Title	Computing the Distribution Function of the Stochastic Longest Path Length in a DA G with Continuously Distributed Edge Lengths（Theoretical Computer Science and Its A pplications）
Author（s）	A ndo，Ei；Ono，Hirotaka；Sadakane，Kunihiko；Y amashita， Masafumi
Citation	数理解析研究所講究録（2009），1649：252－259
Issue Date	2009－05
URL	http：／hdl．handle．net／2433／140729
Right	
Type	Departmental Bulletin Paper
Textversion	publisher

連続確率分布枝重み付き DAGに対する最長路長さ分布の計算 Computing the Distribution Function of the Stochastic Longest Path Length in a DAG with Continuously Distributed Edge Lengths

Ei Ando \dagger Hirotaka Ono $\dagger \ddagger$
Kunihiko Sadakane \dagger Masafumi Yamashita $\dagger \ddagger$
\dagger Department of Computer Science and Communication Engineering，
Graduate School of Information Science and Electrical Engineering，
Kyushu University．
\ddagger Institute of Systems，Information Technologies and Nanotechnologies．

Abstract

Consider the longest path problem for directed acyclic graphs（DAGs），where a mu－ tually independent random variable is associated with each of the edges as its edge length．Given a DAG G and any distributions that the random variables obey，let $F_{\text {mAX }}(x)$ be the distribution function of the longest path length．We first represent $F_{\text {max }}(x)$ by a repeated integral that in－ volves $n-1$ integrals，where n is the order of G ．We next present an algorithm to symbolically execute the repeated integral，provided that the random variables obey the standard exponential distribution．Although there can be $\Omega\left(2^{n}\right)$ paths in G ，its running time is bounded by a polyno－ mial in n ，provided that k ，the cardinality of the maximum anti－chain of the incidence graph of G ，is bounded by a constant．We finally propose an algorithm that takes x and $\epsilon>0$ as inputs and approximates the value of repeated integral of x ，assuming that the edge length distributions satisfy some natural conditions．：（1）The length of each edge（ $\left.v_{i}, v_{j}\right) \in E$ is non－negative，（2）the Taylor series of its distribution function $F_{i j}(x)$ converges to $F_{i j}(x)$ ，and（3）there is a constant σ that satisfies $\sigma^{p} \leq\left|\left(\frac{d}{d x}\right)^{p} F_{i j}(x)\right|$ for any non－negative integer p ．It runs in polynomial time in n ， and its error is bounded by ϵ ，when x, ϵ, σ and k can be regarded as constants．

1 Introduction

Let $G=(V, E)$ be a directed acyclic graph（DAG），where V and E are the sets of of n vertices and m edges，respectively．Each edge（ v_{i}, v_{j} ）is associated with a random variable $X_{i j}$ representing its length． Although the longest path problem for DAGs is solvable in linear time when edge lengths are constant values，the same problem with stochastic edge lengths is formidable．Actually，there are at least two different problem formulations；to find a path that has the highest probability of being the longest［12］， or to compute the distribution function $F_{\text {MAX }}(x)$ of the longest path length $[1-5,7,8,10,11]$ ．In this paper，we adopt the second formulation．

The longest path problem in G with uncertain edge lengths is known as the classic problems such as Program Evaluation and Review Technique（PERT）［6］or Critical Path Planning（CPP）［9］．In these problems，the lower and the upper bounds of the edge lengths（the activity duration）are given as static values，and their goal is to obtain the lower and upper bounds on the longest path length in G ， the duration of the whole project．However，we assume，in this paper，that edge lengths are random variables；we are not to determine the edge lengths but to cope with the resulting edge lengths that realize with some probability．

Delay analysis of logical circuits is a killer application of this problem，and besides Monte Carlo simulations，many heuristic approximation algorithms have been proposed so far（see e．g．，［3，5，7］）．They run fast but their general drawback is that they do not have a theoretical approximation guarantee．To theoretically guarantee an approximation ratio，some authors of this paper proposed an algorithm to construct a primitive function that approximates $F_{\mathrm{MAX}}(x)[1,2]$ ．

Computing the exact distribution function has also a long research history．Martin［11］proposed a series－parallel reduction based method，assuming that each edge length obeys a polynomial distribution．

Kulkarni and Adlakha [10] proposed an algorithm that is based on the analysis of continuous time Markov chain. Both algorithms unfortunately take an exponential time with respect to the graph size. Indeed, when edge lengths obey discrete distributions, the problem is \#P-complete [8], and is NP-hard even for the series-parallel graphs [4].

We first show that $F_{\text {MAX }}(x)$ is represented by a repeated integral that involves $n-1$ integrals, for any instance of the problem. The problem of computing $F_{\operatorname{MAX}}(x)$ for any x is thus reducible to the problem of evaluating the repeated integral for x. The evaluation of the repeated integral is possible by making use of standard numerical methods at the expense of accuracy and time.

In this paper, we pursuit the possibility of exact computation using the repeated integral. That only $n-1$ integrals are involved might give us a chance to symbolically compute it in polynomial in n, although there can be $\Omega\left(2^{n}\right)$ paths in G (and the above NP-hardness results essential suggest that any algorithm would need to evaluate each of the $\Omega\left(2^{n}\right)$ paths).

Assuming that the random variables obey the standard exponential distribution, we show that there is an algorithm to transform the repeated integral into a product of primitive functions. It runs in polynomial time in n, provided that k, the cardinality of the maximum anti-chain of the incidence graph of G, is bounded by a constant.

We (of course) cannot present a polynomial time algorithm that works for any distribution of edge length. Naive numerical methods to approximate the repeated integral, on the other hand, need sufficiently long computation time and do not guarantee approximation performance. We thus assume that the distribution function $F_{i j}$ associated with any edge (v_{i}, v_{j}) satisfies the following three natural conditions: (1) The length of each edge is positive (i.e., $F_{i j}(x)=0$ for $x \leq 0$), (2) there is a constant σ that satisfies $\left|\left(\frac{d}{d x}\right)^{p} F_{i j}(x)\right| \leq \sigma^{p}$ for any non-negative integer p, and (3) the Taylor series of $F_{i j}(x)$ converges to $F_{i j}(x)$, and then present, for any $\epsilon>0$, an approximation algorithm that evaluates $F_{\mathrm{MAX}}(x)$ (i.e., the repeated integral) with an error less than ϵ. It runs in polynomial time in n, when x, ϵ, σ and k can be regarded as constants.

This paper is organized as follows: After giving basic definitions and formulas in Section 2, we derive the repeated integral form of $F_{\mathrm{MAX}}(x)$ in Section 3. Section 4 is devoted to the first case in which an exact formula is derived assuming the standard exponential distribution, and Section 5 proposes an approximation algorithm for the second case. Section 6 concludes this paper.

2 Preliminaries

Let $G=(V, E)$ be a directed acyclic graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and directed edge set $E \subseteq V \times V$ of m edges. We assume that each edge $\left(v_{i}, v_{j}\right) \in E$ is associated with its length $X_{i j}$ that is a random variable. A source (resp. terminal) of G is a vertex in V such that its in-degree (resp. out-degree) is 0 . We define the (directed) incidence graph of $G=(V, E)$ as a directed graph G^{\prime} with vertex set $V^{\prime}=V \cup E$ and edge set $E^{\prime}=\left\{\left(v_{i}, e\right),\left(e, v_{j}\right) \mid e=\left(v_{i}, v_{j}\right) \in E\right\} \subseteq(V \times E) \cup(E \times V)$. We denote the incidence graph of G by $L(G)$. A subset A of V is called an antichain of G if each $v_{a} \in A$ is not reachable from any other vertex $v_{b} \in A$. If $\left(v_{i}, v_{j}\right) \in E$, two vertices v_{i} and v_{j} are neighbors to each other, v_{i} is a parent of v_{j}, and v_{j} is a child of v_{j}. By $N(W)$ we denote the set of all neighbors of vertices in W. Let \mathcal{P} be the set of all source-terminal paths. The longest path length $X_{\text {MAX }}$ of G is given as $X_{\text {MAX }}=\max _{\pi \in \mathcal{P}}\left\{\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j}\right\}$.

Let X be a random variable. The probability $P(X \leq x)$ is called the (cumulative) distribution function of X. The density function of X is the derivative of $P(X \leq x)$ with respect to x. We say X obeys the standard exponential distribution if the distribution function $P(X \leq x)$ is given by $P(X \leq$ $x)=1-\exp (-x)$ if $x \geq 0$ and $P(X \leq x)=0$ if $x<0$.

Let X_{1} and X_{2} be two mutually independent random variables. Let $f_{1}(x)$ and $f_{2}(x)$ be the density functions of X_{1} and X_{2}, respectively. The sum $X_{1}+X_{2}$ is also a random variable whose distribution function is given as

$$
\begin{equation*}
P\left(X_{1}+X_{2} \leq x\right)=\int_{\mathbf{R}} P\left(X_{1}+t \leq x \mid X_{2}=t\right) f_{2}(t) d t=\int_{\mathbf{R}} F_{1}(x-t) f_{2}(t) d t, \tag{1}
\end{equation*}
$$

where $F_{1}(x)$ and $F_{2}(x)$ are the distribution functions of X_{1} and X_{2}, respectively. The distribution function of $\max \left\{X_{1}, X_{2}\right\}$ is given as $P\left(\max \left\{X_{1}, X_{2}\right\} \leq x\right)=P\left(X_{1} \leq x \wedge X_{2} \leq x\right)=F_{1}(x) F_{2}(x)$.

3 Repeated Integral Representation of $\boldsymbol{F}_{\mathrm{MAX}}(x)$

In this section, we show that the distribution function $F_{\text {MAX }}(x)$ of the longest path length is represented by a repeated integral that involves $n-1$ integrals. By definition,

$$
\begin{equation*}
F_{\mathrm{MAX}}(x)=P\left(X_{\mathrm{MAX}} \leq x\right)=P\left(\bigwedge_{\pi \in \mathcal{P}}\left(\sum_{e \in \pi} X_{e} \leq x\right)\right) \tag{2}
\end{equation*}
$$

Although this formula is compact, this fact does not directly implies an efficient computability, since it would take into account all source-terminal paths in G, which can be as many as $\Omega\left(2^{n}\right)$. Next theorem shows that $F_{\text {MAX }}(x)$ is represented by a repeated integral that involves $n-1$ integrals. Thus $F_{\text {MAX }}(x)$ can be computed by executing only $n-1$ integrals, which may be dramatically more efficient than the calculation of Eq. (2). Let $H(x)$ be a function that satisfies $H(x)=1$ if $x \geq 0$ and $H(x)=0$ if $x<0$. Let $1(x)$ be a constant function that maps every x to 1 . Note that if $P(X \leq x)=H(x)$ (resp. $P(X \leq x)=1(x))$ for any x, X is always equal to 0 (resp. $-\infty$).
Theorem 1. Let $G=(V, E)$ is a DAG. Without loss of generality, we assume that $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is topologically ordered. For any edge $\left(v_{i}, v_{j}\right) \in E$, let $F_{i j}(x)$ be the distribution function that $X_{i j}$ obeys. We associate a function $F_{i j}(x)$ with each edge $\left(v_{i}, v_{j}\right) \notin E$ as follows: If (v_{i}, v_{j}) connects two sources or two terminals, then $F_{i j}(x)=H(x)$; otherwise, $F_{i j}(x)=1(x)$. Then the distribution function $F_{\mathrm{MAX}}(x)$ is given as

$$
\begin{equation*}
P\left(X_{\mathrm{MAX}} \leq x\right)=\int_{\mathbf{R}^{n-1}} H\left(x-z_{1}\right) \prod_{1 \leq i \leq n-1}\left(\frac{d}{d z_{i}} \prod_{i+1 \leq j \leq n} F_{i j}\left(z_{i}-z_{j}\right)\right) d z_{i} \tag{3}
\end{equation*}
$$

Proof. Given a DAG $G=(V, E)$, we first add edges as many as possible in such a way that the added edges do not change the topological order. This yields a complete graph with acyclic orientations, which is denoted by $\vec{K}_{n}=\left(V, E_{K}\right)$, where $E_{K}=\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i<j \leq n\right\}$. Notice that \vec{K}_{n} has a unique source v_{0} and a unique terminal v_{n}. For each of the edge $\left(v_{i}, v_{j}\right) \in E_{K}$, we associate a random variable $X_{i j}$ that represents the length of $\left(v_{i}, v_{j}\right)$, and assume that $X_{i j}$ obeys $F_{i j}(x)$. We observe that $F_{\text {MAX }}(x)$ is exactly the same for G and \vec{K}_{n}. Note that any path in G is also a path in \vec{K}_{n}. Consider any path π in \vec{K}_{n} connecting a source v_{S} (of G) and a terminal v_{T} (of G) that does not exist in G. If π contains an edge $\left(v_{i}, v_{j}\right) \notin E$ such that $F_{i j}(x)=1(x)$, then $\sum_{e \in \pi} X_{e} \leq x$ holds for all x (see the note above for intuition), which implies that such π is ignorable in Eq. (2). Suppose that π does not contain an edge $\left(v_{i}, v_{j}\right) \notin E$ such that $F_{i j}(x)=1(x)$. Let π^{\prime} is the path constructed from π by removing all edges connecting two sources or two terminals. Then π^{\prime} is a path connecting a source and a terminal in G, and $\sum_{e \in \pi} X_{e} \leq x$ iff $\sum_{e \in \pi^{\prime}} X_{e} \leq x$ (see the note above for intuition). ${ }^{1}$ Thus $F_{\text {MAX }}(x)$ is exactly the same for G and \vec{K}_{n}. In what follows, we assume $G=\vec{K}_{n}$.

Define several notations: $\mathcal{P}(i, j)$ is the set of all paths from v_{i} to $v_{j}, \mathcal{P}_{k}(i, j)$ is the set of all $v_{i}-v_{j}$ paths that do not pass a vertex in $U_{k}=\left\{v_{k}, v_{k+1}, \ldots, v_{n-1}\right\}$, and $Z_{n-1}=X_{n-1, n}$ is the longest path length from v_{n-1} to the unique terminal v_{n} of \vec{K}_{n}. We would like to use Z_{n-1} rather than $X_{n-1, n}$ in order to illustrate the transformations that should follow (5), but is not explicitly explained here for the limitation of the space. Since $Z_{n-1}=X_{n-1, n}$ and $X_{i j}$'s are mutually independent, we have

$$
\begin{equation*}
P\left(X_{\mathrm{MAX}} \leq x\right)=P\left(\bigwedge_{\pi \in \mathcal{P}_{n-1}(1, n)}\left(\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j} \leq x\right) \wedge \bigwedge_{\pi \in \mathcal{P}(1, n-1)}\left(\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j}+Z_{n-1} \leq x\right)\right) \tag{4}
\end{equation*}
$$

[^0]Let $G_{n-1}(x)=F_{n-1, n}(x)$ and $g_{n-1}(x)$ be the distribution function of Z_{n-1} and its density function, respectively. Since $d G_{n-1}\left(z_{n-1}\right)=g_{n-1}\left(z_{n-1}\right) d z_{n-1}$, like the derivation of Eq.(1), by introducing an integral, the right-hand side of Eq. (4) is represented as

$$
\begin{equation*}
\int_{\mathbf{R}} P(\underbrace{\bigwedge_{\pi \in \mathcal{P}_{n-1}(1, n)}\left(\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j} \leq x\right)}_{(A)} \wedge \underbrace{\bigwedge_{(B)}\left(\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j}+z_{n-1} \leq x\right)}_{\pi \in \mathcal{P}(1, n-1)}) d G_{n-1}\left(z_{n-1}\right) \tag{5}
\end{equation*}
$$

We then calculate the contribution of each edge by repeating the transformation of representing (and replacing) the contribution by an integral. For $Z_{k}=\max _{k+1 \leq l \leq n}\left\{X_{k l}+z_{l}\right\}$, we divide the paths from v_{1} to v_{n} into two groups according to whether or not they pass v_{k}. We then introduce one more integral to aggregate the probability that Z_{k} takes a constant value z_{k}. We can consider z_{k} as the dummy variable of a convolution. Note that $z_{n}=0$ by definition. ${ }^{2}$ Now for each of $Z_{n-1}, Z_{n-2}, \ldots, Z_{2}$, an integral has been introduced with respect to z_{i}, and (4) is transformed into

$$
\begin{equation*}
\int_{\mathbf{R}^{n-2}} P\left(\bigwedge_{2 \leq l \leq n} \bigwedge_{\pi \in \mathcal{P}_{2}(1, l)}\left(\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j}+z_{l} \leq x\right) \wedge \bigwedge_{\pi \in \mathcal{P}(1,2)}\left(\sum_{\left(v_{i}, v_{j}\right) \in \pi} X_{i j}+z_{2} \leq x\right)\right)_{1 \leq i \leq n-1} G_{i}\left(z_{i}, \ldots, z_{n-1}\right) d z_{i} \tag{6}
\end{equation*}
$$

where $G_{i}\left(z_{i}, \ldots, z_{n-1}\right)=\frac{d}{d z_{i}} \prod_{i+1 \leq j \leq n} P\left(X_{i j}+z_{j} \leq z_{i}\right)=\frac{d}{d z_{i}} \prod_{i+1 \leq j \leq n} F_{i j}\left(z_{i}-z_{j}\right)$.
By definition, $\mathcal{P}(1,2)=\left\{\left(v_{1}, v_{2}\right)\right\}$ and $\mathcal{P}_{2}(1, l)=\left\{\left(v_{1}, v_{l}\right)\right\}$. Hence (6) is equal to

$$
\begin{equation*}
\int_{\mathbf{R}^{n-2}} \prod_{2 \leq l \leq n} F_{1 l}\left(x-z_{l}\right) \prod_{2 \leq i \leq n-1}\left(\frac{d}{d z_{i}} \prod_{i+1 \leq j \leq n} F_{i j}\left(z_{i}-z_{j}\right)\right) d z_{i} \tag{7}
\end{equation*}
$$

which implies the theorem by $\int_{\mathbf{R}} H\left(x-z_{1}\right) \frac{d}{d z_{1}} G_{1}\left(z_{1}, z_{2}, \ldots, z_{n-1}\right) d z_{1}=G_{1}\left(x, z_{2}, \ldots, z_{n-1}\right)$ where $G_{1}\left(z_{1}, \ldots, z_{n-1}\right)=\prod_{2 \leq l \leq n} F_{1 l}\left(z_{1}-z_{l}\right)$.

It is worth noting that Theorem 1 is applicable, even if the length $c_{i j}$ of each edge (v_{i}, v_{j}) is a constant value. In this case, the step function $H\left(x-c_{i j}\right)$ is given as the distribution function that $X_{i j}$ obeys. Let d_{i} be the (definite) longest path length from v_{i} to v_{n}. Then the step function $F_{\text {MAX }}(x)=H\left(x-d_{1}\right)$ is obtained by Theorem 1.

In the following, we call dummy variable z_{i} the corresponding variable of v_{i}. Let $Q_{1}\left(z_{1}, z_{2}, \ldots, z_{n-1} ; x\right)=$ $H\left(x-z_{1}\right)$ and

$$
Q_{l+1}\left(z_{l+1}, \ldots, z_{n-1} ; x\right)=\int_{\mathbf{R}} Q_{l}\left(z_{l}, z_{l+1}, \ldots, z_{n-1} ; x\right) G_{l}\left(z_{l}, z_{l+1}, \ldots, z_{n-1}\right) d z_{l}
$$

Theorem 1 states that we can calculate $Q_{n}(x)=F_{\text {MAX }}(x)$ by repeating integrals.

4 Exact Computation of the Repeated Integral

This section considers the case in which the edge lengths are given by mutually independent random variables that obey the standard exponential distribution function. We present an algorithm to compute each of $Q_{1}, Q_{2}, \ldots, Q_{n}$ symbolically in this order by expanding the integrand into a sum of products before calculating each integral. Let k be the cardinality of the maximum anti-chain of $L(G)$. By bounding the number of different terms that can appear during the symbolic calculation, we show that its running time is a polynomial in the size of G, if k is bounded by a constant.

[^1]Proposition 1. Let $W_{i}=\left\{v_{j} \mid 1 \leq j \leq i\right\}$. If $v_{l} \in W_{i} \backslash\left\{v_{i}\right\}$ or $\left(u, v_{l}\right) \notin E$ for any $u \in W_{i}$, then $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ does not depend on z_{l}.

Proof. Since z_{l} is a dummy variable of an integral if $l<i$, it is obvious that z_{l} never show up in $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ after the integrals are computed.

Suppose otherwise that $l>i$. Then $v_{l} \notin N\left(W_{i}\right) \backslash W_{i}$. By Theorem $1, G_{i}\left(z_{i}, \ldots, z_{n-1}\right)$ does not depend on z_{l}.

Let $m=|E|, n=|V|$ and V_{i} be the set of children of v_{i}.
Theorem 2. Let $G=(V, E)$ be a $D A G$ such that the cardinality of the maximum anti-chain of $L(G)$ is at most k. Assume that each random variable $X_{i j}$, which represents the length of edge (v_{i}, v_{j}), obeys the standard exponential distribution. Then the distributed function $F_{\mathrm{MAX}}(x)$ of the longest path length in G is computable in $O\left((k+1)!n^{k+2}(2 m+1)^{k+1}\right)$ time.

Proof. We first show how we calculate $Q_{i+1}\left(z_{i+1}, \ldots, z_{n-1} ; x\right)$ from $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ by symbolically executing the integral with respect to z_{i}. For example, $Q_{3}\left(z_{3}, \ldots, z_{n-1} ; x\right)$ is given by

$$
\begin{equation*}
Q_{3}\left(z_{3}, \ldots, z_{n-1} ; x\right)=\int_{\mathbf{R}} Q_{2}\left(z_{2}, \ldots, z_{n-1} ; x\right) G_{2}\left(z_{2}, \ldots, z_{n-1}\right) d z_{2} \tag{8}
\end{equation*}
$$

Since $H(x)=0$ for all $x<0, Q_{3}\left(z_{3}, \ldots, z_{n-1} ; x\right)=0$ if $x<0$. When $x \geq 0$, since $H(x)=1$,

$$
\begin{equation*}
\left.Q_{3}\left(z_{3}, \ldots, z_{n-1} ; x\right)=\int_{a}^{b} \prod_{v_{j} \in V_{1}}\left(1-\exp \left(-\left(x-z_{j}\right)\right)\right) \frac{d}{d z_{2}} \prod_{v_{l} \in V_{2}}\left(1-\exp \left(-\left(z_{2}-z_{l}\right)\right)\right)\right) d z_{2} \tag{9}
\end{equation*}
$$

where $a=\max _{v_{\ell} \in V_{2}} z_{\ell}$ and $b=x$, since otherwise the contribution to the integral becomes 0 because of the effect of H. Since each of z_{l} 's can take the maximum, at most $\left|V_{2}\right|$ different formulas appear, corresponding to different $a=z_{l}$, as possible results of $Q_{3}\left(z_{3}, \ldots, z_{n-1} ; x\right)$. Once a is fixed to a z_{l}, executing symbolic integration of the right-hand side of Eq. (9) is easy, since possible terms appearing in the integrand have a form of $c_{1} \exp \left(-c_{2} z_{2}\right)$ for some constant c_{1} and c_{2}. In general, we can derive $Q_{i+1}\left(z_{i+1}, \ldots, z_{n-1} ; x\right)$ from $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ in the same way.

To estimate the time complexity of the algorithm, let us estimate the number of terms that are possible to appear in the execution. By Proposition 1, the number of variables appeared in $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ is at most $k+1$ for any i. As explained, to obtain $Q_{3}\left(z_{3}, \ldots, z_{n-1} ; x\right)$, we need to consider at most $k+1$ different cases corresponding to different $a=z_{l}$. It is easy to see that to obtain $Q_{4}\left(z_{4}, \ldots, z_{n-1} ; x\right)$, for each of the cases for Q_{3}, we need to consider at most k different cases. Although this leads to that there may be $O\left(k^{i}\right)$ cases for Q_{i} in general, the number of variables on which Q_{i} depends is at most $k+1$ by Proposition 1, which implies that, in general in Q_{i}, there can be no more than ($k+1$)! distinct cases. To complete the proof, we show that at most $n^{k+1}(2 m+1)^{k+1}$ terms are possible to appear, for each of at most $(k+1)$! cases.

Let us consider the number of the terms in the integrand in each case. Since it is easy to see that each term is a product of $x^{\alpha_{0}}, z_{j}^{\alpha_{j}}, \exp \left(\beta_{0} x\right)$ and $\exp \left(\beta_{j} z_{j}\right)$, where α_{j} 's and β_{j} 's are integers, we bound the number of terms by the number of possible terms. By the form of Theorem 1 , we can see that the maximum degrees of z_{j} 's and x that appear in the terms in $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right) G_{i}\left(z_{i}, \ldots, z_{n-1}\right)$ of each case can only increase by one in one integral and hence α_{j} 's are non-negative integer and less than n. Similarly, we can also see that the degrees β_{j} 's of $\exp \left(z_{j}\right)$'s and $\exp (x)$ can only increase or decrease by one in a multiplication of two distribution functions and hence β_{j} 's are integers between $-m$ and m. Therefore, the integrand in each cases consists of at most $n^{k+1}(2 m+1)^{k+1}$ terms, which amounts to that the calculation of each $Q_{i+1}\left(z_{i+1}, \ldots, z_{n-1} ; x\right)$ from $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ takes $O\left((k+1)!n^{k+1}(2 m+1)^{k+1}\right)$ time.

Corollary 1. A closed form of $F_{\mathrm{MAX}}(x)$ consisting of primitive functions is obtained in polynomial time if k is bounded by a constant, provided that the edge lengths obey the standard exponential distribution.

5 Approximation of the Repeated Integral

In this section, we assume that the cardinality of the incidence graph $L(G)$ of a given DAG G is bounded by a constant k. We show that the distribution function $F_{\text {MAX }}(x)$ of the longest path lengths can be approximately calculated in polynomial time in n, if the length of each edge $\left(v_{i}, v_{j}\right) \in E$ is nonnegative and the Taylor series of its distribution function $F_{i j}(x)$ converges to $F_{i j}(x)$. Here by Taylor polynomial of $f\left(z_{1}, \ldots, z_{n} ; x\right)$, we mean the Taylor polynomial that is generated by $f\left(z_{1}, \ldots, z_{n} ; x\right)$ at $x=z_{1}=z_{2}=\cdots=z_{n}=0$.

We must be careful for the order of computing the Taylor polynomial of the repeated integral that is shown in Theorem 1. Let p be the order of the Taylor polynomial. The most intuitive idea is that we compute the Taylor polynomial of the whole integrand

$$
\begin{equation*}
H\left(x-z_{1}\right) \prod_{1 \leq i \leq n-1} \frac{d}{d z_{i}} \prod_{i+1 \leq j \leq n} F_{i j}\left(z_{i}-z_{j}\right) \tag{10}
\end{equation*}
$$

treating it as a function of n variables (i.e., $x, z_{1}, z_{2}, \ldots, z_{n-1}$). However, this intuitive way of computing the Taylor polynomial is not efficient for obtaining the value of $F_{\text {MAX }}(x)$ with an error less than ϵ; the running time may be more than exponential with respect to the size of G even if k is a constant. Let us describe the p-th derivatives of (10) as a sum of products of $F_{i j}\left(z_{i}-z_{j}\right)$ or its derivatives of some order. Since one differentiating operation of (10) or its derivatives creates $2 k$ times as many terms as in the original if we do not replace the distribution functions $F_{i j}(x)$ by particular definition of the edge lengths' distribution functions, there may be $O\left((2 k)^{p}\right)$ terms in the p-th derivative of (10). Then, it can be shown that the order p of the Taylor polynomial needs to be almost linear to the size of the given DAG G to keep the error less than a constant ϵ even if k is a constant, which implies that the running time may be more than exponential of m and n.

In order to lower the running time, we approximate $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ by $A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ that is computed by the following procedures: (1) $A_{2}^{p}\left(z_{2}, \ldots, z_{n-1} ; x\right)$ is the Taylor polynomial of order p generated by $Q_{2}\left(z_{2}, \ldots, z_{n-1} ; x\right)=\prod_{v_{j} \in V_{1}} F_{1 j}\left(x-z_{j}\right)$, and (2) $A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ is the Taylor polynomial of order p generated by

$$
\begin{equation*}
\int_{\mathbf{R}} A_{i-1}^{p}\left(z_{i-1}, \ldots, z_{n-1} ; x\right) G_{i-1}\left(z_{i-1}, \ldots, z_{n-1}\right) d z_{i-1} \tag{11}
\end{equation*}
$$

This integral can be calculated using integration by parts, which yields a sum of products of polynomials and some anti-derivatives of $G_{i-1}\left(z_{i-1}, \ldots, z_{n-1}\right)=\prod_{i \leq j \leq n} F_{i-1, j}\left(z_{i-1}-z_{j}\right)$. The procedure (2) can be repeated for $i=3,4, \ldots, n$.

Since all edge lengths are non-negative by assumption, the anti-derivative of $G_{i-1}\left(z_{i-1}, \ldots, z_{n-1}\right)$ of positive order is equal to 0 at the origin $x=z_{i}=z_{i+1}=\cdots=z_{n-1}=0$, which allows us to compute $A_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ as the Taylor polynomial of order p without knowing the analytic form of the anti-derivatives $G_{i-1}\left(z_{i-1}, \ldots, z_{n}\right)$.

In the next theorem, we show that the time to compute $A_{n}^{p}(x)$ where p is large enough to keep the error less than ϵ is polynomial of the size of G, assuming that x, ϵ and the maximum size k of an antichain in $L(G)$ is a constant. We also assume the existence of a constant σ, that satisfies $\sigma^{p} \geq\left|\left(\frac{d}{d x}\right)^{p} F_{i j}(x)\right|$
for any non-negative integer p and any edge $\left(v_{i}, v_{j}\right) \in E$ for any non-negative integer p and any edge $\left(v_{i}, v_{j}\right) \in E$.

Notice that σ must be bounded by a constant for the assumption that x is bounded by a constant. If there is an algorithm A that gives the value of $F_{\text {MAX }}(x)$ in the same time regardless of σ, we can consider "compressed edge length" $X_{e}^{\prime}=X_{e} / s$, where X_{e} is the length of e and $s \geq 1$. Then we can define the "compressed" distribution functions $F_{\text {MAX }}^{\prime}(x)=P\left(\wedge_{\pi \in \mathcal{P}}\left(\sum_{e \in \pi} X_{e}^{\prime} \leq x\right)\right)$ of the longest path length. Since $F_{\mathrm{MAX}}^{\prime}(x)=F_{\mathrm{MAX}}(s x)$, the value of $F_{\mathrm{MAX}}(s x)$ can be obtained for any s in the same running time, which can be used for obtaining the value of $F_{\mathrm{MAX}}(x)$ for arbitrary x. Therefore, it is essential to bound σ by a constant as well as x.

Theorem 3. Let $G=(V, E)$ be a DAG and assume that the cardinality of the anti-chain of its incidence graph $L(G)$ is at most k. Let $F_{i j}(x)$ be the distribution function of the length of an edge $\left(v_{i}, v_{j}\right)$ that
is defined in Theorem 2. Let σ be a value such that $\sigma^{p} \geq\left|\left(\frac{d}{d x}\right)^{p}\left(F_{i j}(x)\right)\right|$ for any non-negative integer p and any edge $(i, j) \in E$. We further assume that the Taylor series of $F_{i j}(x)$ converges to $F_{i j}(x)$ itself and that the time complexity of computing the p-th derivative of $F_{i j}(x)$ is $O(\exp (p))$. Then $A_{n}^{p}(x)$ such that $\left|A_{n}^{p}(x)-F_{\mathrm{MAX}}(x)\right| \leq \epsilon$ holds is calculated in time $O\left((k+1)!(p+1)^{k} k^{p+1} \exp (p)\right)$, where $p=O\left(k^{2} x \sigma+\ln n+\ln 1 / \epsilon\right)$.
Proof. By the similar argument in the previous section, it can be shown that the time to compute $A_{n}^{p}(x)$ is $O\left((k+1)!n(p+1)^{k} k^{p+1} \exp (p)\right)$. We have $O((k+1)!)$ cases for computing integral of $A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right)$. In each cases, the integrand is the sum of products $C(\alpha) \prod_{v_{j} \in V_{i}} y_{j}^{\alpha_{j}}$ over all possible $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, where y_{j} is the corresponding variable of the j-th vertex in $N\left(W_{i}\right) \backslash W_{i}$ (i.e., y_{j} is equal to one of z_{h} where $\left.v_{h} \in N\left(W_{i}\right) \backslash W_{i}\right)$, where $W_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$. Since α_{j} is a non-negative integer at most p, the number of the terms in each case of integral is at most $(p+1)^{k}$. Since differentiating a term in the resulting form of (11) p times with respect to one of $z_{i+1}, \ldots, z_{n-1}, x$ creates at most k^{p} terms that consist of at most k dummy variables as the factors each, the total running time of computing $A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ as the Taylor polynomial is at most $O\left((k+1)!(p+1)^{k} k^{p+1}\right)$. Since, by assumption, the time complexity of computing p-th derivative of $F_{i j}(x)$ is $O(\exp (p))$, the running time of computing $A_{n}^{p}(x)$ is $O\left((k+1)!n(p+1)^{k} k^{p+1} \exp (p)\right)$.

Now we concentrate on proving that $p=O\left(k^{2} x \sigma+\ln n+\ln 1 / \epsilon\right)$ is sufficient for satisfying $\mid A_{n}^{p}(x)-$ $F_{\mathrm{MAX}}(x) \mid \leq \epsilon$. For each edge $\left(v_{i}, v_{j}\right)$, we consider a random variable $X_{i j}^{\prime}=X_{i j} /(k \sigma)$. Let $F_{\text {MAX }}^{\prime}(x)$ be the distribution function of the longest path length which is defined for the case where edge lengths are given as $X_{i j}^{\prime}$ instead of $X_{i j}$. Since $F_{\text {MAX }}(x)=F_{\text {MAX }}^{\prime}(k \sigma x)$, we consider the normalized edge length $X_{i j}^{\prime}$ and the normalized distribution function $F_{\text {MAX }}^{\prime}(x)$ instead of $X_{i j}$ and $F_{\text {MAX }}(x)$ in the following. For the simplicity, we give the proof for the case $\sigma=1 / k$. The proof for the general σ can be given by replacing x in the following by $k x \sigma$.

Let ϵ_{i} be the difference between $A_{i}^{p}\left(z_{i}, \ldots, z_{n} ; x\right)$ and $Q_{i}\left(z_{i}, \ldots, z_{n-1} ; x\right)$. We first bound the error that is created when the Taylor polynomial of $Q_{2}\left(z_{2}, \ldots, z_{n-1} ; x\right)$ is computed. By generalizing the evaluation of the Taylor polynomials in [13], it is easy to show that $\left|\epsilon_{2}\right| \leq \frac{M\left(\sum_{v_{j} \in V_{2}} z_{j}\right)^{p+1}}{(p+1)!}$ where M is an upper bound on the $(p+1)$-th derivatives of $Q_{2}\left(z_{2}, \ldots, z_{n-1} ; x\right)=\prod_{2 \leq j \leq n} F_{1 j}\left(x-z_{j}\right)$ at the origin where $z_{2}=z_{3}=\cdots=z_{n-1}=x=0$. By the above normalization, it is easy to show that M is less than 1 . Since the dummy variables z_{1}, \ldots, z_{n-1} of integrals are non-negative and less than x, by Proposition 1, we have

$$
\begin{equation*}
\left|\epsilon_{2}\right| \leq \frac{(x k)^{p+1}}{(p+1)!} \tag{12}
\end{equation*}
$$

Let us bound the error that is created when $A_{i+1}^{p}\left(z_{i+1}, \ldots, z_{n-1} ; x\right)$ is computed as the Taylor polynomial of the convolution of $A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right)$ and $\prod_{i+1 \leq j \leq n-1} F_{i j}\left(z_{i}-z_{j}\right)$ with respect to z_{i}. By definition, we have

$$
\begin{equation*}
\epsilon_{i+1}=A_{i+1}^{p}\left(z_{i+1}, \ldots, z_{n-1} ; x\right)-\int_{\mathrm{R}}\left(A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right)+\epsilon_{i}\right) G_{i}\left(z_{i}, \ldots, z_{n-1}\right) d z_{i} \tag{13}
\end{equation*}
$$

Since $A_{i+1}^{p}\left(z_{i+1}, \ldots, z_{n-1} ; x\right)$ is the Taylor polynomial of $\int_{\mathrm{R}} A_{i}^{p}\left(z_{i}, \ldots, z_{n-1} ; x\right) G_{i}\left(z_{i}, \ldots, z_{n-1}\right) d z_{i}$, we have

$$
\begin{equation*}
\left|\epsilon_{i+1}\right| \leq \frac{(k x)^{p+1}}{(p+1)!}+\int_{\mathbf{R}}\left|\epsilon_{i}\right| \frac{d}{d z_{i}} \prod_{i+1 \leq j \leq n-1} F_{i j}\left(z_{i}-z_{j}\right) d z_{i}=\frac{(k x)^{p+1}}{(p+1)!}+\left|\epsilon_{i}\right| \tag{14}
\end{equation*}
$$

This leads to $\left|\epsilon_{n}\right| \leq(n-1) \frac{(k x)^{p+1}}{(p+1)!}$ by (12) and (14) for $i=2,3, \ldots, n$.
If $k x \leq 1$, the error ϵ_{n} converges to 0 very quickly. If $k x>1, p=O(\ln (n-1)+k x+\ln 1 / \epsilon)$ is sufficient to have $\left|\epsilon_{n}\right|=\left|A_{n}^{p}(x)-Q_{n}(x)\right|$ less than ϵ.

We immediately obtain the following corollary.
Corollary 2. If x, ϵ, k and σ are constants, the proposed algorithm computes the value of $F_{\mathrm{MAX}}(x)$ within error ϵ in a polynomial time of the size of G.

6 Conclusion

In this paper, we have investigated the longest path problem for DAGs G, where the edge lengths are given as mutually independent random variables. We have shown that the distribution function $F_{\operatorname{MAX}}(x)$ of the longest path length is given as a form of repeated integral that involves $n-1$ integrals, where n is the order of G. We can thus approximately evaluate $F_{\text {MAX }}(x)$ for any fixed x by applying numerical methods to the form, at the expense of accuracy and time.

We however suggest that an important application of the repeated integral is in symbolic computation of $F_{\text {MAX }}(x)$. Because only $n-1$ integrals are involved with, it may give us a chance to symbolically compute it in polynomial in n, although there are $\Omega\left(2^{n}\right)$ paths in G. In fact, we have shown that a representation of $F_{\text {MAX }}(x)$ by a combination of primitive functions is obtained in $O\left((k+1)!n^{k+2}(2 m+\right.$ $1)^{k+1}$) time, provided that the edge lengths obey the standard exponential distribution, where k is the maximum anti-chain cardinality of the incidence graph $L(G)$. Recall that the problem is NP-hard even for series-parallel graphs when the edge lengths obey discrete distributions. A natural open question is thus to find another class of distribution functions for which there is a polynomial algorithm to symbolically execute the repeated form.

Since naive numerical methods to approximate the repeated integral need sufficiently long time and do not have performance guarantees, by making use of the Taylor polynomials, we have proposed an approximation algorithm to compute $F_{\mathrm{MAX}}(x)$ with error smaller than ϵ for any given x and ϵ, assuming that the distributions that the edge lengths obey satisfy the following three natural conditions; 1) $F_{e}(x)=0$ for $\left.x \leq 0,2\right)$ the Taylor series of $F_{e}(x)$ converges to $F_{e}(x)$ itself, and 3) for any non-negative integer p, there is a constant σ satisfying $\sigma^{p} \geq\left|\left(\frac{d}{d x}\right)^{p} F_{e}(x)\right|$. It takes a polynomial time in n, when each of k, x, ϵ and σ can be regarded as constants.

References

1. E. Ando, T. Nakata, M. Yamashita, Approximating the longest path length of a stochastic DAG by a normal distribution in linear time, Journal of Discrete Algorithms (2009), doi:10.1016/j.jda.2009.01.001
2. E. Ando, H. Ono, K. Sadakane, M. Yamashita, A Generic Algorithm for Approximately Solving Stochastic Graph Optimization Problems, submitted for publication.
3. E. Ando, M. Yamashita, T. Nakata, Y. Matsunaga, The Statistical Longest Path Problem and Its Application to Delay Analysis of Logical Circuits, proc.TAU, 2002, pp. 134-139.
4. M. O. Ball, C. J. Colbourn, and J. S. Proban, Network Reliability, Handbooks in Operations Research and Management Science, Vol 7: Network Models, M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser (eds.), Elsevier Science B. V. (1995) 673-762.
5. M. Berkelaar, Statistical delay calculation, a linear time method. Proceedings of the International Workshop on Timing Analysis (TAU'97), 1997, pp. 15-24,
6. C. E. Clark, The PERT model for the distribution of an activity time, Operations Research 10 (1962) 405-406.
7. M. Hashimoto and H. Onodera, A performance optimization method by gate sizing using statistical static timing analysis. IEICE Trans. Fundamentals, E83-A, 12, 2000, pp. 2558-2568.
8. J. N. Hagstrom, Computational Complexity of PERT Problems, NETWORKS, Vol. 18, 1988, pp. 139-147.
9. J. E. Kelley, Jr., Critical-path planning and scheduling: Mathematical basis, Operations Research 10 (1962) 912-915.
10. V. G. Kulkarni and V. G. Adlakha, Markov and Markov-Regenerative PERT Networks, Operations Research, Vol. 34, 1986, pp. 769-781.
11. J. J. Martin, Distribution of the time through a directed, acyclic network, Operations Research Vol. 13, 1965, pp. 46-66.
12. E. Nikolova, Stochastic Shortest Paths Via Quasi-convex Maximization, Proceedings of 14 th Annual European Symposium on Algorithms (ESA2006), LNCS 4168, 2006, pp.552-563.
13. G. B. Thomas,Jr., Thomas' Calculus International Edition, Pearson Education, 2005, pp.965-1066.

[^0]: ${ }^{1}$ Several different paths $\pi_{1}, \pi_{2}, \cdots, \pi_{\ell}$ may correspond to a single π^{\prime}. Even in such a case, the AND of conditions $\sum_{e \in \pi_{i}} X_{e} \leq x$ for $i=1,2, \cdots, \ell$ is reduced to condition $\sum_{e \in \pi^{\prime}} X_{e} \leq x$.

[^1]: ${ }^{2}$ Notice that we define Z_{k} after $z_{k+1}, z_{k+2}, \ldots, z_{n-1}$; if we define Y_{i} as the length of the longest path from v_{k} to v_{n} at a time, then Y_{i} 's are dependent on each other, which implies that the above proof cannot be applied to $Y_{i}^{\prime} \mathrm{s}$.

