
Title

Application of the Aubry-Mather theory to a system of
Hamilton-Jacobi equations with unilateral implicit obstacles
(Viscosity Solutions of Differential Equations and Related
Topics)

Author(s) Yamada, Naoki

Citation 数理解析研究所講究録 (2009), 1651: 1-9

Issue Date 2009-05

URL http://hdl.handle.net/2433/140793

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University



Application of the Aubry-Mather theory to a
system of Hamilton-Jacobi equations with

unilateral implicit obstacles
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1 Introduction
In this note we describe a recent development of the theory of viscosity solu-
tions to a system of Hamilton-Jacobi equations and a recent results obtained
by applying the method of Aubry-Mather theory.

In section 2, we give a brief review of the theory of viscosity solutions
for systems of Hamilton-Jacobi equations. Section 3 is devoted to the state-
ment of a new result by using Aubry-Mather theory. In section 4 we give a
representation formula for the solution of the obstacle problem for Hamilton-
Jacobi equation.

2 Brief history
Soon after the notion of viscosity solutions are introduced to the Hamilton-
Jacobi equations [5], [6], some people interested in applying this notion to
the system of equations.

The main focus is to get the component-wise comparison principle for
solutions to such systems.

Since the notion of viscosity solution is based on the maximum principle,
the applicable system should have some structural conditions.

In 1984, I. Capuzzo-Dolcetta and L. C. Evans [4] introduced a system

$\max\{\lambda u^{d}-g^{d}\cdot Du^{d}-f^{d}, u^{d}-M^{d}[u]\}=0$ , $d=1,$ $\ldots,$ $m$ (1)
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in the connection with a optimal switching problem for ordinary differential
equations. Here, we set

$M^{d}[u](x)= \min_{j\neq d}\{u^{j}(x)+k(j, d)\}$

for $k(j, d)>0$ are given constants.
In S. M. Lenhart [15], H. Englar and S. M. Lenhart[7], they treated

the system of Hamilton-Jacobi equations which they called weakly coupled
system which has the form

$H_{i}(x, Du_{i})+ \sum_{\ell=1}^{m}c_{k\ell}(x)u_{\ell}(x)=f_{k}(x)$ $k=1,$ $\ldots,$
$m$ .

H. Ishii and S. Koike [13], [14] introduced the notion of monotone system
or quasi-monotone system for

$G_{k}(x, u_{k}, Du_{k}, D^{2}u_{k})+ \sum_{j=1}^{m}d_{kj}(x)u_{j}=0$ $(k=1, \ldots, m)$ .

Systems for second order equations of the form:

$\min\{\max\{G_{k}(x, u_{k}, Du_{k}, D^{2}u_{k}), u_{k}-M_{k}(x, u)\}, u_{k}-N_{k}(x, u)\}=0$

$\max\{G_{k}(x, u_{k}, Du_{k}, D^{2}u_{k}), u_{k}-M_{k}(x, u)\}=0$

where

$M_{k}(x, u)= \min\{u_{j}+g_{kj}(x)|j=1, \ldots, m, j\neq k\}$

$N_{k}(x, u)= \min\{u_{j}-h_{kj}(x)|j=1, \ldots, m, j\neq k\}$

are treated by the author [16] and H. Ishii[12].
In these systems the monotonicity assumptions for each system work an

essential role to get the comparison principle. We review for these monotonic-
ity assumptions for typical two systems to compare with the main result of
this paper.

First consider the simplest weakly coupled system:

$H_{1}(Du_{1})+d_{11}u_{1}+d_{12}u_{2}=f_{1}$

$H_{2}(Du_{2})+d_{21}u_{1}+d_{22}u_{2}=f_{2}$
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where $c_{ij}$ are some constants satisfying

$d_{11}+d_{12}\geqq\delta_{0}>0$ , $d_{12}\leqq 0$

$d_{21}+d_{22}\geqq\delta_{0}>0$ , $d_{21}\leqq 0$ .

This is the monotonicity assumption for this system.
To see how this assumption works in the proof of the uniqueness, we follow

the formal argument. Let $u=(u_{1}, u_{2}),$ $v=(v_{1}, v_{2})$ be classical solutions. We
want to show $u_{i}\leqq v_{i}(i=1,2)$ . By the contrary, we assume

$(u_{1}-v_{1})(x_{0})= \max_{x,i}(u_{i}-v_{i})(x)>0$ .

Using $Du_{1}(x_{0})=Dv_{1}(x_{0})$ , substitute the equation of $v_{1}$ from that of $v_{1)}$ we
get

$d_{11}(u_{1}-v_{1})(x_{0})+d_{12}(u_{2}-v_{2})(x_{0})=0$.
Hence we have

$0=d_{11}(u_{1}-v_{1})(x_{0})+d_{12}(u_{2}-v_{2})(x_{0})$

$\geqq d_{11}(u_{1}-v_{1})(x_{0})+d_{12}(u_{1}-v_{1})(x_{0})$ $(by d_{12}\leqq 0)$

$=(d_{11}+d_{12})(u_{1}-v_{1})(x_{0})$

$\geqq\delta_{0}(u_{1}-v_{1})(x_{0})>0$ .

This is the contradiction.
Next, we would like to describe the monotonicity condition for the system

arising from the optimal switching. We restrict ourselves to the simplest case.
Consider the following system:

$\max\{H_{1}(Du_{1})+u_{1}-f_{1}, u_{1}-u_{2}-k_{1}\}=0$

$\max\{H_{2}(Du_{2})+u_{2}-f_{1}, u_{2}-u_{1}-k_{2}\}=0$ .

Here $k_{1},$ $k_{2}$ are positive constants. Arising $u_{i}$ in each $H_{i}(Du_{i})+u_{i}$ and the
positivity of $k_{i}$ is the monotonicity condition in this case.

For the simplicity, let $u=(u_{1}, u_{2}),$ $v=(v_{1}, v_{2})$ be classical solutions and
we want to show $u_{i}\leqq v_{i}(i=1,2)$ . By the contradiction, we assume

$(u_{1}-v_{1})(x_{0})= \max_{x,i}(u_{i}-v_{i})(x)>0$

for some $x_{0}$ . In the following we argue at $x_{0}$ .
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First note that $H_{1}(Du_{1})+u_{1}-f_{1}\leqq 0$ is always true. We have two cases.
(a) The case $H_{1}(Dv_{1})+v_{1}-f_{1}=0$ :
In this case, substitute two equations by using $Du_{1}(x_{0})=Dv_{1}(x_{0})$ , we

have $(u_{1}-v_{1})(x_{0})\leqq 0$ , which is a contradiction.
(b) The case $v_{1}-v_{2}-k_{1}=0$ :
If $v_{2}-v_{1}-k_{2}=0$ in the second equation, we get $-(k_{1}+k_{2})=0$ , which

is a contradiction. Then it must be $H_{2}(Dv_{2})+v_{2}-f_{2}=0$ . On the other
hand, combining the relations $v_{1}-v_{2}-k_{1}=0$ and $u_{1}-u_{2}-k_{1}\leqq 0$ , we have
$u_{1}-u_{2}\leqq v_{1}-v_{2}$ . This implies $u_{1}-v_{1}\leqq u_{2}-v_{2}$ , which says

$(u_{2}-v_{2})(x_{0})= \max_{x,i}(u_{i}-v_{i})(x)>0$ .

Hence we concentrate to the second equation, which satisfies
$H_{2}(Du_{2})+u_{2}-f_{2}\leqq 0$

$H_{2}(Dv_{2})+v_{2}-f_{2}=0$ .
From this we can get $(u_{2}-v_{2})(x_{0})\leqq 0$ , which is also a contradiction.

3 Comparison results by applying Aubry-
Mather theory

First, note that in both of above examples we use also the fact that the
Hamiltonian $H_{i}(p)+r$ is strictly increasing with respect to $r$ .

There are lot of papers that argue the uniqueness of Hamilton-Jacobi
equations without these increasing property. For the system, H. Ishii and S.
Koike [13] introduced the notion of “quasi-monotone system” and prove the
comparison principle.

The method using Aubry set is the one which is recently introduced by
A. Fathi [9]. The Aubry set is first introduced in the connection of dynamic
theory, and the relation with PDE is investigated by A. Fathi and A. Siconolfi

$[$ 10$]$ , $[$ 11].
We prepare some notations.
Consider the equation $H(x, Du)=0$ and assume that $H(x,p)$ is convex

and coercive with respect to $p$ .
Assume that there exist a functions $\psi\in C^{1}$ and $f(x)\geqq 0$ such that

$H(x, D\psi(x))\leqq-f(x)$ . We call the set

$\mathcal{A}=\{x|f(x)=0\}$
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the Aubry set of $H$ .
If $\mathcal{A}=\emptyset$ , then there exists strict sub-solution of $C^{1}$ class, hence we can

get the uniqueness. On the other hand, if $\mathcal{A}\neq\emptyset$ , the Aubry set plays a
rule as inner boundary in some sense, hence we can get information of the
solution from the value on $\mathcal{A}$ .

F. Camilli and P. Loreti [2] applied these results to the system of eikonal
equations. Their result is as follows: Consider the system

$H_{i}(x, Du_{i})+ \sum_{j=1}^{M}c_{\dot{\tau}j}(x)(u_{i}-u_{j})=0$ , $(i=1, \ldots, M)$ .

Assume that each $H_{i}$ satisfies the assumption of convexity and coerciveness.
Assume also that there exist functions $\psi\in C^{1}$ and $f_{i}(x)\geqq 0$ satisfying
$H_{i}(x, D\psi(x))\leqq-f_{i}(x)$ . Note that we assume that there exists common $\psi$

for all $H_{i}$ . Let
$\mathcal{A}_{i}=\{x|f_{i}(x)=0\}$ .

Theorem 1 (F. Camilli and P. Loreti [2]) Assume that one of the fol-
lowing assumption is $satisfied_{J}$ then the uniqueness of the viscosity solutions
holds;

(i) $c_{ij}\geqq 0$ $(i\neq j)$ , $A=\emptyset$ $(i=1, \ldots, M)$

(ii) $c_{\dot{\tau}j}>0$ $(i\neq j)$ , $\bigcap_{i=1}^{M}A=\emptyset$

Note that this assumption includes the case $d_{11}=0,$ $d_{22}=0$ in the
previous example.

Now we are in the position to state our result. Soon after I learned the
result of Camilli and Loreti, I asked them how about the associated result to
the system of obstacle problem.

We started the joint work and obtained the following result.
Consider the system

$\max\{H_{i}(x, Du_{i}(x)), u_{i}(x)-(M_{i}u)(x)\}=0$ in $D,$ $i=1,$ $\ldots,$
$M$.

Here,
$(M_{i}u)(x)=mjn\{u_{j}ji+k_{ij}(x)\}$ .

We assume that $H_{i}(x,p)$ are convex and coercive, and $k_{ij}>0(i\neq j)$ .
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Assume that there exist functions $\psi\in C^{1}$ and $f_{i}(x)\geqq 0$ such that
$H_{i}(x, D\psi(x))\leqq-f_{i}(x)$ . We denote the Aubry sets of $H_{i}$ by

$\mathcal{A}_{\eta}\cdot=\{x|f_{i}(x)=0\}$ .

Theorem 2 If sub- and super-solutions $u$ and $v$ satisfy

$u_{i}\leqq v_{i}$ on $\mathcal{A}_{i}\cup\partial D(i=1, \ldots, M)$ ,

then we have
$u_{i}\leqq v_{i}$ in $D(i=1, \ldots, M)$ .

The idea of the proof is a combination of the previous results. First
consider

$u_{\lambda}=(\lambda u_{1}+(1-\lambda)\psi, \ldots, \lambda u_{M}+(1-\lambda)\psi)$ ,

for $\lambda\in(0,1)$ . If we drive $u_{\lambda}\leqq v$ , then we let $\lambdaarrow 0$ to get the theorem.
First we note that $u_{\lambda}$ is a sub-solution of the following system:

$\max\{H_{i}(x, Du_{i}))u_{i}(x)-(M_{i}u)(x)\}=-f_{\lambda_{1}i}(x)$

where
$f_{\lambda,i}(x)=(1- \lambda)\min\{f_{i}(x), \min_{j\neq k}\{k_{i,j}(x)\}\}$ .

We use the convexity of $H_{i}$ in this part.
To prove $u_{\lambda}\leq v$ , assume by contradiction that this is not true. Hence

there exist $i_{0}\in\{1, \ldots , M\},$ $x_{0}\in D$ and $\delta>0$ such that

$u_{\lambda,i_{0}}(x_{0})-v_{i_{0}}(x_{0})= \max_{x,i}\{u_{\lambda,i}(x)-v_{i}(x)\}=\delta$.

Now we divide into two cases.

(i) $v_{i_{0}}(x_{0})-(M_{i_{0}}v)(x_{0})<0$ ,

(ii) $v_{i_{0}}(x_{0})-(M_{i_{0}}v)(x_{0})\geq 0$ .

In the case (i), we can discuss as same as single equation and get

$-f_{\lambda,i_{0}}(x_{0})<0$ .

Then we can argue as usual to get a contradiction.
In the case (ii), we can argue as described in the section about mono-

tonicity conditions.
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4 A representation formula
It is known that the Aubry set plays a role in some sense as an inner boundary.

Reflecting this property, it is known a representation formula for the
solution of Hamilton-Jacobi equation by using the given value on the Aubry
set.

Let us introduce some notations.
Consider the Hamilton-Jacobi equation with Dirichlet condition

$H(x, Du)=0$ in $D\subset \mathbb{R}^{n}$ ,
(2)

$u(x)=g(x)$ on $\partial D$ .

Let

$Z(x)=\{p\in \mathbb{R}^{n}|H(x,p)\leqq 0\}$ ,
$\sigma(x, q)=\sup\{p\cdot q|p\in Z(x)\}$

for $x\in\overline{D},$ $q\in \mathbb{R}^{n}$ and we put

$S(x, y)= \inf\{\int_{0}^{1}\sigma(\xi(s),\dot{\xi}(s))ds|\xi\in Lip(0,1),$ $\xi(0)=x,$ $\xi(1)=y\}$ .

We list some properties by A. Fathi and A. Siconolfi $[$ 11]:

(1) $S(x, y)\geqq 0,$ $S(x, x)=0$ ,

$S(x, y)\leqq S(x, z)+S(z, y)$ ,

$S(x, y)\leqq$ ョ$M|x-y|$ .

(2) $S(x, \cdot)$ is a sub-solution on $D$ .

$S(x, \cdot)$ is a super-solution on $D\backslash \{x\}$ .

(3) It is equivalent that $v$ is a sub-solution and that $-S(y, x)\leqq v(x)-$

$v(y)\leqq S(y, x)$ .

This means that $S(x, y)$ has a similar properties with distance function.
Assume that continuous functions $g:\partial D\cup \mathcal{A}arrow \mathbb{R}$ satisfy the compati-

bility condition $-S(y, x)\leqq g(x)-g(y)\leqq S(y, x)$ , then the solution of (2)is
represented as

$u(x)= \min_{y\in\partial D\cup A}\{g(y)+S(y, x)\}$ .
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We can get a similar representation formula for a obstacle problem

$\max\{H(x, Du), u-\phi\}=0$ .

Theorem 3 Assume that continuous functions $g:\partial D\cup \mathcal{A}arrow \mathbb{R}$ satisfy the
compatibility $condition-S(y, x)\leqq g(x)-g(y)\leqq S(y, x)$ . Then the solution
of

$\max\{H(x, Du), u-\phi\}=0$ in $D$ ,
$u(x)=g(x)$ on $\partial D$

satisfying $u(x)=g(x)$ on $\mathcal{A}$ is unique and is given by

$u(x)= \min\{\min_{y\in\partial D\cup \mathcal{A}}\{g(y)+S(y, x), m_{\frac{in}{D}}\{\phi(x)y\in+S(y, x)\}\}$.
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