Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

Bl =
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Complexity of pleat folding (Theoretical Computer Science

Title and Its Applications)

Author(s) g;hﬁzyyoshi; Kiyomi, Masashi; Imahori, Shinji; Uehara,

Citation O00O0O0DbOOog (2009), 1649: 66-72

Issue Date | 2009-05

URL http://hdl.handle.net/2433/140754

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39269104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooogn
0 16490 2009 0 66-72

2008 EFELD LA ¥ Y RI7 4 (1]

66

Complexity of pleat folding

Tsuyoshi Ito* Masashi Kiyomi'

Abstract

We introduce a new origami problem
about pleat foldings. For a given assign-
ment of n creases of mountains and val-
leys, we make a strip of paper well-creased
according to the assignment at regular in-
tervals. We use simple folding as a ba-
sic operation. More precisely, we assume
that (1) paper has 0 thickness and some
layers beneath a crease can be folded si-
multaneously, (2) each folded state is flat,
and (3) the paper is rigid except at the
n given creases. We also assume that
each crease remembers its last folded state
made at the crease. We aim to find ef-
ficient ways of folding a given mountain-
valley assignment in this model. We call
this problem wunit folding problem for gen-
eral patterns, and pleat folding problem
when the mountain-valley assignment is
“MVMVMV..."” The complexity is
measured by the number of foldings and
the cost of unfoldings is ignored. Trivially,
we have an upper bound n and a lower
bound log(n + 1). We first give some non-

*School of Computer Science, McGill Univer-
sity, tsuyoshiQcs.mcgill.ca

tSchool of Information Science, Japan Ad-
vanced Institute of Science and Technology
(JAIST), mkiyomi@jaist.ac.jp

!Graduate School of Information Science
and Technology, The University of Tokyo,
imahori®mist.i.u-tokyo.ac.jp

§School of Information Science, Japan Ad-
vanced Institute of Science and Technology
(JAIST), uehara@jaist.ac. jp

Shinji Imahori Ryuhei Uehara$

trivial upper bounds: (a) any mountain-
valley assignment can be made by [%J +
[log(n + 1)] foldings, and (b) a pleat fold-
ing can be made by O(n¢) foldings for any
e > 0. Next, we also give a nontrivial lower
bound: (c) almost all mountain-valley as-
signments require 2 (TS%R foldings. The
results (b) and (c) imply that a pleat fold-
ing is easy in the unit folding problem.

1 Introduction

Origami has recently attracted much at-
tention as mathematics and as theoreti-
cal computer science [3]. In the computa-
tional origami, the best studied problem is
the characterization of flat foldable crease
patterns. When the paper and crease pat-
tern are orthogonal, the problem is called

‘the map folding problem, and the problem

has been well studied by Arkin et al. [2].
Roughly speaking, (1) the problem in 1D
can be solved in linear time; it can be de-
termined in O(n) time whether or not a
given strip of paper with n creases is flat
foldable, and (2) the problem in 2D is' N P-
complete; to determine whether or not a
given zig-zag form paper with n creases is
flat foldable is N P-complete (see [2] for the
details).

In this paper, we deal with a simpler
problem. The input of our problem is a
strip of paper of length n + 1 with n de-
sired creases, and we assume that these
creases are placed at regular intervals on

Figure 1: An “angel” designed and
folded by Takashi Hojyo on the cover
of [1]. (http://www.origami.gr. jp/
Magazine/Index/103-108.html)

the paper. That is, we assume that the
paper corresponds to an interval [0..n+ 1],
n creases are placed at each integer point
¢t with 1 < 7 < n, and each integer point
is assigned to M (mountain) or V (valley)
which is the target folded state. We aim to
fold the paper and make it “well-creased”
according to the assignment. More pre-
cisely, each integer point memorizes its last
folded state (M or V) made at the point,
and we have to make the creases’ folded
states fit the given assignment.

A typical example is pleat folding that is
one of basic tools for origami design (Fig-
ure 1; the angel is made from just one
square paper without any cutting). The
mountain-valley assignment for the pleat
folding is in the form “MV MV -...” From
the industrial point of view, pleat folding
has many applications including clothes,
curtains, etc.

We employ simple folding defined in [2]

67

(see also [3, Section 14.1]). More precisely,
our origami model is as follows; the pa-
per has 0 thickness, some layers beneath a
crease can be folded simultaneously, each
folded state is flat, and the paper is rigid
except at given n creases. Clearly, this
folding problem has a trivial solution (or
upper bound of the number of foldings);
we can fold any mountain-valley assign-
ment by just folding n creases indepen-
dently. On the other hand, we have a triv-
ial lower bound of the number of foldings;
we have to fold at least [log,(n + 1)] times
to make n creases (by folding repeatedly at
the center point of the paper).

For a given string s of length n in
{M,V}", the unit folding problem is to ob-
tain the well-creased paper following the
mountain-valley assignment s. We call
it pleat folding problem if the mountain-
valley assignment is “MVMV” The
complexity is measured by the number of
foldings, and the number of unfoldings is
ignored. We first show the following non-
trivial upper bound of the number of fold-
ings to solve any unit folding problem:

Theorem 1 The unit folding problem
of n creases can be solved by |in| +
[log(n + 1)] foldings for any mountain-
valley assignment®.

One may think that the pleat folding
problem is the most difficult in the unit
folding problems. However, this is not the
case. We show an efficient way to obtain
the pleat foldings.

Theorem 2 For any positive real num-
ber ¢ > 0, the pleat folding problem of
n creases can be solved by O(n¢) foldings
for sufficiently large n.

On the other hand, we can show a lower
bound of the general unit folding problem.

'In this paper, we assume the base of logarithm
is two unless specified otherwise.

Theorem 3 For the unit folding prob-
lem, almost all mountain-valley assign-

ments with n creases require 2 (ﬁ;) fold-

ings.

Theorems 2 and 3 imply that the pleat
folding problem is not the most difficult
unit folding problem.

In origami, “unfolding” is much easier
than “folding.” Hence we ignore the cost
of unfoldings in our model. However, even
if we count the number of unfoldings in
addition to foldings, all the results in this
paper hold with small changes within con-
stant factors.

2 Models of foldings and unfoldings

The input to a unit folding problem con-
sists of a string of length n over an alpha-
bet {M,V}. The ith letter (M or V) cor-
responds to the ith assignment at the ith
crease which is placed at the integer point
¢ in the interval [0..n + 1]. In general, we
have several ways when we fold the paper
at the point 7. The following simple fold
models are proposed by Arkin et al. [2] (see
also [3, p. 225)):

One-layer simple fold model: We al-
ways fold the top layer of paper.

All-layers simple fold model: We
simultaneously fold all layers of paper
under the crease point.

Some-layers simple fold model: We
fold some layers beneath the crease
point. (Note that we have to valley
fold inside consecutive layers.)

We measure the complexity of a folding al-
gorithm by the number of simple foldings
made by it, and ignore the cost of unfold-
ings. In the one-layer simple fold model,
we always fold exactly one crease. Thus,
we cannot improve the trivial upper bound
n for the unit folding problem, and hence

68

we have nothing to do. Therefore, here-
after, we only consider the all-layers simple
folding and some-layers simple folding. We
additionally introduce the following three
unfolding models, which define the allow-
able unfolding operations.

All-unfold model: Once we decide to

unfold, the paper is unfolded com-

- pletely. That is, we have the paper

corresponding to the interval [0..n+1]
again.

Reverse-unfold model: We can rewind
any number of the last folding steps
as far as we can. This model is use-
ful to consider some upper and lower
bounds.

General-unfold model: For a folded
state s, we can obtain another folded
state t by the one general unfolding
operation if s can be obtained from
t by consecutive some-layers simple
foldings.

The models will be used to discuss both
of the upper and lower bounds of the
algorithms. Of course, the general-
unfold model is the most natural and the
strongest model. This paper mainly stud-
ies the first two unfold models, which are
natural restrictions of the general-unfold
model.

Without loss of generality, we assume
that the leftmost point of any folded paper
is always placed at point 0. Each point on
the paper has its own label i that is given
by the initial position in [1..n].

A folding algorithm will be called end-
free if it can be applied on the paper with n
creases even if we extend both endpoints of
the paper to infinity. Precisely, the paper
can be corresponds to an interval [-N..N]
for any large N > n. This property will
be required when we use the algorithm re-
cursively.

3 Upper bounds

We first prove Theorem 1, which is the ba-
sic tool of this paper.

Proof. (of Theorem 1) To simplify the
proof, we first suppose that n = 2F — 1.
The strategy is simple; (1) fold the paper
in half k times, (2) unfold all, and (3) fix
each crease if it is not folded correctly.

On step (1), the folding direction is de-
termined by the majority at the point.
That is, we see the point %, which is the
center of the current paper, check the all
directions of the desired creases on the
point 2, and take majority. (We note that
half creases are turned over from the origi-
nal direction, but fixing this is easy; the
creases are alternately turned over and
that can be checked from 1 to n.) Hence
step (1) makes at least half of creases to
be folded correctly. Thus in step (3), the
number of foldings is bounded above by
|2] (the rounding comes from the first
folding that always succeeds). Therefore
we have the theorem.

When n # 2% — 1, we just add an imagi-
nary paper to make the length of the paper
n' = 2% — 1 with mingn < 2 — 1, and ap-
ply the algorithm on this paper of length
n'. d

We note that (a) the algorithm in the
proof is end-free, (b) it works in the all-
layers simple fold model and hence some-
layers simple fold model, and (c) it works
in all the unfold models we described since
all unfoldings in steps (2) and (3) can be
done by all-unfoldings.

We call a unit folding problem mountain
folding problem if the mountain-valley as-

signment is “MMM --..” We next show a

simple proposition which gives us a strong
intuition to consider the pleat folding.

Proposition 4 Let A’ be any algorithm
for the mountain folding problem in any
model, and fo(n) be the number of foldings

69

by A’ to make n mountain foldings. Then
we can solve the pleat folding problem in
the model with fo(|n/2])+ fo([n/2]) fold-
ings.

Proof. For the mountain-valley assign-
ment “MVMV...” we first fold all
fo([n/2]) mountains by A’. Next we re-
verse the paper and fold all fy({n/2]) val-
leys by A’ again. " O

Now we turn to the upper bounds of the
number of foldings for solving the pleat
folding problem. First, we focus on the all-
layers simple fold and reverse-unfold (or
all-unfold) model. In this weak model, we
show a weaker upper bound. By Propo-
sition 4, we can focus on the mountain
folding problem instead of the pleat fold-
ing problem. This will help us to have an
intuition.

Lemma 5 The mountain folding problem
of n creases can be solved by O(n'°¢%) ~
O(n%%) foldings in the all-layers simple
fold and all-unfold model, where ¢ = l:%@

Proof. To simplify the proof, we suppose
that n = 2%. The basic strategy is simi-
lar to the algorithm in the proof of The-
orem 1. In step (0), we fold the paper at
point 1 and make the length of the pa-
per 2*. The next two steps (1) and (2)
are the same; we fold the paper in half k&
times and unfold completely. Now we fo-
cus on the mountain-valley pattern made
by the two steps (1) and (2). First, we fold
the paper in half, and obtain the correct
crease at the center point. Second, we fold
the paper in half, and obtain one correct
crease, and one incorrect crease. Third,
we fold the paper in half, and obtain two
correct creases, and two incorrect creases.
In ith folding with ¢ > 1, we obtain 2¢~2
correct creases and 2'~2 incorrect creases
that appear on the paper alternately. The
2-2 incorrect creases are placed at regular

M v M v M v M
[O)) [——Xga
Figure 2: Mountain folding by zig-zag

method

intervals. Thus, we can use our end-free
algorithm recursively on these 22 creases
in step (3). Let fi(n) be the number of
the foldings of this recursive algorithm. It
is easy to see that fi(1) = 1, f1(2) = 2,
f1(3) = 3, and f,(4) = 4. By the above
observation, we have

H2Y) = 1+k+ A0+ A2+
-+ f1(2) + f1(1).

By the fact that f,(2%) — f1(2%¥71) equals
f1(25-2) + 1, we have the following rela-
tionship. '

(f(25)+1) = (A2 +1)+(£H(25H)+1).

Thus (f;(2*)+1) gives the Fibonacci num-
bers for k. (We define the Fibonacci num-
bers F; by Fp = 0, F; = 1 and F; =
F,_ 4+ F,_5 for i > 1. It is well known
that F; = 9"——(\;3"—52 = O(¢"), where ¢ =

1"'—2‘/—5) Using initial conditions f;(2°) =1,
f1(2Y) = 2, and f;(22) = 4, we have
f1(2¥) + 1 = Fy,3. Hence we have fi(n) =
fl(zk) = O((bk) =0 (¢logn) — O(nlogcﬁ)’
which completes the proof. U

Next, we show that the number of fold-
ings can be reduced by using the stronger
model. '

Lemma 6 For any fixed € > 0, the moun-
tain folding problem of n creases can be
solved by O(n¢) foldings for sufficiently
large n in the some-layers simple fold and
reverse-unfold models.

70

Proof. In the algorithm of the proof of
Lemma 5, “folding in half” is the basic
operation. We change this to “folding in
zig-zag form of p segments” (Figure 2).
Roughly speaking, the algorithm first folds
the paper into zig-zag form of p segments
of the same length by making p — 1 al-
ternating foldings at regular intervals (in
Figure 2(1) and (2) for p = 7). It re
cursively calls itself with the folded pa-
per of length n/p. After the recursive
call, it unfolds at the folded p — 1 crease
points. Then around p/2 segments have
been mountain folded, and p/2 segments
have been valley folded (in Figure 2(3),
thick lines and dashed lines indicate the
segments of the mountain and valley fold-
ings, respectively). The algorithm then
piles up the valley segments exactly by
folding at the center points of the moun-
tain segments (see Figure 2(4)). The al-
gorithm again calls itself recursively with
the local area of length n/p that consists
of all and only the valley segments. By the
recursive call, half of the valley segments
are corrected, and still half of them are
not corrected. (The creases of the center
points of the mountain segments are fixed
here.) Hence the algorithm again piles up
the valley segments and recursively calls it-
self again. The algorithm repeats this pro-
cess and finally obtain the desired moun-
tain folded state.

The algorithm runs in the some-layers
simple fold and reverse-unfold model, and
the correctness of the algorithm is easy.
Hence we analyze its complexity. To sim-
plify the proof, we suppose that n = p*—1
and p = 29 — 1. (We let ¢ be an arbitrary
positive integer, and hence p is odd and n
is even.) Let fy(n) be the number of fold-
ings made by the algorithm. By a careful

analysis, we have f,(0) = 0, fo(z) < z and

faln) = q-f (-—-—1) +p—2(q—2)
3p+1) &2 1
+
2 = 28—1

By a simple calculation, we obtain

11
q_f(n+1_1)+5p+
P 2

fa(n) <

< (Bp+11)g2+p—-1
= O(p-¢*?).

Since ¢ = logy(p + 1) and k = log,(n + 1),

loglog p
we have p-g*~2 ~ p-n"1er . Hence, letting
p be a sufficiently large constant, we have
L’-ﬁ}g‘fﬂ < € and p- ¢*=2 = O(n®), which
completes the proof. O

By Proposition 4 and Lemma 6, we have
Theorem 2.

4 Lower bounds

We have to clarify the unfold model to
state a lower bound. In fact, Theorem 3
holds for both of the all-unfold model and
the reverse-unfold model, but we have no
results about general-unfold model.

Lemma 7 All but o(2") mountain-valley

assignments of n creases require §) (logn

foldings in all of the three folding models
and both of the all-unfold model and the
reverse-unfold model.

Proof. The lemma is obtained by a sim-
ple counting argument. Since the some-
layers simple fold model is at least as pow-
erful as the one-layer and the all-layers
simple fold models, we only consider the
some-layers simple fold model. Similarly,
we only discuss the reverse-unfold model.
Suppose that we make at most k foldings.
At each folding, there are two choices for

71

the direction of folding (mountain or val-
ley). There are at most n choices for the
set of positions of the folding by consid-
ering the bottom-most layer of a valley
folding or the top-most layer of a moun-
tain folding. There are at most n + 1
choices for how many unfolding steps we
rewind just after the last folding. In to-
tal, the number of the possible mountain-
valley assignments made by at most & fold-
ings is bounded by Zf=0(2n(n + 1) <
@2n(n + 1) + 1)* < (2(n + 1%k If
we let k = | grmemryls then (2(n +
1)2)k < 2%/2 = o(2"). Therefore all but
0(2") mountain-valley assignments require

at least |_—————————4(1 o g';(n +1))J =0 ﬁ; foldings

in the reverse-unfold model (hence also in
the all-unfold model). a

Lemma 7 implies Theorem 3. Lemma 7
also implies that if we choose a mountain-
valley assignment of n creases uniformly
at random, the expected number of fold-

T();l_n in the
all-unfold model and the reverse-unfold
model.

ings required to make it is 2

5 Conclusion

There are several open problems.
By Theorem 3, a random mountain-
n_

;) fold-

valley assignment requires Q(
ings with high probability. Finding a spe-

T

logn
foldings will give some new insight on
which assignments are easy to fold and
which are not. Is there any mountain-
valley assignment that requires Q(n) fold-
ings?

Lemma 7 deals with general mountain-
valley assignments. When we focus on the
pleat folding problem, is there a nontriv-
ial lower bound for this specific problem?
Especially, can we make pleat foldings in
poly-log foldings?

cific assignment which requires 2

From the practical point of view, devel-
oping better algorithm for the pleat fold-
ing problem is interesting, especially, in
general-unfold model. Up to now, we have
no idea for dealing with general-unfold
model.

Acknowledgments

The authors thank to Takashi Hojyo who
gives a permission to use his “angel” for our
presentation of this research. The authors are
grateful to Erik Demaine, Joseph O’Rourke,
and Ron Graham for their helpful comment
and suggestion at CCCG 2008.

References

[1] Origami Tanteidan, Number 107. Japan
Origami Academic Society, 2008.

[2] E. Arkin, M. Bender, E. Demaine,
M. Demaine, J. Mitchell, S. Sethia, and
S. Skiena. When Can You Fold a Map?
Computational Geometry: Theory and
Applications, 29(1):23-46, 2004.

[3] E. D. Demaine and J. O’Rourke. Ge-
ometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge Univer-
sity Press, 2007.

72

