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Abstract

In a continuous model of nondeterministic dynamic programming, we arrive
at both the optimal value function and its optimal policy by solving a corresponding
controlled integral equation. However it is generally difficult to solve the equation.
In this paper, we start from a simple linear case:

1 1
v(z) = min |az+ — [ v(y)d zeR.
@ = min [az+ 1 [oG)ay],
We consider some models on continuous state space in which ‘double process’ and
‘triple process’ compete with each other, as can be seen in the above equation. By
solving controlled integral equations, we show the structure of their optimization
processes.

Keywords: controlled integral equation, nondeterministic dynamic programming
JEL classification: C6

1 Introduction

Dynamic programming (DP) has been extensively studied and applied to a lot of different
kinds of fields in the past. Today, stochastic DP (Markov decision process) plays a vital
role in the field of dynamic macroeconomic theory [4, 8, 9]. On the other hand, in the field
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of mathmatical programming and control, the theory of nondeterministic DP has recently
been proposed (The original idea is stated in Bellman(l, Chap.IV] in order to apply the
method of DP to many more problems. The formulation of nondeterministic DP is quite
broad, as it deal with stochastic DP as special case. We can obtain both the optimal value
function and its optimal policy by solving a corresponding Bellman equation. Generally
the Bellman equation is given by the following controlled integral equation

v(z) = inf [r(m,a)+ ﬁ(x,a,y)v(y)dy], reS. (1)
a€A(r) T(z,a)

If #A(z) = 1, then the above equation is reduced to
o) =r@) + [ e upway, es.

which is an ordinary linear integral equation. Needress to say, it is generally difficult to
solve the equations. In this paper, we shall start from a simple equation which can be
solved. After doing so, by solving some related equations, we show the structure of their
optimization processes, and view the variations of their optimal value functions and the
optimal policies. As a paticularly simple case, we consider the following equation.

1 1
v(z)=mx+—/v(y)dy, z€R, (2)
m Jo
where m > 1 is a given constant real number. Eq.(2) has the unique solution

v(z) = mz + z €R.

m
2(m-1)’
Then, let us consider a decision process on A = A(z) = {2, 3}.

Example 1.1. D = (S, (A, A(:)), r, T, ), where
S=R, A=A(z)={23}, r(z,a)=az, T(z,0)=[0,1], Blz,a,y)= ;11-

(minimization) The Bellman equation

v(z) = min [ax+:ll-/olv(y) dy] z€R (3)

a€{2,3}

has the solution

2z 4+ 3(v/11-3) on [v1I -~ 3,00)

[ 32406332 on (—oc,0.3166
| 22409499 on [0.3166, 00).

() {3x+2(\/ﬁ—3) on (—o0,V11 — 3]
v(z) =

Thus D has the minimum value function v(z) at the stationary Markov policy # = f(*,

where
(=) 3 on (—o0,Vv11-3] 3 on (—o00,0.3166]
) = =
2 on [0.3166,00).

2 on [V1I-3,00)
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(Maximization) The Bellman equation

V(z) = alé/{g%c

}[aa:+—(lz—/01V(y)dy:| zeR (4)

has the solution

V) — 2z 4+ 3(4 — v13) on (—o00,4 — /13|
(@) = 3z +2(4—-+v13) on [4—+13,00)

2z +1.1833 on (—o0,0.3944]
3z +0.7889 on [0.3944,c0).

Thus D has the maximum value function V(z) at the stationary Markov policy n* =
(f*)©), where

oy |2 on (—00,4 — V/13] _ [ 2 on (—00,0.3944]
@)= 3 on [4—13,00) 13 on [0.3944, c0) .

vA

Maximization process

Double process

minimization process

Triple Process

8y

// O 0.3166  0.3944

Figure 1: Four value functions in linear case
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2 Action Space

The question we have to ask here is how optimal value functions are improved when
feasible actions are added. We will now view the question through some examples.

2.1 Action Space with Three Actions
Example 2.1. D= (S, (A4, A(:)),r, T, B), where
S=R, A=A(z)= {2 3} r(z,a) =az, T(z,a)=[0,1], pB(z,a,y)=—

(minimization) The Bellman equation

v(z) = min [ax+~i—/olv(y)dy} , TER (5)

ae{2,2/5,3}

has the solution
3z + — v27 —15) on (—oo, 12—3(\/277 - 15)]

v(z) = < %z—l— — (V277 - 15) on [-]%(\/—2777—— 15), %(\/2—7_7-— 15)]

2T + = \/27 —15) on [% V277 — 15),00)

( 3z +0.6320 on (—00,0.2528]

= —2—x+0.7584 on [0.2528,0.3792]

| 22+0.9481 on [0.3792,00).

Thus D has the minimum value function v(x) at the stationary Markov policy # = f(*
where

(3 on ( 13(\/57_—15)]
Fla) =3 % on [%(\/2—77~15),—(\/2"ﬁ~15)] =
2 on [— V277 — 15), )

on (—o0,0.2528

on [0.2528,0.3792]

N o W

on [0.3792,00).

(maximization) The solution is not improved.

2.2 Continuous Action Space
Example 2.2. D= (S, (A, A(-)), r, T, B), where

S=R, A=A(z)=[2,3], r(z,a)=az, T(z,a)=[0,1], [B(z,a,y)= %.



(minimization) The Bellman equation

v(z) = min,

has the solution

12
( 3r+ — on (——oo, i]

1
[asc+—1—/v(y)dy:| , TER
a Jo
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(6)

19 19
12 4 4
'U(:L') = { —ﬁﬁ on [E, TQ—]
18 4
\ 2z + 19 on [1—9-, oo) .
Thus D has the minimum value function v(z) at the stationary Markov policy 7 = floo)
where ;
( 3 (-— [o’e) i]
on ' 19
R 6 4 4
f(CC) = V192 on [E’ 1—9-]
4
\ 2 on [E’ oo) .

(maximization) The solution is not improved.

Example 2.3. D= (S, (A, A(:)), r, T, B), where

S=R,U{0}, A=A@) =R, r(z.a)=az, T@a=[01, Hzay) ==,

(minimization) The Bellman equation

'u(:v)=0min [az—*——i—/olv(y)dy] , >0, v(0)=0

<a<o0

has the solution

o) = SVE, z20.

Thus D has the minimum value function v(z) at the stationary Markov policy # = f(*),

where

f(x):z—s%, z>0.

(maximization) The solution is not improved.

3 Reward function

3.1 Quadratic Case

(7)

We have shown that the simple bi-decision optimization process with linear reward is
reduced to solving a quadratic equation. Next we shall consider the simple quadratic

case:

1
v(m)=mx2+—1—/v(y)dy, z €R.
m Jo

(8)
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Eq.(8) has the unique solution

m

—_— R.
3m-1) °°€

v(z) = mz® +

Let us consider a decision process on 4 = A(z) = {2, 3}.

Example 3.1. D= (S, (A, A(-)), r, T, B), where
S=R, A=A(@)={23}, r(z,a)=az? T(xa=[01 B~z ay) = _(1;

(minimization) The Bellman equation

1 /! |
= mi 24 = R
v(z) D, [ax + - /Ov(y) dy] z€ 9)
has the solution
¢ ¢ ¢
9272 + £ —o0, =] < =
:1:-+-2 on(oo, 6]U[ 6,00)
v(z) = ) _ ]
2, ¢ —J& ./
3z 3 on l: 5’ 6 }
222 + 0.6061 on (—oo, —0.4495) U [0.4495, co)
7] 322 +0.4041 on [~0.4495, 0.4495] ,

@lﬁ)

where & := 1/ — = 0.4495 is a unique solution on (0, 1) to

203 +9a°* -2 =0. (10)

Then ¢ = 64? = 1.2122. Thus D has the minimum value function v(z) at the stationary
Markov policy # = (), where

o[ (el
3 on [_ .ﬁ.@]

2 on (—o0, —0.4495] U [0.4495, oo)
3 on [—0.4495, 0.4495)] .

(Maximization) The Bellman equation

V(z) = Max [am + -cll- /OIV(y) dy] z€R (11)
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has the solution

c* c
3x2+§ on <——oo,—— —

{5+
S m B E]

_ 3z2 +0.5478 on (—oo, —0.5233] U [0.5233, c0)
| 242 +0.8217 on [—0.5233, 0.5233] ,

V(z) =

where o* = 4/ _cg = 0.5233 is a unique solution on (0,1) to

—2a®+ 1222 -3 = 0. (12)

Then ¢* = 6(c*)? = 1.2122. Thus D has the maximum value function V(z) at the
stationary Markov policy m* = (f*)(*), where

R
v [

3 on (—oo, —0.5233] U [0.5233, c0)
2 on [-0.5233, 0.5233] .

f=@)=

3.2 Logarithmic Case
The example of a controlled integral equation with logarithmic reward is also considered:
1 1
v(z) = mlog(z + 1) + —T—n—-/v(y) dy, z=>-1. (13)
0
Eq.(13) has the unique solution
v(z) =mlog(z + 1) + m—nj_—i(ZlogZ -1).

Let us consider the bi-decision process on A4 = A(z) = {2, 3}.
Example 3.2. D= (S, (A, A(:)),n, T, B), where

S=(-1,0), A= A(z)={2,3}, r(z,a)=alog(z+1),
T(z,a)=[0,1], Bz,ay)= %- .
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Maximiz4d

\tion process

. / T Double Process
Triple Process—— < D e .
P \ A .. __minimization process

—0.5233 —0.4495 © 0.4495 0.5233 z

Figure 2: Four value functions in quadratic case

(minimization) The Bellman equation
1 1
~ o : D+ - 14
v(z) in [a og(z +1) + — /Ov(y)dy] l<z<o0 (14)

has the solution

3log(z + 1) + on (—1,eé — 1]

v(z) =

oo w| o

2log(z + 1) + on [ef —1,00)

‘ 3log(z + 1)+ 0.4930 on (—1, 0.2796]
B { 2log(z + 1)+ 0.7395 on [0.2796, co),
where ¢ = 1.4791 is a unique solution to
e%+§-x+1—4log2=0. | (15)
Thus D has the minimum value function v(z) at the stationary Markov policy # = f (00)

where
f(:v)={ 3 on (—1,e8 —1] ={ 3 on (-1, 0.2796]

2 on [ef —1,00) 2 on [0.2796, 0o).
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(Maximization) The Bellman equation
1 1
=M 1 1)+— [ V(y)d -1 < 16
V@) = Max |aloglo+ )+ = [Vidy| —1<a<oo (16)

has the solution

*

2log(z + 1) + % on (—l,e% —1]

*

3log(m+1)+% on [e%:—l,oo)

2log(z + 1) +0.9072 on (-1, 0.3531]
| 3log(z +1)+0.6048 on [0.3531, o),

where ¢* = 1.8144 is a unique solution to
: 5
es——-éa:+610g2—4=0. (17)

Thus D has the maximum value function V(z) at the stationary Markov policy n* =
(f*)¢), where

f*(x)z{ 2 on (=1,e% — 1] .={ 2 on (-1, 0.3531]

3 on [e% —1,00) | 3 on [0.3531, c0).

3.3 s times vs t times competitive processes

In this section, we consider s times versus t times competitive processes. By consider-
ing the problem, we can clearly understand the relationship between minimization and
maximization in bi-decision process.

Example 3.3. D= (S, (A4, A(-)), r, T, B), where
1
S=R, A=A(z)={st}, r(z,a)=az, T(z,a)=[0,1], B(z,a,y)= -
and where s and t are given real constant numbers such that

2<s<t<3.

(minimization) The Bellman equation

v(z) = min [ax—{-—};/olv(y)dy] zeR

a€{s,t}
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Vi

Maximization Procdss

minimization process

Triple Process

. 10.3531

// O 0.2796 z
- Double Process
Figure 3: Four value functions in logarithmic case
has the solution ) )
é é
tx + 7 on (—oo, -;?]
v(z) = \ . (18)
¢ ¢
st+— on |[—,00],
s [ st )
where

. st{\/s— 122+ s(t—s) — (s - l)t} |

19
o (19)
Thus D has the minimum value function v(z) at the stationary Markov policy 7 = f(®),
where

f(x)___ t on (~oo, —gét—]

s [£10). "

(Maximization) The Bellman equation

1 1
V(a:)-alzl{g,atc} [am+;/0V(y)dy} z€R
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has the solution

c* ( c* ]
sr+ — on —00, —
s st
V(z) = (21)

t:n—}—c* on ¢ 00
t st’ ’

. st{\/(t TS 1 4(s — %) — (t — 1)3}

s—t

where

(22)

Thus D has the maximum value function V(z) at the maximization policy m = (f*)(®),

where
c*
s on |—o0, —

C#
t on [—, oo).
st

As shown above, by reversing the role of s and ¢, the minimum value function (18), the
value of the integration (19), and the minimization policy (20) are transformed into the
maximum value function (21), the value of the integration (22), and the maximization
policy (23) respectively.

fH(z) = (23)

4 Finite Stage Problem

In this section, let us consider a nondeterministic decision process with a finite number
of stages.

(minimization) Let B(S) denote the set of all bounded measurable functions on S. then
Let us define a integral operator T : B(S) — B(S) as follows:

1 1
= mi — B
(Tw(@) = min [az +o [ uw) dy] u(z) € B(S),
and let

Tru =TT '), T'u=Tu.

We note that T is a contraction mapping. (T"u)(z) represents the minimu total weighted
reward if we use a minimization policy but we are tarmiated after n periods and gain a
terminal reward u(-). For the sake of simplicity, we take u(x) = 0, Then we obtain

¢n Cn
3$+€ on ( 00,6]

Cn Cn
2:::4—2 on [6’ ),

(T"0)(z) =

where {¢,} is the sequence on [0, 1) defined by the recurence relation

. 1. 1, R
Cn+1=—-7—2031+§cn+1 é =0.
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This solution converges to that of infinite stage problem as the limit {3].

(Maxiimization) Let us define a integral operator as follows:

(Tu)(z) := ul;%%} {ax + %L-/Ou(y) dy] u(z) € B(S).

(T™u)(z) represents the maximum total weighted reward if we use a maximization policy
but we are tarmiated after n periods and gain a terminal reward u(-). We obtain

Cn Cn
3z + 3 on (—oo, E]
(T70)(2) = M
n n
2z + 9 on [ 5’ oo) ,
where {c!} is the sequence on [0, 1) defined by the recurence relation

* 1 * 1 * 3 *
cn+1 = ﬁ(cn)2 + gcn + —2_ € = 0.

5 Volterra Type

We can also consider a controlled Volterra equation as follows

v(z)=mx+i/v(y)dy, z € R.
m Jo

(24)
Eq.(24) has the unique solution
v(z) = mi(em —1), zeR.
Let us consider a decision process on A = A(zx) = {2,3}.
Example 5.1. D= (S, (A, A(:)), r, T, B), where
S=R, A= A(z)={2,3}, r(z,a)=az, T(z,a)=][0,z], P(z,a,y)= —(11—
(minimization) The Bellman equation
. 1 [
v(z) = in [aa: +— /0 v(y) dy] , z€R (25)

has the solution

9(e¥ — 1) on (—o0, 0]
v(z) = { 4(e? —1) on [0, &
(5& +9)e3*—9 on [&, o),

where & = 3.2376 is a unique solution to

ef—-l—-s-x=0

: . (26)
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Thus D has the minimum value function v(z) at the stationary Markov policy # = f(*),

where
3 on (—o0,0]
2 on [0,4]
3 on [&, 00).

f(z) =

(Maximization) The Bellman equation

1 T
= — 2
V(z) alé/{%} [am + . /0 V(y) dy] z€R (27)
has the solution .
4(e? — 1) on (—oo, 0]
V(z) ={ 9(e3 —1) on [0, o
(5a* +4)e*T -4 on [a*, o)

where o* = 2.8422 is a unique solution on (0, o0) to
: D
ea—§x—1=0. (28)

Thus D has the maximum value function V(z) at the stationary Markov policy 7* =

(f*)(*) where
2 on (—o0, 0]
ff@)=4¢ 3 on [0, "]

2 on [o* 00).

6 System of Equations
Example 6.1. D= (S, (A, A(:)), r, T, ), where
S={s=(wz)|we {1,2}, ze R} ={1,2} xR,

{2,3} se{1}xR
{4,5} se{2}xR,

1/6 (s,a,s8') € ({1} xR)x {2} x ({1} xR) U ({1} xR)x {3} x ({2} xR)
2/3 (sya,8") € ({1} xR)x{2}x ({2} xR) U ({1} xR)x {3} x ({1} xR)
1/3 (s,a,8) € ({2} xR)x {4} x ({1} xR) U ({2} xR)x {5} x ({2} xR)
1/2 (s,a,8') € ({2} xR)x {4} x ({2} xR) U ({2} xR)x {5} x ({1} xR).

A =1{2,3,4,5}, A(s) = { r(s,a) = az, T(s,a)={1,2}x]0,1],

B(s,a,s) =

(minimization) The Bellman equation
1 2 ! 2 [l 1 /!
v1(z) = min [23: + — / vi(y)dy + —/vg(y) dy, 3z + — / vn(y)dy + = / v2(y) dy]
6 Jo 3 Jo 3 Jo 6 Jo

X 1t 1/t 1 1 !
v2(x) = min 4z+—/v1(y)dy+——/vz(y)dy, 5w+—/v1(y)dy+-/vz(y)dy]
3 Jo 2 Jo 2 Jo 3 Jo
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has the solution

147\/‘ 349 ( o, 3(7 —8\/55)]

v (x)

123\/_ — 181 [3(7 — v/33)
on —s oo)

3z +7.7414 on (—o0,0.4708]
2z +8.2122 on  [0.4708,c0)

139\/_ 293 7—/33

on (o0, —5~]

131\/‘ 237 [7—\/:33 oo)
8 b

(%)) (.’L‘)

5:1: +7.8983 on (—00,0.1569]
4:1: +8.0553 on [0.1569, ).

Thus D has the minimum value functions v;(z) and v,(z) at the stationary Markov policy
# = (f), §(>)), where

r 3 on (—m,w] ' {3 on (—o00,0.4708]

[3(7-x/f§) oo) 2 on [0.4708,00)
8 b

( 7-/33
5 on ( — 00, T] 5 on (—o00,0.1569]
o(z) = =

7—8\/33’“)) 4 on [0.1569,00).

(Maximization) The Bellman equation

4 on [

\

1 [ 2 [t 2 ! 1 /!
Vi(z) = Max 2x+—/Vl(y)dy+—/Vz(y)dy, 3z+—/V1(y)dy+—/Vz(y)dy]
6 Jo 3 Jo 3 Jo 6 Jo

1/t 1t 1 [t 1 /!
Vo(z) = Max 4x+—/V1(y)dy+—/Vz(y)dy, 5x+—/Vl(y)dy+—/Vz(y)dy
3 0 2 0 2 0 3 0
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has the solution

3(535—51\/_) on (_oo 3(\/4—1—5)]
’ 8

Vi(z) = o
3(575 59v/41) [3(\/21" —5) )
on ———— 00
64 8
2r + 9.7707 on (—o00,0.5262]
| 3z+9.2445 on  [0.5262,00)
L 7285 - 23\/_ 41) ( VA4l — 5]
on -0, —
. 1685 169\/_ 41) VZYI
64 on [ g °°)

4.7: +9.5953 on (—o00,0.1754]
5$ +9.4199 on [0.1754,00).

Thus D has the maximum value functions Vi(z) and V2(x) at the stationary Markov
policy 7* = ((f*)), (g*)>)), where

J 2 on (—oo,Ms—ﬂ] [ 2 on (~00,05262]
fHz) = 5 on [3(\/1(;—5),00) 1 3 on [0.5262,00)
(4 on (-, ‘/4_8"5] 5 on (—00,0.1754]
* = ¢ —
7i@) 5 [\/4_—-5 4 on [0.1754,00).
\ on 3 ,oo)

7 Bynamic Process

(Bynamic process 1)

Finally, the example of a controlled equation equation including both minimization and
maximization is considered:

v1(z) = min [2x+ —fli—/lvl(y) dy + 3/1'02(1/) dy, 3z + 2 /1v1(y) dy + —l-/lvg(y) dy]

vo(x) = Max [4x+—/v1 )dy+—/v2 y) dy, 5$+—-—/V1 dy+—/Vz(y)dy] .

(29)
This is a Bellman equation of bynamic programming [7]. This (29) has the following
approximate solution.

: 3z -+ 8.4964 on (—00,0.6507] [ 42+89302 on (—o0,0.2169]
vi(z) = =
! 2z +9.1471 on [0.6507,00), 5z +8.7133 on [0.2169,00).
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Thus D has the optimum value functions v;(z) and v,(z) at the stationary Markov policy
7 = (£, §(>)), where

3 on (—00,0.6507] 4 on (—o00,0.2169]

f@)= g(z) =
2 on {0.6507,00), 5 on [0.2169,00).

(Bynamic process 2)

By reversing the optimization operators, the following problem is also considered:

1 [t 2 [t 2 ! 1 /!
v1(r) = Max 2x+—/v1(y)dy+—/vz(y)dy, 3m+—/v1(y)dy+——/v2(y)dy}
6 Jo 3 /s 3 Jo 6 /o

: 1t 1 [t 1 [? 1 [t
n(z) = min {40+ 5 [ vl dy+ g [v@dv 5o+ 5 [V d+ 3 [Vaw
3 Jo 2 Jo 2 Jo 3 Jo
has the following approximate solution.

{ 2z +8.7609 on (—o00,0.3297) _ { 5c + 8.5411 on (—o0,0.1099]

nlr) = =
1() 3z + 8.4312 on [0.3297,00), 4z + 8.6510 on [0.1099,00).

Thus D has the optimum value functions v;(z) and vz(z) at the stationary Markov policy
7 = (£, §(>), where

2 on (—o00,0.3297] 5 on (—o0,0.1099]

f(z) = §(z) =
3 on [0.3297,00), 4 on [0.1099,0c0).
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