that W_α occurs in $\pi_{\sigma,\nu}\mid_K$ as a K-module. Thus, the cardinality of $I(\tau_m)$ is the K-multiplicity of τ_m in $\pi_{\sigma,\nu}$. Let s be the integer parameter corresponding to $\sigma \in \hat{M}$. By setting $n = (m_1 + m_2 + s)/2$, one can see that p + q = n if $\alpha \in I(\tau_m)$ with $\alpha = (m_2 + 1)p + q + 1$, $(q \le m_2)$. We identify the index α with the pair (p,q) defined by α .

We define a matrix function $\mathbf{S}_{\sigma,\nu}^{(\tau_m)}(k)$ attached to the τ -isotypic component of $\pi_{\sigma,\nu}$ by eliminating all the α -th columns of $\mathbf{S}^{(\tau_m)}(k)$ when $p+q\neq n$ and change the α -th columns by 0 if $\alpha\not\in I(\tau_m)$ and p+q=n.

4 The (\mathfrak{g}, K) -module structure on $\pi_{\sigma,\nu}$

Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the Cartan decomposition of $\mathfrak{g} = Lie(G)$ corresponding to θ . In this section, we explicitly describe $\mathfrak{p}_{\mathbb{C}}$ -action on the space

$$\pi_{\sigma,\nu}\mid_{K}\cong\bigoplus_{ au_{m}\in\hat{K}}\bigoplus_{lpha\in I(au_{m})}W_{lpha}.$$

Since the adjoint representation of K on $\mathfrak{p}_{\mathbb{C}}$ splits into two irreducible components, the antiholomorphic part \mathfrak{p}_{-} and the holomorphic part \mathfrak{p}_{+} , it is enough to investigate the \mathfrak{p}_{+} -action for our purpose. Let E_{ij} be the matrix unit of $M_4(\mathbb{R})$ with 1 in the (i,j)-entry and zero elsewhere. Then the set $\{E_{ij} \mid i=1,2\ j=3,4\}$ forms a basis for \mathfrak{p}_{+} . For a fixed pair $(e_1,e_2),\ e_j\in\{\pm 1\}$ with j=1,2, we define \mathbf{c}_t^j by

$$\mathbf{c}_t^j = \frac{t}{m_j + 1} \ (0 \le t \le m_j + e_j).$$

Let (τ_m, V_m) be an irreducible representation of K with parametrization $m = [m_1, m_2; l]$. By the well known Clebsch-Gordan theorem, the irreducible components in the K-module $\mathfrak{p}_+ \otimes_{\mathbb{C}} \tau_m$ are precisely the K-representations

$$T = \{ \tau_{[m_1+e_1,m_2+e_2;\ l+2]} \mid e_1,e_2 \in \{\pm 1\} \},$$

and we will denote these by $\tau_{[\pm,\pm;+]}$ or $\tau_{[e_1,e_2;+]}.$

For each K-isomorphism between τ_m and W_α in Proposition 3.1, we have the following surjective homomorphism $\mathfrak{p}_+ \otimes_{\mathbb{C}} \tau_m \to \mathfrak{p}_+ W_\alpha$ of K-modules. Therefore, we obtain an injection

$$\mathfrak{p}_{+}H_{\sigma,\nu}(\tau_{m}) \hookrightarrow \bigoplus_{\tau_{m'} \in T} H_{\sigma,\nu}(\tau_{m'})$$

which implies the following theorem. Here $H_{\sigma,\nu}(\tau_m)$ stands for the τ_m -isotypic component of $\pi_{\sigma,\nu}$.

Theorem 4.1 Let $\tau_{[e_1,e_2;+]}$ be a simple K-submodule of the K-module $\mathfrak{p}_+ \otimes_{\mathbb{C}} \tau_m$ for a given simple K-module τ_m and the K-module $(\mathrm{Ad},\mathfrak{p}_+)$. Then we have that

$$\mathcal{C}_{[e_1,e_2;+]}\mathbf{S}_{\sigma,\nu}^{(\tau_m)}(k) = \mathbf{S}_{\sigma,\nu}^{(\tau_{[e_1,e_2;+]})}(k)\Gamma_{[e_1,e_2;+]},$$

where the product of matrices of the left hand side is the differential operation. Here, r = (s + l)/2 and

1. $\Gamma_{[-,-;+]} = \{a_{ij}\}_{0 \le i \le n-1, 0 \le j \le n}$ is a matrix whose all non zero entries are given by

$$a_{t-1,t} = \frac{1}{2}(\nu_2 + 1 + m_1 + r - 2t) \qquad if (t, n-t) \in I(\tau_m), (t-1, n-t) \in I(\tau_{m'}),$$

$$a_{t,t} = -\frac{1}{2}(\nu_1 - 1 - m_2 + r - 2t) \qquad if (t, n-t) \in I(\tau_m), (t, n-t-1) \in I(\tau_{m'}).$$

and $C_{[-,-;+]} = \{C_{ij}\}$ is a matrix of size $(m_1m_2) \times (m_1+1)(m_2+1)$ with entries given by

$$\begin{array}{lll} C_{m_2p+q+1,(m_2+1)p+q+1} & = -E_{14}, \\ C_{m_2p+q+1,(m_2+1)p+q+2} & = -E_{13}, \\ C_{m_2p+q+1,(m_2+1)(p+1)+q+1} & = E_{24}, \\ C_{m_2p+q+1,(m_2+1)(p+1)+q+2} & = E_{23}, \end{array}$$

for each $0 \le p \le m_1 - 1$ and $0 \le q \le m_2 - 1$, but all other entries are 0.

2. $\Gamma_{[+,+;+]} = \{a_{ij}\}_{0 \le i \le n+1, 0 \le j \le n}$ is a matrix whose all non zero entries are given by

$$a_{t,t} = \frac{1}{2}(\nu_2 + 1 + m_1 + r - 2t)(1 - \mathbf{c}_t^1)\mathbf{c}_{\nu-t+1}^2 \qquad if (t, n-t) \in I(\tau_m), \ (t, n-t+1) \in I(\tau_{m'}),$$

$$a_{t+1,t} = \frac{1}{2}(\nu_1 + 3 + 2m_1 + m_2 + r - 2t)\mathbf{c}_{t+1}^1(\mathbf{c}_{\nu-t}^2 - 1) \qquad if (t, n-t) \in I(\tau_m), \ (t+1, n-t) \in I(\tau_{m'}).$$

and $C_{[+,+;+]} = \{C_{ij}\}$ is a matrix of size $(m_1+2)(m_2+2) \times (m_1+1)(m_2+1)$ with entries cgiven by

$$\begin{array}{ll} C_{(m_2+2)p+q+1,(m_2+1)p+q+1} & = -(1-\mathbf{c}_p^1)(1-\mathbf{c}_q^2)E_{23}, \\ C_{(m_2+2)p+q+1,(m_2+1)p+q} & = (1-\mathbf{c}_p^1)\mathbf{c}_q^2E_{24}, \\ C_{(m_2+2)p+q+1,(m_2+1)(p-1)+q+1} & = -\mathbf{c}_p^1(1-\mathbf{c}_q^2)E_{13}, \\ C_{(m_2+2)p+q+1,(m_2+1)(p-1)+q} & = \mathbf{c}_p^1\mathbf{c}_q^2E_{14}, \end{array}$$

for each $0 \le p \le m_1 + 1$ and $0 \le q \le m_2 + 1$, but all other entries are 0.

3. $\Gamma_{[-,+;+]} = \{a_{ij}\}_{0 \leq i \leq n, 0 \leq j \leq n}$ is a square matrix whose all non zero entries are given by

$$a_{t-1,t} = \frac{1}{2}(\nu_2 + 1 + m_1 + r - 2t)\mathbf{c}_{\nu-t+1}^2 \qquad if \ (t, n-t) \in I(\tau_m), \ (t-1, n-t+1) \in I(\tau_{m'})$$

$$a_{t,t} = \frac{1}{2}(\nu_1 + 1 + m_2 + r - 2t)(1 - \mathbf{c}_{\nu-t}^2) \qquad if \ (t, n-t) \in I(\tau_m), \ (t, n-t) \in I(\tau_{m'}).$$

and $C_{[-,+;+]} = \{C_{ij}\}$ is a matrix of size $m_1(m_2+2) \times (m_1+1)(m_2+1)$ with entries given by

$$\begin{array}{lll} C_{(m_2+2)p+q+1,(m_2+1)p+q+1} & = (1-\mathbf{c}_q^2)E_{13}, \\ C_{(m_2+2)p+q+1,(m_2+1)p+q} & = -\mathbf{c}_q^2E_{14}, \\ C_{(m_2+2)p+q+1,(m_2+1)(p+1)+q+1} & = -(1-\mathbf{c}_q^2)E_{23}, \\ C_{(m_2+2)p+q+1,(m_2+1)(p+1)+q} & = \mathbf{c}_q^2E_{24}, \end{array}$$

for $0 \le p \le m_1 + 1$ and $0 \le q \le m_2 - 1$, but all other entries are 0.

4. $\Gamma_{[+,-;+]} = \{a_{ij}\}_{0 \leq i \leq n, 0 \leq j \leq n}$ is a square matrix whose all non zero entries are given by

$$a_{t,t} = \frac{1}{2}(\nu_2 + 1 + m_1 + r - 2t)(1 - \mathbf{c}_t^1) \qquad if (t, n - t) \in I(\tau_m), \ (t, n - t) \in I(\tau_{m'}),$$

$$a_{t+1,t} = \frac{1}{2}(\nu_1 + 1 + 2m_1 - m_2 + r - 2t)\mathbf{c}_{t+1}^1 \qquad if (t, n - t) \in I(\tau_m), \ (t+1, n-t-1) \in I(\tau_{m'}).$$

and $C_{[+,-;+]} = \{C_{ij}\}$ is a matrix of size $(m_1+2)m_2 \times (m_1+1)(m_2+1)$ with entries given by

$$\begin{array}{ll} C_{m_2p+q+1,(m_2+1)p+q+1} & = (1-\mathbf{c}_p^1)E_{24}, \\ C_{m_2p+q+1,(m_2+1)p+q+2} & = (1-\mathbf{c}_p^1)E_{23}, \\ C_{m_2p+q+1,(m_2+1)(p-1)+q+1} & = \mathbf{c}_p^1E_{14}, \\ C_{m_2p+q+1,(m_2+1)(p-1)+q+2} & = \mathbf{c}_p^1E_{13}, \end{array}$$

for $0 \le p \le m_1 + 1$ and $0 \le q \le m_2 - 1$, but all other entries are 0.

4.0.1 The Knapp-Stein operator

In this subsection, we consider a matrix representation of the Knapp-Stein operator with respect to the basis for $\pi_{\sigma,\nu}|_{K}$. This is motivated by Theorem 6.7 in the paper of Goodman-Wallach [2].

Let us recall the Knapp-Stein intertwining operator $A^s_{\sigma,\nu}$ from the space of all C^{∞} -vectors of $\pi_{\sigma,\nu}$ to that of $\pi_{s(\sigma),s(\nu)}$ defined by

$$(A_{\sigma,\nu}^{s}f)(k) = \int_{\bar{N}_{s}} a(n_{s}s^{*}k)^{\nu+\rho} f(k(n_{s}s^{*}k)) dn_{s}, \ (f \in \pi_{\sigma,\nu}^{\infty}).$$

Here $s^* \in K$ such that $s := Ad(s^*) \in W(A)$, $\bar{N}_s = N \cap s^*Ns^{*-1}$ and $s(\sigma)$ is a character of M given by $s(\sigma)(m) = \sigma(s^*ms^{*-1})$, $m \in M$. Since it is a linear map from $\pi_{\sigma,\nu}$ to $\pi_{s(\sigma),s(\nu)}$ satisfying

$$A_{\sigma,\nu}^s \pi_{\sigma,\nu}(x) f = \pi_{s(\sigma),s(\nu)}(x) A_{\sigma,\nu}^s f, \quad x \in G \text{ (or } U(\mathfrak{g})),$$

we have a linear map

$$A^s(\tau): \operatorname{Hom}_K(\tau, \pi_{\sigma, \nu} \mid_K) \to \operatorname{Hom}_K(\tau, \pi_{s(\sigma), s(\nu)} \mid_K).$$

for any $\tau \in \hat{K}$.

Let $[\alpha_i]$ be the K-isomorphism from τ to W_{α_i} for $\alpha_i \in I(\tau)$. We equip the space $\operatorname{Hom}_K(\tau, \pi_{\sigma, \nu} \mid_K)$ with the basis consisting of the K-homomorphisms $[\alpha_i]$. Similarly, we choose a basis for the space $\operatorname{Hom}_K(\tau, \pi_{s(\sigma), s(\nu)} \mid_K)$. Then we want to compute all entries a_{ij} of the matrix $A^s(\tau) = (a_{ij})$ such that

$$A^s(\tau)[\alpha_i] = \sum_{\alpha_j^s \in I} a_{ij} \cdot [\alpha_j^s]$$

where $I = \{\alpha^s \mid W_{\alpha^s} \hookrightarrow \pi_{s(\sigma),s(\nu)} \mid_K \}$. For each basis vector f_{pq} of τ as in Lemma 2.1, we have that

$$(A^s(\tau)[\alpha_i])(f_{pq}) = \sum_{\alpha_j^s \in I} a_{ij} \cdot [\alpha_j^s](f_{pq}) = \sum_{\alpha_j^s \in I} a_{ij} \cdot f_{\alpha_j^s,pq}^{(\tau)}(k).$$

On the other hand, by definition of the map $A^s(\tau)$, one has

$$(A^s(\tau)[\alpha_i])(f_{pq}) = (A^s_{\sigma,\nu} f^{(\tau)}_{\alpha_i,pq})(k), \ \alpha_i \in I(\pi_{\sigma,\nu},\tau).$$

Thus we have the following formula for the coefficients a_{ij} of the matrix $A^s(\tau)$ for each $\tau \in \hat{K}$.

Lemma 4.2 Let α_i be in $I(\pi_{\sigma,\nu},\tau)$ and α_j^s be in $I(\pi_{s(\sigma),s(\nu)},\tau)$. Then the (i,j)-th coefficient of $A^s(\tau)$

$$a_{ij} = (A^s_{\sigma,\nu} f^{(m)}_{\alpha_i,\alpha_i^s})(1_4).$$

Example 4.3

Let s be a generator of W(A) whose image is the matrix $\operatorname{diag}(1,-1)$ under the representation of W(A) on \mathfrak{a}^* . Then we choose the corresponding $s^* \in K$ as the matrix $\operatorname{diag}(1,-i,1,i)$ and hence

$$ar{N}_s = \exp(\mathfrak{g}_{-2\lambda_2}) = \left\{ n_s(t) = \kappa^{-1} egin{pmatrix} 1 & & & \ & 1 & & \ & & 1 & \ & t & & 1 \end{pmatrix} \kappa : t \in \mathbb{R}
ight\}.$$

Since $n_s \in \bar{N}_s$, one has ${}^tn_sI_{2,2}n_s = I_{2,2}$ and hence $n_ss^* = I_{2,2}{}^tn_s^{-1}I_{2,2}s^*$. Thus, we have the following. Assume $n_s = n_s(t) \in \bar{N}_s$. Let $n' \in N$, $a(n_ss^*) \in A$ and $k(n_ss^*) \in K$ be so that $n_ss^* = n'a(n_ss^*)k(n_ss^*)$. Then

$$a(n_s s^*)^{\nu+\rho} = (1+t^2)^{-\frac{\nu_2+1}{2}},$$

 $k(n_s s^*) = \text{diag}(1, -iu, -1, -iu^{-1})$

where $u = ((1 - it)/(1 + it))^{\frac{1}{2}}$.

For a fixed $\tau_m \in \hat{K}$, therefore

$$f_{\gamma_i,\beta_j}(k(n_s s^*)) = 0$$
 when $\gamma_i \neq \beta_j$

If $\tau = \tau_{[m_1, m_2; l]}$ then we have

$$A^s(\tau) = 2\pi 2^{-\nu_2} \Gamma(\nu_2) \operatorname{diag} \left[\frac{(-1)^{(m_1+m_2)/2-p+1} i^{m_2+r}}{\Gamma(\frac{1}{2}\nu_2 + \frac{1}{2} + d)\Gamma(\frac{1}{2}\nu_2 + \frac{1}{2} - d)} \right]_n$$

where $d = \frac{1}{2}(m_1 + r - 2p)$ for $(p, (m_1 + m_2)/2 - p) \in I(\pi_{\sigma, \nu}, \tau_m)$.

5 Whittaker functions

The main focus of this section is on the integral expressions of Whittaker functions on G related to certain principal series. The results of the section 4.1 lead us to the study of Whittaker functions related to some K-types. For this purpose, we focus our investigation on the principal series representations which contain one dimensional K-types and apply the method used in [4] to evaluate such Whittaker functions. More precisely, in this setting, the character σ of M factors through a character χ of μ_2 . Let $(\pi_{\chi,\nu}, L^2_{\chi}(K))$ denote the principal representation series corresponding to such character σ .

For an integer u, define a function $f_u(k)$ on K by $f_u(k) := \det(k_2)^u$, $k = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \in K$.

Lemma 5.1 Let $f_u(k)$ be as above. Then $\tau_{[0,0,2u]} \cong \mathbb{C} f_u(k)$ as K-modules. Moreover, if $\chi(-1) = (-1)^u$ then $f_u(k) \in L^2_{\chi}(K)$ and $[\pi_{\chi,\nu} : \tau_{[0,0;2u]}] = 1$.

5.1 The Jacquet integral.

Let $J_{\chi,\nu}$ be the Jacquet functional on the subspace of differentiable functions of $L^2_{\chi}(K)$ given by

$$J_{\chi,\nu}(f) = \int_{N} \eta(n)^{-1} a(s^*n)^{\nu+\rho} f(k(s^*n)) dn$$

for a differentiable function f in $L^2_{\chi}(K)$ and the longest element $s \in W(A)$. Here W(A) is the Weyl group defined as the quotient of $M^* = N_K(\mathfrak{a})$, the normalizer of \mathfrak{a} in K, by M and s^* is an element of M^* mapping to the longest element $s \in W(A)$.

Then one has $J_{\chi,\nu}(\pi(n)f)=\eta(n)J_{\chi,\nu}(f)$ and hence

$$J \in \operatorname{Hom}_{(\mathfrak{g},K)}(\pi_{\chi,\nu}|_K, \mathcal{A}_{\eta}(N\backslash G)), \tag{1}$$

where J associates $v \in \pi_{\chi,\nu}|_K$ to the function $J_v(g) := J_{\chi,\nu}(\pi_{\chi,\nu}(g)v)$, $(g \in G)$. We want to have an explicit formula for the A-radial part:

$$J_{f_u}(a) = J_{\chi,\nu}(\pi_{\chi,\nu}(a)f_u) = a^{-\nu+\rho} \int_N \eta(ana)^{-1} a(s^*n)^{\nu+\rho} f_u(k(s^*n)) dn.$$

In our case, we can choose $I_{2,2} \in K$ for $s^* \in K$.

5.1.1 The first modification

Let E_{ij} be the usual matrix with 1 in (i,j)-entry and zero elsewhere. Put

$$E_0 = \kappa^{-1}(E_{12} - E_{43})\kappa, \qquad E_1 = i\kappa^{-1}(E_{12} + E_{43})\kappa, \qquad E_2 = \kappa^{-1}E_{24}\kappa,$$

$$F_0 = \kappa^{-1}(E_{14} + E_{23})\kappa, \qquad F_1 = i\kappa^{-1}(E_{14} - E_{23})\kappa, \qquad F_2 = \kappa^{-1}E_{13}\kappa,$$

by setting $i = \sqrt{-1}$ and

$$\kappa = \frac{1}{\sqrt{2}} \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -i & 0 & i & 0 \\ 0 & -i & 0 & i \end{array} \right).$$

Then the corresponding root spaces of positive roots in $\Phi(\mathfrak{g},\mathfrak{a})$ are given by

$$\begin{split} \mathfrak{g}_{\lambda_1-\lambda_2} &= E_0 \cdot \mathbb{R} \oplus E_1 \cdot \mathbb{R}, \qquad \mathfrak{g}_{2\lambda_2} = E_2 \cdot \mathbb{R}, \\ \mathfrak{g}_{\lambda_1+\lambda_2} &= F_0 \cdot \mathbb{R} \oplus F_1 \cdot \mathbb{R}, \qquad \mathfrak{g}_{2\lambda_1} = F_2 \cdot \mathbb{R}. \end{split}$$

Let \mathfrak{n} be a subalgebra defined by $\mathfrak{n} = \sum_{\alpha \in \Phi_+} \mathfrak{g}_{\alpha}$. We now describe elements of a maximal nilpotent subgroup N of G given by $N = \exp(\mathfrak{n})$.

The Killing form $B(X,Y) = tr(adX \cdot adY)$, $(X,Y \in \mathfrak{g})$ and Cartan involution θ of \mathfrak{g} induce an inner product \langle , \rangle of \mathfrak{g} via

$$\langle X,Y\rangle = -B(X,Y^\theta), \ (X,Y\in\mathfrak{g}).$$

Then one has that $\langle \mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta} \rangle = 0$ if $\alpha \neq \beta$, because of the involution θ . Moreover, one can see that the set $\{E_i, F_i \mid i = 0, 1, 2\}$ is an \langle , \rangle -orthogonal basis for \mathfrak{n} such that a each element $n = n(n_0, n_1, n_2, n_3)$ in the maximal unipotent group $N = \exp(\mathfrak{n})$ is expressed in the form:

$$\kappa^{-1} \left(\begin{array}{ccc} 1 & n_0 & & & \\ & 1 & & & \\ & & 1 & & \\ & & -\bar{n}_0 & 1 \end{array} \right) \left(\begin{array}{cccc} 1 & & n_1 & n_2 \\ & 1 & \bar{n}_2 & n_3 \\ & & 1 & \\ & & & 1 \end{array} \right) \kappa$$

for $n_1, n_3 \in \mathbb{R}, n_0, n_2 \in \mathbb{C}$.

Lemma 5.2 We have

1. Set
$$N_1 = \begin{pmatrix} n_1 & n_2 \\ \bar{n}_2 & n_3 \end{pmatrix}$$
 for $n = n(n_0, n_1, n_2, n_3) \in N$. Then
$$f_u(k(I_{2,2}n)) = \left(\det(1 - \sqrt{-1}N_1) / \det(1 + \sqrt{-1}N_1) \right)^{\frac{u}{2}}.$$

2. Let η be a character of N determined by a real number c_2 and $c = c_0 + \sqrt{-1}c_1 \in \mathbb{C}$. Then

$$\eta(ana^{-1}) = \exp(2\sqrt{-1}\left(\frac{a_1}{a_2}\operatorname{Re}(\bar{c}n_0) + c_2a_2^2n_3\right)),$$

where $a_i = \exp(t_i)$, (i = 1, 2) for $a = a(t_1, t_2) \in A$.

3. For $\nu = (\nu_1, \nu_2) \in \operatorname{Hom}_{\mathbb{R}}(\mathfrak{a}, \mathbb{C})$, we have that $a(I_{2,2}n)^{\nu+\rho} = \Delta_1^{-\frac{\nu_1-\nu_2}{2}-1} \Delta_2^{-\frac{\nu_2+1}{2}}$ where $\Delta_1 = 1 + n_1^2 + \bar{n}_2 n_2 + (\bar{n}_0 n_2 + n_0 \bar{n}_2)(n_1 + n_3) + \bar{n}_0 n_0 (1 + \bar{n}_2 n_2 + n_3^2)$, $\Delta_2 = 1 + n_1^2 + 2n_2 \bar{n}_2 + n_3^2 + (n_1 n_3 - n_2 \bar{n}_2)^2$ for $n = n(n_0, n_1, n_2, n_3) \in N$.

For future convenience, we choose a new coordinate for A by

$$y = (y_1, y_2) = \left(\frac{a_1}{a_2}, a_2^2\right).$$

Since $f \to J_f(g)$ is the Whittaker realization of $\pi_{\chi,\nu}$, $J_{f_u}(a)$ is the radial part of a Whittaker function on G belonging to π_{ν} . Thus, in the new coordinate system, we can summarize that the radial part of Whittaker function associated with the K-type τ_u can be written in the form

$$y_1^{-\nu_1+3}y_2^{-\frac{\nu_1+\nu_2}{2}+2}\int_N \Delta_1^{-\frac{\nu_1-\nu_2}{2}-1}\Delta_2^{-\frac{\nu_2+1}{2}}\times \exp(-2\sqrt{-1}\Big(y_1\mathrm{Re}(\bar{c}n_0)+c_2y_2n_3\Big)f_u(k(I_{2,2}n))dn,$$

where dn is a multiplicative Haar measure on N. Now we shall give a normalization of Haar measure of N. Since the exponential map of n onto N is an analytic isomorphism, there exists a unique Haar measure dn on N that corresponds to Lebesgue measure on n.

Lemma 5.3 The radial part of the moderate growth Whittaker function $W_{(\nu_1,\nu_2)}(y_1,y_2;u)$ (up to constant) associated with the K-type τ_u can be written in the form

$$y_1^{-\nu_1+3}y_2^{-\frac{\nu_1+\nu_2}{2}+2}\int_{\mathbb{R}^6}\Delta_1^{-\frac{\nu_1-\nu_2}{2}-1}\Delta_2^{-\frac{\nu_2+1}{2}}\exp(-2\sqrt{-1}(c_0z_0y_1+c_1t_0y_1-n_3y_2))f_u(k(I_{2,2}n))dx_1^{-\frac{\nu_1+\nu_2}{2}+2}$$

with respect to $dz_0dt_0dn_1dz_2dt_2dn_3$. Here $n_i = z_i + \sqrt{-1}t_i$ (i = 0, 2).

In fact, it suffices to consider the cases u=0 and 1 for our purposes. Let $K_{\mu}(z)$ be the Bessel function.

Theorem 5.4 Let $\pi_{\chi,\nu}$ be irreducible and η be a nondegenerated unitary character N. Then we have the following assertions on the A-radial part of the primary Whittaker function $W_{(\nu_1,\nu_2)}(y_1,y_2;u)$.

If χ is trivial then the Whitttaker function $W_{(\nu_1,\nu_2)}(y_1,y_2;0)$ is identified with $y_1^3y_2^2$ times

$$\int_0^\infty \int_0^\infty T_{\nu_1,\nu_2}(y_1,y_2,t_1,t_2) \frac{dt_1}{t_1} \frac{dt_2}{t_2}.$$

If χ is non-trivial then the Whitttaker function $\tilde{W}_{(\nu_1,\nu_2)}(y_1,y_2;1)$ is identified with $y_1^4y_2^3/4$ times

$$\int_0^\infty \int_0^\infty T_{\nu_1,\nu_2}(y_1,y_2,t_1,t_2)(\sqrt{t_1/t_2}-1/\sqrt{t_1t_2})\frac{dt_1}{t_1}\frac{dt_2}{t_2}$$

where $T_{\nu_1,\nu_2}(y_1,y_2,t_1,t_2)$ is the function

$$K_{\frac{\nu_1+\nu_2}{2}}(2\sqrt{t_2/t_1})K_{\frac{\nu_2-\nu_1}{2}}(2\sqrt{t_1t_2})\exp\left(-|c_2|y_2t_1-\frac{|c_2|y_2}{t_1}-\frac{t_2}{|c_2|y_2}-(c_0^2+c_1^2)|c_2|\frac{y_1^2y_2}{t_2}\right)$$

Note here that, we need the following formula to reduce the number of integral symbols corresponding to the root spaces $\mathfrak{g}_{\lambda_1-\lambda_2}$ and $\mathfrak{g}_{\lambda_1+\lambda_2}$:

Formula 5.5 Let $a, c \in \mathbb{R}_+^*$ and $b, \alpha, \beta \in \mathbb{R}$ such that $\alpha^2 + \beta^2 = 1$. Then we have

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \exp(-c(x^2 + y^2) - a(\alpha x + \beta y)^2 + 2\sqrt{-1}b(\alpha x + \beta y))dxdy = \frac{\pi}{(c^2 + ac)^{\frac{1}{2}}} \exp(\frac{-b^2}{a+c}).$$

References

- [1] G. Bayarmagnai, Explicit evaluation of certain Jacquet integrals on SU(2,2), Preprint, 2008.
- [2] Goodman, R. Wallach, N. R., Whittaker vectors and conical vectors.J. Funct. Anal., 39 (1980), 199-279.
- [3] T. Hayata, Differential equations for principal series Whittaker functions on SU(2,2). Indag. Math. (N.S.) 8 (1997), no.4, 493–528.
- [4] T. Ishii, On principal series Whittaker functions on $Sp(2,\mathbb{R})$, J. Func. Anal. 225 (2005) 1-32.
- [5] T. Oda, The standard (\mathfrak{g}, K) -modules of $Sp(2, \mathbb{R})$, Preprint Series, UTMS 2007-3, Graduate School of Mathematical Sciences, University of Tokyo.
- [6] T. Miyazaki and T.Oda, Principal series Whittaker functions on $Sp(2,\mathbb{R})$, Explicit formulae of differential equations, Proceeding of the 1993 Workshop, Automorphic forms and related topics, The Pyungsan Institute for Mathematical Sciences, pp. 55-92.
- [7] David A. Vogan, Representations of real reductive Lie groups. Progress in Mathematics, vol. 15, Birkhauser, Boston, Basel, Stuttgart, 1981.
- [8] N.R. Wallach, Real reductive groups. I, Pure and Applied Mathematics vol. 132, Academic Press Inc., Boston, MA, 1988.
- [9] Yamashita, H., Embedding of discrete series into induced representations of semisimple Lie groups, I, General theory and the case of SU(2,2), Japan J. Math., 16 (1990), 31-95.
- [10] Yamashita, H., Embedding of discrete series into induced representations of semi-simple Lie groups, II, Generalized Whittaker models for SU(2,2), J. Math. Kyoto Univ., 31-1 (1991), 543-571.