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On the principal series representation of SU(2,2)

G. Bayarmagnai

1 Introduction

Let G denote the the special unitary group SU(2,2). In the paper, we will deal with the principal series
representations of G which are parabolically induced by the minimal parabolic subgroup P,,;, with Langlands
decomposition Pp,;, = MAN;

Tow =Ind§ (0 ® e’ @ 1y),

where p is the half sum associated to the root system of the pair (G, A), v is a complex valued real linear form
on a = Lie(A), o is a unitary character of M.

Let n be a continuous unitary character of N. We then have the Jacquet functional J,, on the space of
differentiable functions of L2 (K), the representation space of 7., such that Jou(Tou(n)f) = n(n)Js (f) for
any n € N. The functional defines an intertwiner J from =, |k to An(N\G) by sending any v € m,,|x to

_the function Jy(9) := Jo,. (75, (9)v), (g € G). Here the subspace of all K-finite vectors of 7o, 18 denoted by
Tow |k and A,(N\G) is the subspace of C>°(@) consisting of all moderate growth functions f(g) such that
f(ng) =n(n)f(g) for n € N and g € G. In fact, J is an intertwiner of X and g-equivariant, and hence the study
of the image of J (the Whittaker model) leads us to the problem of the investigations of the (g, K')-module
structure and the functions J,(g) for certain K-types of 7,,,.

'The main goal of this paper is to describe the above mentioned objects in terms of parameters of the principal
series representation 7, explicitly. Note that our results are quite similar to that of Ishii [4] and Oda (5], for
both Sp(2,R) and SU(2,2) have the same restricted root system.

We also consider a matrix representations of the Knapp-Stein intertwining opera.tor which have been moti-
vated by a result of Goodman-Wallach [2].

2 Preliminaries

Let K be the compact group S(U(2) x U(2)). Then K is the maximal compact subgroup of G fixed by the
Cartan involution 4 for G given by
8(9) ="', geG.

We fix the following basis for the 7 dimensional Lie algebra £c, the complexification of ¢ = Lie(K):
0 1
hl = h ’ h2 = 00 ) I2,2 = 2 0 }
0 0 0 h 0 -1z
ex O 0 O
ezlj; = = 3 eg: = y
0 0 0 €+
where h = 10 , 4 = 01 and e_ = 00 .
0 -1 0 0 10
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For every K-module V, it is clear that I; o € éc commutes with the action of K on V. If V is irreducible,
then by Schur’s lemma, the operator is a scalar of the identity map.

Lemma 2.1 Let m;, my be positive integers and | be an integer. If m; + my + 1 is an even integer, then there
is an irreducible K -module (Tim, m,; 1), Vimim,) with a basis {fpq | 0 <p <my,0 < g < ma} of Vinym, such that
Iz,gqu = lqu and

hl(qu) = (2p - ml)qu9 e}q-(qu) = (my — P)fp+1,qv el (qu) = pr—l,qa
h'2(qu) = (2q - m2)qua e-zq-(qu) = (m2 - Q)fp‘q-Hy e (qu) = pr.q—i-

It follows from the fact that SU(2) x SU(2) x CV is a twofold covering of K with the projection given by

pr(g1,92;u) = diag(ugr,u~'g2), 91,92 € SU(2), u e CV,

3 K-finite vectors in the principal series

In this section, for each simple K-module 7 € K, we associate a matrix function S‘(,T,),(k), k € K, whose entries
give a basis for the T-isotypic component of 7, ,. The main feature of this basis is that the both g and K-actions
on 7., |k have simple expressions in terms of parameters of given representation. For. more details about this
theme, we refer to [5] which is our main reference.

Proposition 3.1 Let H(7) be the T-isotypic component of L2(K), and put dim(7) = n. There exists a unique
square matriz function 8{7)(k), k € K, of size n with entries in H(r),

fu(k) - fai(k)
SMky=1| | ={fuRh<ij<a,
fln(k) o fnn(k)
satisfying the following two conditions:
1. SM(1k) = diag(l,...,1) € M,(C),
2. For each a (1 < a < n), the set {fa1(k), ..., fan(k)} is a basis for T as in Lemma 2.1. Moreover, we have

H(T) = @Waa

where W, denotes the space spanned by fo1(k), ..., fan(k).

Proof. The existence of the matrix function is similar to that of [5]. We consider the uniqueness. Assume that
there exist two matrices F(")(k) = {fi;(k)} and G(") (k) = {g:;(k)} as required. Denote by F, the isomorphism
between 7 and the space spanned by {fa;(k), ..., fan(k)}. Similarly, we define G, for the a-th column of G(™) (k).
As a result, we obtain two ordered bases {F,}o and {Gq4}, for the n-dimensional vector space Homg (7, H(7)).
Then we have the n by n matrix A = {aag}, the change of coordinate matrix, such that

Fa = z aaBGg.
B

For a basis {f,} of 7, one obtains

far(k) = Fo(fy) = Zaaﬂcﬁ(fv) = Zaaﬁfﬁ'y(k)~
B8 B
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Evaluation at the point 1x shows that

oy = Oy

If v #0€ W,NWg, then Kv =W, = Wp. Schur’s lemma and second condition imply that o = B. Assume
there is a matrix S(")(k) as required, we then have the direct sum decomposition of H(7). O

For each 7,,, = Tlmi,mail] € K , define a finite set I(7,,) to be the collection of indices o such that W4 occurs
in 75, |k as a K-module. Thus, the cardinality of I(7,,) is the K-multiplicity of 7,, in To,v. Let s be the
integer parameter corresponding to o € M. By setting n = (m1 + mg + 8)/2, one can see that p + ¢ = n if
@ € I(rm) with a = (mz + 1)p+ ¢ + 1, (¢ < m2). We identify the index a with the pair (p, ¢) defined by a.

We define a matrix function Sf,‘f,’j‘)(k) attached to the 7-isotypic component of 7, , by eliminating all the
a-th columns of 8(™) (k) when p + ¢ # n and change the o-th columns by 0if o & I(7,) and p+ q = n.

4 The (g, K)-module structure on 7,
Let g = £ + p be the Cartan decomposition of g = Lie(G) corresponding to 6. In this section, we explicitly

describe pc-action on the space
To,v IK = @ @ Wa.
TmEK a€l(Tm)
Since the adjoint representation of K on p¢ splits into two irreducible components, the antiholomorphic part p—
and the holomorphic part p., it is enough to investigate the pi-action for our purpose. Let E;; be the matrix
unit of My(R) with 1 in the (i, j)-entry and zero elsewhere. Then the set {E;; | i = 1,2 j = 3,4} forms a basis
for p.,.. For a fixed pair (e;,e2), €; € {1} with j = 1,2, we define ¢! by

ci=mj+1 (0 <t<m;+ey).

Let (7, Vin) be an irreducible representation of K with parametrization m = [m;,mg;!]. By the well known
Clebsch-Gordan theorem, the irreducible components in the K-module p, ®c 7, are precisely the K-representations

T= { Timi+e,,ma+ey; 1+2) I €1, ez € {il}})

and we will denote these by T[4, 43+] OF Tley,eq;+]-
For each K-isomorphism between 7., and W, in Proposition 3.1, we have the following surjective homomor-
phism py ®c 7 — p4 W, of K-modules. Therefore, we obtain an injection

p+Ha,u(Tm)“‘* @ Ha,u(Tm')
Tt €T

which implies the following theorem. Here Hy,,,(Tm) stands for the Tp,-isotypic component of Moy

Theorem 4.1 Let Tle1,e2;+] D€ a simple K-submodule of the K -module p4 ®c 7o, for a given simple K-module
Tm and the K-module (Ad,p,). Then we have that

C[e1,=2;+1sc(rf3‘)(k) = S«(;,.E;X’=2;+])(k)r[e1,eg;+]v

where the product of matrices of the left hand side is the differential operation. Here, r = (s +1)/2 and
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1. T _i4) = {asj}ocicn—1,0<j<n 18 a matriz whose all non zero entries are given by
1
a1t = 5(1/2 +14+mg+71—2t) if t,n—t) € I(tw), (t—1,n—1t) € I(tm’),
Qpe = —%(u1 l—my+r—20) if 6, —1t) € I(7m), (t:n—t—1) € I(Tms).

and Ci_ 1) = {Ci;} is a matriz of size (mima) x (my + 1)(m2 + 1) with entries given by

Crnap+a+1,(mat1l)ptra+l = ~Fy,,
Crnap+g+1,(mat+1)p+q+2 = —E3,
Crmapta+1,(mat+1)(p+1)+q+1 = Eaq,
Crmapta+1,(ma+1)(p+1)+e+2 = E2s,

foreach0<p<m;—1and0<q<my—1, but all other entries are 0.
2. T4 441 = {@ij}oci<n+1,0<j<n 18 @ matriz whose all non zero entries are given by
1 .
apy = 5(1/2 +1+mg+r—2t)(1-c})c .y if (t,n—1t) € I(Tm), (t,n—t+1) € I(Tm),
1
Qi1 = —2-(1/1 +3+2my+ma+r—2t)c (2, —1) if (t,n—t) € I(Tm), t+1,n—t) € I(Tm).

and Cpy 4.4) = {Ci;} is a matriz of size (my + 2)(m2 + 2) x (m1 + 1)(m2 + 1) with entries cgiven by

Clma+2)p+a+1,(ma+1)pra+1 =—(1- cgla)(l - cg)Ezs,
Cma+2)p+q+1,(ma+1)p+q =(1- C;)CEE“’
Clma+2)p+a+1,(ma+1)(p-1)+a+1 = —Cx(1 — €3) En,
C(ma+2)p+a+1,(ma+1)(p=1)+q = c;c2Eg,

foreach0<p<mi+1and0<q<my+1, but all other entries are 0.
8. I'— +i4] = {aij}o<i<n,0<i<n 18 a square matriz whose all non zero entries are given by
a1t = %(uz +1+my+71-2t)c2_,,, ift,n—t)el(ty), t—1,n—t+1) € I(tym)
acs = %(ul tl4madr—20(1-c2_,) if tn—1t) € I(rm), (t,70 — ) € I(7ms).

and Ci_ 4,4} = {Ci;} i3 a matriz of size mi(ma + 2) x (my + 1)(ma + 1) with entries given by

Clma+2)p+q+1,(ma+1)p+g+1 =(1- cg)Em,
Clma+2)p+g+1,(ma+1)p+q = _°3E14’
Clma+2)p+a+1,(ma+1)(p+1)+q+1 = —(1 = €F) Eas,
C(ma+2)p+q+1,(mz+1)(p+1)+q = C3E24’

Jor0<p<mi+1and0<qg<my—1, but all other entries are 0.
4. T4 ;4] = {aij}o<i<n,0<j<n 8 a square matriz whose all non zero entries are given by
1
are = 5(1/2 +1+my+7r—2t)(1—c}) if (t,n—t) € I(T), (t,n—t) € I(Tr),

1
Qi1 = -2—(1/1 +142m; —mqo+r— 2t)ct1+1 f(t,n—t)el(tm), E+1,n—t—1)€ I(t).
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and Ci4 —,4) = {Cy;} is a matriz of size (m1 + 2)my X (mq + 1)(m2 + 1) with entries given by

Crnapt+q+1,(ma+1)p+g+1 = (1- c},)E24,
Crnap+a+1,(ma+1)p+a+2 = (1 - c})Eas,
Crmaptatl,(matl)(p—1)4g+l = C,I,EM,
Crmaptg+1,(ma+1)(p~1)+g+2 = C,I,Els,

for0<p<mi+1and0<q<mg-1, but all other entries are 0.

4.0.1 The Knapp-Stein operator

In this subsection, we consider a matrix representation of the Knapp-Stein operator with respect to the basis
for 74, |k. This is motivated by Theorem 6.7 in the paper of Goodman-Wallach [2].

Let us recall the Knapp-Stein intertwining operator A3 , from the space of all C*°-vectors of 7, to that of
Ts(o),s(v) defined by

(A2, F) (k) = /N a(nes* k)" F(k(nas*K))dne, (f € T2,

Here s* € K such that s := Ad(s*) € W(A), N, = NN s*Ns*~! and s(o) is a character of M given by
s(o)(m) = o(s*ms*~1), m € M. Since it is a linear map from 7y, to Ty(o) ¢(») Satisfying

Ai,uwdyu(z)f = Ts(o),s(v) (:L‘)A;,Vf, zeG (Or U(G)),
we have a linear map -
A"('r) : HOIIIK(T_. Ta,v IK) - HOInK(T, 7!',(,,),5(,,) IK)

for any T € K.

Let [a;] be the K-isomorphism from 7 to W, for a; € I(7). We equip the space Homg (7, 75, |x) with the
basis consisting of the K-homomorphisms [o;]. Similarly, we choose a basis for the space Hom g (7, Ts(0),s(v) |&)-
Then we want to compute all entries a;; of the matrix A*(7) = (a;;) such that

A (D] = Y aij - [e]

ajel

where I = {a® | Was “= T4(0),5(v) |k }. For each basis vector fpq of 7 as in Lemma 2.1, we have that

(A*(M)eal)(foa) = Y a5 - 1051 (Fpa) = D @iz - Fag pg(k)-

aj€l ajel

On the other hand, by definition of the map A*(r), one has

(A (7)) (fa) = (A5, FSpg) (R), i € I(Mop, 7).

Thus we have the following formula for the coefficients a;; of the matrix A°(7) for each 7 € K.
Lemma 4.2 Let o; be in I(n5,,7) and o} be in I(Ta(0),s(v),T). Then the (4,5)-th coefficient of A*(r)
aij = (A5, faras)(1a)-

Example 4.3
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Let s be a generator of W(A) whose image is the matrix diag(1, —1) under the representation of W(A) on a*.
Then we choose the corresponding s* € K as the matrix diag(1, —i, 1,7) and hence

N, = exp(g-2a,) = { ns(t) = k7! ) k:teR
t 1

Since n, € Ny, one has fn Iz 2n, = Iz 2 and hence n,s* = Iz otn I 2s*. Thus, we have the following.
Assume ns; = ny(t) € N;. Let n’ € N, a(nss*) € A and k(n,s*) € K be so that n,s* = n’'a(n.s*)k(n,s*).
Then
a(ngs*)*** = (1 + t2)_&5ﬂ,
k(n,s*) = diag(1, —tu, -1, —iu"1)
where u = ((1 —it)/(1 + it))3.
For a fixed 7m € K, therefore
Fri B; (k(n,s*)) = 0 when =; # Bj

If 7 = T{m, ,ma;) then we have

(_1)(m1+mg)/2—p+1im3+r
A%(7) = 2m27 2T (1) diag [ ]
4

Tlro+ 1 +dTEve + 1 - d)

where d = 1(my +r — 2p) for (p, (M1 +m2)/2 — p) € I(To,, Tm).

5 Whittaker functions

The main focus of this section is on the integral expressions of Whittaker functions on G related to certain
principal series. The results of the section 4.1 lead us to the study of Whittaker functions related to some
K-types. For this purpose, we focus our investigation on the principal series representations which contain one
dimensional K-types and apply the method used in [4] to evaluate such Whittaker functions. More precisely, in
this setting, the character o of M factors through a character x of uy. Let (my ., L2(K)) denote the principal
representation series corresponding to such character o.

0
For an integer u, define a function f,(k) on K by f,(k) := det(k2)*, k= (kg k ) € K.
2

Lemma 5.1 Let f.(k) be as above. Then Tjp 02y = Cfu(k) as K-modules. Moreover, if x(—1) = (—1)* then
fu(k) € Li(K) and [WXsV : 7[0’0;21‘]] =1.

5.1 The Jacquet integral.

Let J, . be the Jacquet functional on the subspace of differentiable functions of Li(K ) given by

Teulf) = /N n(n)~*a(s*n)*** f(k(s*n))dn

for a differentiable function f in Li(K ) and the longest element s € W(A). Here W(A) is the Weyl group
defined as the quotient of M* = Nk (a), the normalizer of a in K, by M and s* is an element of M* mapping
to the longest element s € W(A).
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Then one has J, ,(m(n)f) = n(n)Jy,.(f) and hence
J € Homg k) (T |k, Ag(N\G)), (1)

where J associates v € 7y, |k to the function J,(g) := Jy . (mx(9)v), (9 € G). We want to have an explicit
formula for the A-radial part:

Jr (@) = Jyu(my (@) fu) = a ¥ /N n(ana)‘1a(s*n)"+”fu(k(s*n))dn.

In our case, we can choose Io 2 € K for s* € K.

5.1.1 The first modification

Let E;; be the usual matrix with 1 in (¢, j)-entry and zero elsewhere. Put

Eo = k™Y (E13 — Eg3)k, E| = is"Y(E12 + Eg3)k, E; = k™1 Eyk,
Fy = I‘&_I(EM + E23)h‘,, F, = iH_I(EM — E23)K,, Fy = n—1E13n,
by setting i = +/~1 and
1 0 1 0
L] 0o 101
V2 - 0 ¢ 0
0 —-i 0 1

Then the corresponding root spaces of positive roots in ®(g, a) are given by

[+ DY PY =-E,O:IR$-E1 'R, 8222 =E2 'R7

Bri+x = Fo RO Fy - R, g2x, = F2-R.
Let n be a subalgebra defined by n = Zae¢+ go. We now describe elements of a maximal nilpotent subgroup
N of G given by N = exp(n).

The Killing form B(X,Y) = tr(adX -adY’), (X,Y € g) and Cartan involution 6 of g induce an inner product
(,) of g via
(X,Y)=—-B(X,Y?), (X,Y €g).

Then one has that (go,g93) = 0 if @ # B3, because of the involution §. Moreover, one can see that the set

{E;,F; | i = 0,1,2} is an ( , )-orthogonal basis for n such that a each element n = n(ng,n,,n2,n3) in the
maximal unipotent group N = exp(h) is expressed in the form:

1 ng 1 ny N2
1 1 1 7 ng
K
1 1
—ng 1 1

for n1,n3 € R, ng,ng € C.

Lemma 5.2 We have

ny na2

1. Set N, = ( ) for n =n(ng,n1,n2,n3) € N. Then

iz ng

Fulk(Ta2m)) = (det(1 — VZING /det(1 + V=INY)) ¥
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2. Let 1 be a character of N determined by a real number ca and ¢ = cg + v —1¢; € C. Then
n(ana™!) = exp(2v—1 (%Re(éno) + czagns) ),
2
where a; = exp(t;), (¢ =1,2) for a = a(ty,t2) € A.

_vi-va _ v +1
8. For v = (v1,v2) € Homg(a, C), we have that a(Izon)**? = A] 3 IAZ = where
Ay =1+ n? + fgng + (Renz + nonz)(ny + ng) + fiono(l + Agng + n3),
Ay =1+ n2 + 2n,pfip + nZ + (ninz — n2fig)? for n = n(ng,n1,n2,n3) € N.

For future convenience, we choose a new coordinate for A by
a)

y=(y1,v2) = (-—,ag)-
a2

Since f — Jy(g) is the Whittaker realization of my ., Jy,(a) is the radial part of a Whittaker function on G
belonging to 7,. Thus, in the new coordinate system, we can summarize that the radial part of Whittaker
function associated with the K-type 7, can be written in the form

vty P AT AT S exp(-2v T (uiRe(eno) + cavana) fu((Taam))dn,

where dn is a multiplicative Haar measure on N. Now we shall give a normalization of Haar measure of N.
Since the exponential map of n onto N is an analytic isomorphism, there exists a unique Haar measure dn on
N that corresponds to Lebesgue measure on n.

Lemma 5.3 The radial part of the moderate growth Whittaker function W(,, ,.)(y1,¥2;u) (up to constant)
associated with the K-type 1, can be written in the form

v -+ _yi=vy v +1
yrty, T o AT A 5 exp(—2v/—1(cozoyr + crtoys — n3y2)) fu(k(I2,2n))

with respect to dzodtodnidzedtadns. Here ny = z; + v/ —1t; (i = 0,2).

In fact, it suffices to consider the cases u = 0 and 1 for our purposes. Let K,,(z) be the Bessel function.

Theorem 5.4 Let m, , be irreducible and n be a nondegenerated unitary character N. Then we have the
following assertions on the A-radial part of the primary Whittaker function W(,,h,,z)(yl y2; u).
If x is trivial then the Whitttaker function W(,, .,)(y1,¥2;0) is identified with y3y2 times

dat dt
/ / Tvl,Vz(y19y27tl»t2) 1 2

If x is non-trivial then the Whitttaker function W(,,l va) (U1, Y23 1) 18 zdentiﬁed with yiy3/4 times

dt dt
/ / Tyy (1, 42, 11, t2) (V1 /2 — 1/v/ErE )5 - =2
where Ty, v, (Y1,Y2,t1,t2) i8 the function
Koty (24/t2/t1) K vg-vy (2/T112) exp (—|c2|y2t1 - m S T (2 + cd)le2 |y1y2)
3 7 t lc2|y2

Note here that, we need the following formula to reduce the number of integral symbols corresponding to the
root spaces g, —i, and g, +a,:

Formula 5.5 Let a,c € R} and b, o, 3 € R such that o + 32 = 1. Then we have
b2

/';/Rexp(—c(av2 +¥?) — a(az + By)? + 2V —1b(az + By))dzdy = 3 exp(a 5 c).

™
(2 +ac
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