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SOME EXAMPLES OF CONDITIONALLY FREE PRODUCT

WOJCIECH MLOTKOWSKI

INTRODUCTION

Free convolution is a binary operation 田 on the class of probability me下 sures on
$\mathbb{R}$ , which corresponds to the notion of free independence. More precisely, if $X_{1},$ $X_{2}$

are free random variables in a noncommutative probability space $(\mathcal{A}, \psi)$ (i.e. $\mathcal{A}$ is a
unital complex $*$-algebra, $\phi$ is a state on $\mathcal{A}$), with distributions $\nu_{1},$ $\nu_{2}$ respectively, then
$\nu_{1}$ ffl $\nu_{2}$ is the distribution of $X_{1}+X_{2}$ (for the background on the free probability theory

we refer to the books [10, 12] $)$ . The free convolution of two measures can only be

described indirectly, either analytically, using the Voiculescu R-transform [12, 2, 4] or
combinatorially, by free cumulants [10, 9].

Bozejko, Leinert and Speicher [3] introduced notion of conditionally freeness on a non-
commutative probability space $\mathcal{A}$ , equipped with two states. This leads to conditionally

free convolution $ffl_{c}$ , a binary operation on pairs of compactly supported probability

measures on $\mathbb{R}$ , see [3, 8, 9]. The aim of this paper is to show that in some important

cases the conditionally free convolution can be reduced to the free convolution.

1. FREE AND CONDITIONALLY FREE PRODUCT

Let $\mathcal{M}$ (resp. $\mathcal{M}^{c}$ ) denote the class of (compactly supported) probability measures
on $\mathbb{R}$ . Then for $\mu\in \mathcal{M}$ we define the Cauchy transform:

$G_{\mu}(z):= \int_{\mathbb{R}}\frac{d\mu(x)}{z-x}$ ,

which is an analytic map from the upper half-plane $\mathbb{C}^{+};=\{z\in \mathbb{C} : \Im z>0\}$ into the

lower half-plane $\mathbb{C}^{-}:=\{z\in \mathbb{C} : \Im z<0\}$ , satisfying

(1) $\lim_{yarrow+\infty}iyG_{\mu}(iy)=1$ .

Moreover, every analytic function $G:\mathbb{C}^{+}arrow \mathbb{C}^{-}$ satisfying (1) is Cauchy transform of a
unique probability measure on $\mathbb{R}$ , see [1, 5].
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If $\nu\in \mathcal{M}^{c}$ then $G_{\nu}(z)$ can be represented as a continued fraction

(2)

$G_{\nu}(z)= \frac{}{z-u_{0}-\frac{}{z-u_{1}-\frac{1\alpha_{0}1}{z-u_{2}-\frac{\alpha\alpha_{2}}{z-u_{3}-\underline{\alpha_{3}}}}}}$

,

where the Jacobi parameters satisfy: $\alpha_{k}\geq 0,$ $u_{k}\in \mathbb{R}$ and if $\alpha_{m}=0$ for some $m\geq 0$

then $\alpha_{n}=u_{n}=0$ for all $n>m$ .
For a pair $\mu,$

$\nu\in \mathcal{M}^{c}$ we define the free and the conditionally free transform, $R_{\nu}$ and
$R_{\mu,\nu}$ , as complex functions which satisfy

(3) $\frac{1}{G_{\nu}(z)}=z-R_{\nu}(G_{\nu}(z))$ ,

(4) $\frac{1}{G_{\mu}(z)}=z-R_{\mu,\nu}(G_{\nu}(z))$ .

Then, for $\mu_{1},$ $\nu_{1},\mu_{2},$ $\nu_{2}\in \mathcal{M}^{c}$ , the conditionally free convolution
(5) $(\mu, \nu)=(\mu_{1}, \nu_{1})ffl_{c}(\mu_{2}, \nu_{2})$

is dcfined by the equalities
(6) $R_{\nu}(z)=R_{\nu_{1}}(z)+R_{\nu}2(z)$ ,
(7) $R_{\mu,\nu}(z)=R_{\mu_{1},\nu 1}(z)+R_{\mu_{2},\nu}2(z)$ .
In particular, $\nu$ is the free product $\nu_{1}$ ffl $\nu_{2}$ .

2, A FAMILY OF TRANSFORMS

For $a\geq 0,$ $u,$ $v\in \mathbb{R}$ we definc a transform $T(a, u, v)$ : $\mathcal{M}arrow \mathcal{M}$ defining $\mu$ $:=$

$T(a, u, v)(\nu)$ by

(8) $\frac{1}{G_{\mu}(z)};=z-u-\frac{}{\frac{1^{a}}{G_{\nu}(z)}-v}=z-u-\frac{aG_{\nu}(z)}{1-vG_{\nu(z)}}$ .

Note that the measure $\mu$ is well defined, as thc reciprocal of the right hand side is a
function $\mathbb{C}^{+}arrow \mathbb{C}^{-}$ satisfying (1). Moreover, if $G_{\nu}$ admits the expansion (2) as continued
fraction then

(9)

$G_{\mu}(z)= \frac{}{z-u-\frac{}{z-u_{0}-v-\frac{1a}{z-u_{1}-\frac{\alpha_{0}}{z-u_{2}-\frac{\alpha_{1}\alpha_{2}}{z-u_{3}-\underline{\alpha_{3}}}}}}}$

.

Combining (4) with (8) we observe that

(10) $R_{\mu,\nu}(w)=u+ \frac{aw}{1-vw}$ .
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Proposition 2.1. Assume that $a_{1},$ $a_{2}\geq 0,$ $u_{1},$ $u_{2},$ $v\in \mathbb{R},$ $\nu_{1},$
$\nu_{2}\in \mathcal{M}^{c}$ and that $\mu_{1}:=$

$T(a_{1)}u_{1}, v)(\nu_{1}),$ $\mu_{2}$
$:=T(a_{2)}u_{2}, v)(\nu_{2})$ . Then

$(\mu_{1}, \nu_{1})ffl_{c}(\mu_{2}, \nu_{2})=(\mu, \nu_{1} ffl \nu_{2})$ ,

where
$\mu=T(a_{1}+a_{2}, u_{1}+u_{2)}v)(\nu_{1}$ EH $\nu_{2})$ .

In particular, if $\nu$ is infinitely divisible with respect to free convolution, $a\geq 0,$ $u,$ $v\in$

$\mathbb{R}$, then the pair $(T(a, u, v)(\nu), \nu)$ is infinitely divisible with respect to the conditionally

free convolution.

Proof. The first statement is a consequence of (6), (7) and (10). Consequently, if $\nu\in \mathcal{M}^{c}$

is ffl-infinitely divisible then the family
$(T$ (ta, tu, $v$ ) $(\nu^{fflt}),$ $\nu^{fflt})$ ,

$t>0$ , is a $ffl_{c}$-semigroup of pairs of measures. $\square$

Example. For $a,$ $b>0,$ $u,$
$v\in \mathbb{R}$ denote by $\mu(a, b, u, v)$ the unique measure satisfying

$G_{\mu(a,b,u,v)}(z)= \frac{1}{a}$

$z-u-\overline{b}$
$z-v-\overline{b}$

$z-v-\overline{z-v-.\underline{b}.}$

(this family of measures was studied in [11]). Then, in view of the results from [6], for
$a,$ $b>0,$ $u,$ $v,$ $\alpha,$

$\beta\in \mathbb{R}$ , with $a+\alpha,$ $b+\alpha>0$ , we have

$\mu(a, a+\alpha, u, u+\beta)$ ffl $\mu(b, b+\alpha, v, v+\beta)=\mu(a+b, a+b+\alpha, u+v, u+v+\beta)$ .

With this notation the limit pairs of measures in the central and Poisson theorems for
the conditionally free convolution can be represented as

(11) $(\mu(a, b, 0,0),$ $\mu(b, b, 0,0))=(T(a, 0,0)(\mu(b, b, 0,0)),$ $\mu(b, b, 0,0))$ ,

(12) $(\mu(a, b, a, b+1),$ $\mu(b, b, b, b+1))=(T(a, a, 1)(\mu(b, b, b, b+1)),\mu(b, b, b, b+1))$ ,

respectively, where $a,$ $b>0$ are parameters (see [3, 7]). Denoting the$arrow former$ pair (11)

by $\vec{\nu}(a, b)$ and the latter (12) by $\vec{\pi}(a, b)$ , we note that the families $\{\nu(a,.b)\}_{a,b>0}$ and
$\{\vec{\pi}(a, b)\}_{a,b>0}$ are both two-parameter semigroups with respect to the conditionally free
convolution, i.e. for $a_{1},$ $b_{1},$ $a_{2\}}b_{2}>$ we have:

$\vec{\nu}(a_{1}, b_{1})ffl_{c}\vec{\nu}(a_{2}, b_{2})=\vec{\nu}(a_{1}+a_{2}, b_{1}+b_{2})$ ,

$\vec{\pi}(a_{1}, b_{1})ffl_{c}\vec{\pi}(a_{2}, b_{2})=\vec{\pi}(a_{1}+a_{2}, b_{1}+b_{2})$ .
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