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連続確率分布枝重み付き DAG に対する最長路長さ分布の計算
Computing the Distribution Function of the Stochastic Longest

Path Length in a DAG with Continuously Distributed Edge
Lengths

Ei Ando\dagger Hirotaka Ono\dagger \ddagger
Kunihiko Sadakane\dagger Masafumi Yamashita\dagger \ddagger

\dagger Department of Computer Science and Communication Engineering,
Graduate School of Information Science and Electrical Engineering,

Kyushu University.
\ddagger Institute of Systems, Information Technologies and Nanotechnologies.

Abstract. Consider the longest path problem for directed acyclic graphs (DAGs), where a mu-
tually independent random variable is associated with each of the edges as its edge length. Given
a DAG $G$ and any distributions that the random variables obey, let $F_{MAX}(x)$ be the distribution
function of the longest path length. We first represent FMAX $(x)$ by a repeated integral that in-
volves $n-1$ integrals, where $n$ is the order of $G$ . We next present an algorithm to symbolically
execute the repeated integral, provided that the random variables obey the standard exponential
distribution. Although there can be $\Omega(2^{n})$ paths in $G$ , its running time is bounded by a polyno-
mial in $n$ , provided that $k$ , the cardinality of the maximum anti-chain of the incidence graph of
$G$ , is bounded by a constant. We finally propose an algorithm that takes $x$ and $\epsilon>0$ as inputs
and approximates the value of repeated integral of $x$ , assuming that the edge length distributions
satisfy some natural conditions. : (1) The length of each edge $(v\iota, v_{j})\in E$ is non-negative, (2) the
Taylor series of its distribution function $F_{ij}(x)$ converges to $F_{:j}(x)$ , and (3) there is a constant $\sigma$

that satisfies $\sigma^{p}\leq|(\frac{d}{dx})^{p}F_{ij}(x)|$ for any non-negative integer $p$ . It runs in polynomial time in $n$ ,
and its error is bounded by $\epsilon$ , when $x,$ $\epsilon,$

$\sigma$ and $k$ can be regarded as constants.

1 Introduction

Let $G=(V, E)$ be a directed acyclic graph (DAG), where $V$ and $E$ are the sets of of $n$ vertices and $m$

edges, respectively. Each edge $(v_{i}, v_{j})$ is associated with a random variable $X_{ij}$ representing its length.
Although the longest path problem for DAGs is solvable in linear time when edge lengths are constant
values, the same problem with stochastic edge lengths is iormidable. Actually, there are at least two
different problem formulations; to find a path that has the highest probability of being the longest [12],
or to compute the distribution function $F_{MAX}(x)$ of the longest path length [1-5, 7, 8, 10, 11]. In this
paper, we adopt thc second formulation.

The longest path problem in $G$ with uncertain edge lengths is known as the classic problems such as
Program Evaluation and Review Technique (PERT) [6] or Critical Path Planning (CPP) [9]. In these
problems, the lower and the upper bounds of the edge lengths (the activity duration) are given as
static values, and their goal is to obtain the lower and upper bounds on the longest path length in $G$ ,
the duration of the whole project. However, we assume, in this paper, that edge lengths are random
variables; we are not to determine the edge lengths but to cope with the resulting edge lengths that
realize with some probability.

Delay analysis of logical circuits is a killer application of this problem, and besides Monte Carlo
simulations, many heuristic approximation algorithms have been proposed so far (see e.g., [3, 5, 7]). They
run fast but their general drawback is that they do not have a theoretical approximation guarantee. To
theoretically guarantee an approximation ratio, some authors of this paper proposed an algorithm to
construct a primitive function that approximates $F_{MAX}(x)[1,2]$ .

Computing the exact distribution function has also a long research history. Martin [11] proposed a
series-parallel reduction based method, assuming that each edge length obeys a polynomial distribution.
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Kulkarni and Adlakha [10] proposed an algorithm that is based on the analysis of continuous time
Markov chain. Both algorithms unfortunately take an exponential time with respect to the graph size.
Indeed, when edge lengths obey discrete distributions, the problem is #P-complete [8], and is NP-hard
cvcn for the series-parallel graphs [4].

We first show that $F_{MAX}(x)$ is represented by a repeated integral that involves $n-1$ integrals, for
any instance of the problem. The problem of computing $F_{MAX}(x)$ for any $x$ is thus reducible to the
problem of evaluating the repeated integral for $x$ . The evaluation of the repeated integral is possible by
making use of standard numerical methods at the expense of accuracy and time.

In this paper, we pursuit the possibility of exact computation using the repeated integral. That
only $n-1$ integrals are involved might give us a chance to symbolically compute it in polynomial in $n$ ,
although there can be $\Omega(2^{n})$ paths in $G$ (and the above NP-hardness results essential suggest that any
algorithm would need to evaluate each of the $\Omega(2^{n})$ paths).

Assuming that the random variables obey the standard exponential distribution, we show that there
is an algorithm to transform the repeated integral into a product of primitive functions. It runs in
polynomial time in $n$ , provided that $k$ , the cardinality of the maximum anti-chain of the incidence
graph of $G$ , is bounded by a constant.

We (of course) cannot present a polynomial time algorithm that works for any distribution of edge
length. Naive numerical methods to approximate the repeated integral, on the other hand, need suffi-
ciently long computation time and do not guarantee approximation performance. We thus assume that
the distribution function $F_{ij}$ associated with any edge $(v_{i}, v_{j})$ satisfies the following three natural con-
ditions: (1) The length of each edge is positive $($ i.e., $F_{ij}(x)=0$ for $x\leq 0),$ (2) there is a constant $\sigma$ that
satisfies $|( \frac{d}{dx})^{p}F_{ij}(x)$ I $\leq\sigma^{p}$ for any non-negative integer $p$ , and (3) the Taylor series of $F_{ij}(x)$ converges
to $F_{ij}(x)$ , and then present, for any $\epsilon>0$ , an approximation algorithm that evaluates $F_{MAX}(x)$ (i.e.,
the repeated integral) with an error less than $\epsilon$ . It runs in polynomial time in $n$ , when $x,$ $\epsilon,$ $\sigma$ and $k$ can
be regarded as constants.

This paper is organized as follows: After giving basic definitions and formulas in Section 2, we derive
the repeated integral form of $F_{MAX}(x)$ in Section 3. Section 4 is devoted to the first case in which an
exact formula is derived assuming the standard exponential distribution, and Section 5 proposes an
approximation algorithm for the second case. Section 6 concludes this paper.

2 Preliminaries

Let $G=(V, E)$ be a directed acyclic graph with vertex set $V=\{v_{1}, v_{2}, \ldots , v_{n}\}$ and directed edge set
$E\subseteq V\cross V$ of $m$ edges. We assume that each edge $(v_{i}, v_{j})\in E$ is associated with its length $X_{ij}$ that
is a random variable. A source (resp. terminal) of $G$ is a vertex in $V$ such that its in-degree (resp.
out-degree) is $0$ . We define the (directed) incidence graph of $G=(V, E)$ as a directed graph $G’$ with
vertex set $V’=V\cup E$ and edge set $E’=\{(v_{i}, e), (e, v_{j})|e=(v_{i}, v_{j})\in E\}\subseteq(V\cross E)\cup(E\cross V)$ . We
denote the incidence graph of $G$ by $L(G)$ . A subset $A$ of $V$ is called an antichain of $G$ if each $v_{a}\in A$ is
not reachable from any other vertex $v_{b}\in A$ . If $(v_{i}, v_{j})\in E$ , two vertices $v_{i}$ and $v_{j}$ are neighbors to each
other, $v_{i}$ is a parent of $v_{j}$ , and $v_{j}$ is a child of $v_{j}$ . By $N(W)$ we denote the set of all neighbors of vertices
in $W$ . Let $\mathcal{P}$ be the set of all source-terminal paths. The longest path length $X_{MAX}$ of $G$ is given as
$X_{MAX}= \max_{\pi\in \mathcal{P}}\{\sum_{(v_{i},v_{j})\in\pi}X_{ij}\}$ .

Let $X$ be a random variable. The probability $P(X\leq x)$ is called the (cumulative) distribution
function of $X$ . The density function of $X$ is the derivative of $P(X\leq x)$ with respect to $x$ . We say $X$

obeys the standard exponential distribution if the distribution function $P(X\leq x)$ is given by $P(X\leq$

$x)=1-\exp(-x)$ if $x\geq 0$ and $P(X\leq x)=0$ if $x<0$ .
Let $X_{1}$ and $X_{2}$ be two mutually independent random variables. Let $f_{1}(x)$ and $f_{2}(x)$ be the density

functions of $X_{1}$ and $X_{2}$ , respectively. The sum $X_{1}+X_{2}$ is also a random variable whose distribution
function is given as

$P(X_{1}+X_{2} \leq x)=\int_{R}P(X_{1}+t\leq x|X_{2}=t)f_{2}(t)dt=\int_{R}F_{1}(x-t)f_{2}(t)dt$ , (1)
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wherc $F_{1}(x)$ and $F_{2}(x)$ are the distribution functions of $X_{1}$ and $X_{2}$ , respectively. The distribution
function of $\max\{X_{1}, X_{2}\}$ is given as $P( \max\{X_{1}, X_{2}\}\leq x)=P(X_{1}\leq x\wedge X_{2}\leq x)=F_{1}(x)F_{2}(x)$.

3 Repeated Integral Representation of $F_{MAX}(x)$

In this section, we show that the distribution function $F_{1vIAX}(x)$ of the longest path length is represented
by a repeated integral that involves $n-1$ integrals. By definition,

$F_{1vIAX}(x)=P(X_{MAX} \leq x)=P(\bigwedge_{\pi\in \mathcal{P}}(\sum_{e\in\pi}X_{c}\leq x))$ . (2)

Although this formula is compact, this fact does not directly implies an efficient computability, since
it would take into account all source-terminal paths in $G$ , which can be as many as $\Omega(2^{n})$ . Next theorem
shows that $F_{h1AX}(x)$ is represented by a repeated integral that involves $n-1$ integrals. Thus $F_{MAX}(x)$

can be computed by executing only $n-1$ integrals, which may be dramatically more efficient than
the calculation of Eq. (2). Let $H(x)$ be a function that satisfies $H(x)=1$ if $x\geq 0$ and $H(x)=0$ if
$x<0$ . Let $1(x)$ be a constant function that maps every $x$ to 1. Note that if $P(X\leq x)=H(x)$ (resp.
$P(X\leq x)=1(x))$ for any $x,$ $X$ is always equal to $0$ (resp. $-\infty$).

Theorem 1. Let $G=(V, E)$ is a $DA$ G. Without loss of generality, we assume that $V=\{v_{1}, v_{2}, \ldots, v_{n}\}$

is topologically ordered. For any edge $(v_{i}, v_{j})\in E$ , let $F_{1j}(x)$ be the distribution function that $X_{ij}$ obeys.
We associate a function $F_{ij}(x)\dot{w}th$ each edge $(v_{i}, v_{j})\not\in E$ as follows: If $(v_{i}, v_{j})$ connec$ts$ two sources or
two terminals, then $F_{1j}(x)=H(x)$ ; othenvise, $F_{ij}(x)=1(x)$ . Then the distribution function $F_{MAX}(x)$

is given as

$P(X_{MAX} \leq x)=\int_{R^{n-1}}H(x-z_{1})\prod_{1\leq i\leq n-1}(\frac{d}{dz_{i}}\prod_{i+1\leq j\leq n}F_{ij}(z_{i}-z_{j}))dz_{i}$ . (3)

Proof. Given a DAG $G=(V, E)$ , we first add edges as many as possible in such a way that the added
edges do not change the topological order. This yields a complete graph with acyclic orientations, which
is denoted by $\#_{n}=(V, E_{K})$ , where $E_{K}=\{(v_{i}, v_{j})|1\leq i<j\leq n\}$ . Notice that $7_{n}$ has a unique
source $v_{0}$ and a unique terminal $v_{n}$ . For each of the edge $(v_{i}, v_{j})\in E_{K}$ , we associate a random variable
$X_{ij}$ that represents the length of $(v_{i}, v_{j})$ , and assume that $X_{ij}$ obeys $F_{ij}(x)$ . We observe that $F_{MAX}(x)$

is exactly the same for $G$ and $\#_{n}$ . Note that any path in $G$ is also a path in $\vec{K}_{n}$ . Consider any path $\pi$

in $\#_{n}$ connecting a source $v_{S}$ (of $G$) and a terminal $v_{T}$ (of $G$ ) that does not exist in $G$ . If $\pi$ contains
an edge $(v_{i}, v_{j})\not\in E$ such that $F_{ij}(x)=1(x)$ , then $\sum_{e\in\pi}X_{e}\leq x$ holds for all $x$ (see the note above
for intuition), which implies that such $\pi$ is ignorable in Eq. (2). Suppose that $\pi$ does not contain an
edge $(v_{i}, v_{j})\not\in E$ such that $F_{ij}(x)=1(x)$ . Let $\pi’$ is the path constructed from $\pi$ by removing all edges
connecting two sources or two terminals. Then $\pi’$ is a path connecting a source and a terminal in $G$ ,
and $\sum_{e\in\pi}X_{e}\leq x$ iff $\sum_{e\in\pi},$ $X_{e}\leq x$ (see the note above for intuition).1 Thus $F_{MAX}(x)$ is exactly the
same for $G$ and $- R_{n}$ . In what follows, we assume $G=\vec{K}_{n}$ .

Define several notations: $\mathcal{P}(i,j)$ is the set of all paths from $v_{i}$ to $v_{j},$ $\mathcal{P}_{k}(i,j)$ is the set of all $v_{i}- v_{j}$

paths that do not pass a vertex in $U_{k}=\{v_{k}, v_{k+1}, \ldots, v_{n-1}\}$ , and $Z_{n-1}=X_{n-1,n}$ is the longest path
length from $v_{n-1}$ to the unique terminal $v_{n}$ of $\vec{K}_{n}$ . We would like to use $Z_{n-1}$ rather than $X_{n-1,n}$ in
order to illustrate the transformations that should follow (5), but is not explicitly explained here for the
limitation of the space. Since $Z_{\iotaarrow 1}=X_{n-1,n}$ and $X_{ij}$ ’s are mutually independent, we have

$P(X_{MAX} \leq x)=P(\bigwedge_{\pi\in \mathcal{P}_{n-1}(1.n)}(\sum X_{ij}\leq x)\bigwedge_{\pi\in \mathcal{P}}\bigwedge_{(1,,\iota-1)}(\sum X_{ij}+Z_{n-1}\leq x))$ . (4)

1 Several different paths $\pi_{1},$ $\pi_{2},$ $\cdots,$ $\pi\ell$ may correspond to a single $\pi’$ . Even in such a case, the AND of conditions
$\sum_{\epsilon\in\pi_{i}}X_{\epsilon}\leq x$ for $i=1,2,$ $\cdots$ , $p$ is reduced to condition $\sum_{\epsilon\in\pi}$ , $X$. $\leq x$ .
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Let $G_{n-1}(x)=F_{n-1,n}(x)$ and $g_{n-1}(x)$ be the distribution function of $Z_{n-1}$ and its density function,
respectively. Sincc $dG_{n-1}(\tilde{k}n-1)=g_{n-1}(\tilde{4}n-1)d_{\tilde{4}}n-1$ , like the derivation of Eq.(l), by introducing an
integral, the right-hand side of Eq. (4) is represented as

$\int_{R}P(_{\pi\in \mathcal{P}_{n-1(1,n)}}\underline{\underline{\backslash \wedge(}\sum_{(A)}X_{ij}\leq x)}\underline{\lrcorner}\bigwedge_{\pi\in \mathcal{P}}\underline{\underline{\backslash \bigwedge_{(1,n-1)}(\sum_{(B)}}X_{ij}+z_{n-1}\leq x)}_{\underline{Z}})dG_{n-1}(z_{narrow 1})$ . (5)

We then calculate the contribution of each edge by repeating the transformation of representing (and
replacing) the contribution by an integral. For $Z_{k}= \max_{k+1\leq l\leq n}\{X_{kl}+z_{l}\}$ , we divide the paths from $v_{1}$

to $v_{n}$ into two groups according to whether or not they pass $v_{k}$ . We then introduce one more integral to
aggregate the probability that $Z_{l\prime}$. takes a constant value $z_{k}$ . We can consider $z_{k}$ as the dummy variable
of a convolution. Note that $z_{n}=0$ by definition.2 Now for each of $Z_{n-1},$ $Z_{n-2},$

$\ldots,$
$Z_{2}$ , an integral has

been introduced with respect to $z_{i}$ , and (4) is transformed into

$\int_{R^{n-2}}P(\bigwedge_{2\leq l\leq n\pi\in}\bigwedge_{\mathcal{P}_{2}(1,l)}(\sum X_{ij}+z_{l}\leq x)\bigwedge_{\pi\in}\bigwedge_{\mathcal{P}(1,2)}(\sum X_{ij}+\tilde{k}2\leq x))\prod G_{i}(z_{i}, \ldots, z_{narrow 1})dz_{i}$ , (6)

where $G_{i}(z_{i}, \ldots, z_{narrow 1})=\frac{d}{d_{\tilde{\sim}i}}\prod_{i+1\leq j\leq n}P(X_{ij}+z_{j}\leq\tilde{\sim}i)=\frac{d}{dz_{i}}\prod_{i+1\leq j\leq n}F_{ij}(\tilde{4}i-z_{j})$ .

By definition, $\mathcal{P}(1,2)=\{(v_{1}, v_{2})\}$ and $\mathcal{P}_{2}(1, l)=\{(v_{1}, v_{l})\}$ . Hence (6) is equal to

$\int_{R^{n-2}}\prod_{2\leq l\leq n}F_{1l}(x-z_{l})\prod_{2\leq i\leq n-1}(\frac{d}{dz_{i}}\prod_{i+1\leq j\leq n}F_{ij}(z_{i}-z_{j}))dz_{i}$, (7)

which implies the theorem by $\int_{R}H(x-z_{1})$ di $G_{1}(z_{1,2}\tilde{k}, \ldots, z_{n-1})dz_{1}=G_{1}(x, z_{2,}z_{n-1})$ where
$G_{1}(z_{1}, \ldots, z_{n-1})=\prod_{2\leq\downarrow\leq n}F_{1l}(z_{1}-z_{l})$ .

口

It is worth noting that Theorem 1 is applicable, even if the length $c_{ij}$ of each edge $(v_{i}, v_{j})$ is a constant
value. In this case, the step function $H(x-c_{ij})$ is given as the distribution function that $X_{ij}$ obeys. Let
$d_{i}$ be the (definite) longest path length from $v_{i}$ to $v_{n}$ . Then the step function $F_{MAX}(x)=H(x-d_{1})$ is
obtained by Theorem 1.

In the following, we call dummy variable $z_{i}$ the corresponding variable of $v_{i}$ . Let $Q_{1}(z_{1}, z_{2}, \ldots, z_{narrow 1};x)=$

$H(x-z_{1})$ and

$Q \downarrow+1(\sim\nu l+1, \ldots, z_{n-1};x)=\int_{R}Q_{l}(z_{l}, z_{l+1}, \ldots, z_{n-1};x)G_{l}(z\iota, z_{l+1}, \ldots, z_{n-1})dz_{l}$.

Theorem 1 states that we can calculate $Q_{n}(x)=F_{MAX}(x)$ by repeating integrals.

4 Exact Computation of the Repeated Integral

This section considers the case in which the edge lengths are given by mutually independent random
variables that obey the standard exponential distribution function. We present an algorithm to compute
each of $Q_{1},$ $Q_{2},$

$\ldots,$
$Q_{n}$ symbolically in this order by expanding the integrand into a sum of products

before calculating each integral. Let $k$ be the cardinality of the maximum anti-chain of $L(G)$ . By bound-
ing the number of difFerent terins that can appear during the symbolic calculation, we show that its
running time is a polynomial in the size of $G$ , if $k$ is bounded by a constant.
2 Notice that we define $Z_{k}$ after $z_{k+1},$ $z_{k+2},$ $\ldots,$ $z_{n-1}$ ; if we define $Y_{l}$ as the length of the longest path from $v_{k}$

to $v_{n}$ at a time, then $Y_{i}$ ’s are dependent on each other, which implies that the above proof cannot be applied
to $Y_{i}’ s$ .
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Proposition 1. $Let\uparrow/V_{i}=\{v_{j}|1\leq j\leq i\}$ . If $v_{l}\in W_{i}\backslash \{v_{i}\}$ or $(u, v_{1})\not\in E$ for any $u\in W_{i}$ , then
$Q_{i}(z_{i}, \ldots, z_{n-1};x)$ does not depend on $z_{l}$ .

Proof. Since $z_{l}$ is a dummy variable of an integral if $l<i$ , it is obvious that $z_{1}$ never show up in
$Q_{i}(z_{i,\ldots,\sim n-1}7;x)$ after the integrals are computed.

Suppose otherwise that $l>i$ . Then $v\iota\not\in$ N(Wi) $\backslash$ Tノ$V_{i}$ . By Theorem 1, $G_{i}(z_{i}, \ldots, z_{n-1})$ does not
depend on $z\iota$ . 口

Let $m=|E|,$ $n=|V|$ and $V_{i}$ be the set of children of $v_{i}$ .
Theorem 2. Let $G=(V, E)$ be a $DAG$ such that the cardinality of the mavimum anti-chain of $L(G)$

is at most $k$ . Assume that each random variable $X_{ij}$ , which represents the length of edge $(v_{i}, v_{j})$ , obeys
the standard exponential distribution. Then the distributed function $F_{MAX}(x)$ of the longest path length
in $G$ is computable in $O((k+1)1n^{k+2}(2m+1)^{k+1})$ time.

Proof. We first show how we calculate $Q_{i+1}(z_{i+1,\ldots,n-1}\tilde{4};x)$ from $Q_{i}(z;x)$ by symbolically
executing the integral with respect to $z_{i}$ . For example, $Q_{3}(z_{3}, \ldots, z_{n-1};x)$ is given by

$Q_{3}(z_{3}, \ldots, z_{n-1};x)=\int_{R}\gamma$ . (8)

Since $H(x)=0$ for all $x<0,$ $Q_{3}(z_{3,\ldots,.n}\tilde{4}-1;x)=0$ if $x<0$ . When $x\geq 0$ , since $H(x)=1$ ,

$Q_{3}(z_{3}, \ldots, z_{n-1};x)=\int_{a}^{b}\prod_{v_{j}\in V_{1}}$ $($ l–exp$(-(x-z_{j}))) \frac{d}{dz_{2}}\prod_{v_{l}\in V_{2}}(1-\exp(-(z_{2}-z_{l}))))dz_{2}$, (9)

wherc $a= \max_{v_{\ell}\in V_{2}}z_{\ell}$ and $b=x$, since otherwise the contribution to the integral becomes $0$ because
of the effect of $H$ . Since each of $z_{l}$ ’s can take the maximum, at most $|V_{2}|$ different formulas appear,
corresponding to different $a=z_{l}$ , as possible results of $Q_{3}(z_{3}, \ldots, z_{n-1};x)$ . Once $a$ is fixed to a $z_{l}$ ,
executing symbolic integration of the right-hand side of Eq. (9) is easy, since possible terms appearing
in the integrand have a form of $c_{1}\exp(-c_{2}z_{2})$ for some constant $c_{1}$ and $c_{2}$ . In general, we can derive
$Q_{i+1}(z_{i+1}, \ldots, z_{n-1};x)homQ_{i}(\sim..z;x)$ in the same way.

To estimate the time complexity of the algorithm, let us estimate the number of terms that are possi-
ble to appear in the execution. By Proposition 1, the number of variables appeared in $Q_{i}(z_{i}, \ldots, z_{n-1};x)$

is at most $k+1$ for any $i$ . As explained, to obtain $Q_{3}(\wedge\sim_{3}, \ldots, z_{n-1};x)$ , we need to consider at most $k+1$
different cases corresponding to different $a=z\iota$ . It is easy to see that to obtain $Q_{4}(z_{4}, \ldots, z_{n-1};x)$ , for
each of the cases for $Q_{3}$ , we need to consider at most $k$ different cases. Although this leads to that there
may be $O(k^{i})$ cases for $Q_{i}$ in general, the number of variables on which $Q_{i}$ depends is at most $k+1$ by
Proposition 1, which implies that, in general in $Q_{i}$ , there can be no more than $(k+1)!$ distinct cases.
To complete the proof, we show that at most $n^{k+1}(2m+1)^{k+1}$ terms are possible to appear, for each of
at most $(k+1)!$ cases.

Let us consider the number of the terms in the integrand in each case. Since it is easy to see that
each term is a product of $x^{\alpha_{0}},$ $z_{j}^{\alpha_{j}},$ $\exp(\beta_{0}x)$ and $\exp(\beta_{j}z_{j})$ , where $\alpha_{j}$ ’s and $\beta_{j}$ ’s are integers, we bound
the number of terms by the number of possible terms. By the form of Theorem 1, we can see that the
maximum degrees of $\tilde{4}j^{S}$ and $x$ that appear in the terms in $Q_{i}(z_{i}, \ldots, z_{n-1};x)G_{i}(z_{i}, \ldots, z_{n-1})$ of each
case can only increase by one in one integral and hence $\alpha_{j}$ ’s are non-negative integer and less than $n$ .
Similarly, we can also see that the degrees $\beta_{j}$ ’s of $\exp(z_{j})$ ’s and $\exp(x)$ can only increase or decrease by
one in a multiplication of two distribution functions and hence $\beta_{j}$ ’s are integers between $-m$ and $m$.
Therefore, the integrand in each cases consists of at most $n^{k+1}(2m+1)^{k+1}$ terms, which amounts to that
the calculation of each $Q_{i+1}$ $(z_{i+1}, \ldots , z_{n-1};x)$ from $Q_{i}(z_{i}, \ldots, z_{n-1};x)$ takes $O((k+1)!n^{k+1}(2m+1)^{k+1})$
time. 口

Corollary 1. A closed form of $F_{MAX}(x)$ consisting ofpnmitive functions is obtained in polynomial time
if $k$ is bounded by a constant, provided that the edge lengths obey the standard exponential $d\dot{u}$tribution.
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5 Approximation of the Repeated Integral

In this section, we assume that the cardinality of the incidence graph $L(G)$ of a given DAG $G$ is
bounded by a constant $k$ . We show that the distribution function $F_{MAX}(x)$ of the longest path lengths
can be approximately calculated in polynomial time in $n$ , if the length of each edge $(v_{i}, v_{j})\in E$ is non-
negative and the Taylor series of its distribution function $F_{ij}(x)$ converges to $F_{ij}(x)$ . Here by Taylor
polynomial of $f(z_{1,\ldots,\tilde{\sim}n};x)$ , we mean the Taylor polynomial that is generated by $f(z_{1}, \ldots, z_{n};x)$ at
$x=z_{1}=\tilde{k}2=\ldots=z_{n}=0$ .

We must be careful for the order of computing the Taylor polynomial of the repeated integral that
is shown in Theorem 1. Let $p$ be the order of the Taylor polynomial. The most intuitive idea is that we
computc the Taylor polynomial of the whole integrand

$H(x-z_{1}) \prod_{1\leq i\leq n-1}\frac{d}{dz_{i}}\prod_{i+1\leq j\leq n}F_{ij}(z_{i}-z_{j})$ , (10)

treating it as a function of $n$ variables $(i.e., x, z_{1}, z_{2}, \ldots, z_{n-1})$ . However, this intuitive way of computing
the Taylor polynomial is not efficient for obtaining the value of $F_{MAX}(x)$ with an error less than $\epsilon$ ; the
running time may be more than exponential with respect to the size of $G$ even if $k$ is a constant. Let
us describe the $p\cdot th$ derivatives of (10) as a sum of products of $F_{ij}(z_{i}-z_{j})$ or its derivatives of some
order. Since one differentiating operation of (10) or its derivatives creates $2k$ times as many terms as
in the original if we do not replace the distribution functions $F_{ij}(x)$ by particular definition of the edge
lengths’ distribution functions, there may be $O((2k)^{p})$ terms in the $parrow th$ derivative of (10). Then, it can
bc shown that the order $p$ of the Taylor polynomial needs to be almost linear to the size of the given
DAG $G$ to keep the error less than a constant $\epsilon$ even if $k$ is a constant, which implies that the running
time may be more than exponential of $m$ and $n$ .

In order to lower the running time, we approximate $Q_{i}(z_{i}, \ldots, z_{n-1};x)$ by $A_{i}^{p}(z_{i}, \ldots, z_{n-1};x)$ that
is computed by the following procedures: (1) $A_{2}^{p}(z_{2}, \ldots, z_{n-1};x)$ is the Taylor polynomial of order
$p$ generated by $Q_{2}(z_{2}, . , . , z_{n-1};x)= \prod_{v\cdot\in V_{1}}F_{1j}(x-z_{j})$ , and (2) $A_{i}^{p}(z_{i}, \ldots, z_{n-1};x)$ is the Taylor

$J$

polynomial of order $p$ generated by

$\int_{R}A_{i-1}^{p}(z_{i-1}, \ldots, z_{n-1};x)G_{i-1}(z_{i-1,\ldots,n-1}\tilde{4})dz_{iarrow 1}$ . (11)

This integral can be calculated using integration by parts, which yields a sum of products of polynomials
and some anti-derivatives of $G_{i-1}(z_{i-1,\ldots,\tilde{\sim}n-1})= \prod_{i\leq j\leq n}F_{i-1,j}(z_{i-1}-\tilde{\sim}j)$ . The procedure (2) can
be repeated for $i=3,4,$ $\ldots,$

$n$ .
Since all edge lengths are non-negative by assumption, the anti-derivative of $G_{i-1}(z_{i-1,\ldots,\tilde{\sim}n-1})$

of positive order is equal to $0$ at the origin $x=z_{i}=z_{i+1}=\cdots=z_{n-1}=0$ , which allows us to
compute $A_{i}$ $(z_{i}, \ldots , z_{n-1};x)$ as the Taylor polynomial of order $p$ without knowing the analytic form of
the anti-derivatives $G_{i-1}(z_{iarrow 1}, \ldots, z_{n})$ .

In the next theorem, we show that the time to compute $A_{n}^{p}(x)$ where $p$ is large enough to keep the
error less than $\epsilon$ is polynomial of the size of $G$ , assuming that $x,$ $\epsilon$ and the maximum size $k$ of an antichain
in $L(G)$ is a constant. We also assume the existence of a constant $\sigma$ , that satisfies $\sigma^{p}\geq|(\frac{d}{dx})^{p}F_{ij}(x)|$

for any non-negative integer $p$ and any edge $(v_{i}, v_{j})\in E$ .
Notice that $\sigma$ must be bounded by a constant for the assumption that $x$ is bounded by a constant.

If there is an algorithm $A$ that gives the value of $F_{MAX}(x)$ in the same time regardless of $\sigma$ , we can
consider “compressed edge length” $X_{e}^{l}=X_{e}/s$ , where $X_{e}$ is the length of $e$ and $s\geq 1$ . Then we can
define the “compressed” distribution functions $F_{MAX}’(x)=P( \bigwedge_{\pi\in \mathcal{P}}(\sum_{e\in n}X_{e}’\leq x))$ of the longest path
length. Since $F_{MAX}’(x)=F_{MAX}(sx)$ , the value of $F_{MAX}(sx)$ can be obtained for any $s$ in the same
running time, which can be used for obtaining the value of $F_{MAX}(x)$ for arbitrary $x$ . Therefore, it is
essential to bound $\sigma$ by a constant as well as $x$ .
Theorem 3. Let $G=(V, E)$ be a $DAG$ and assume that the cardinality of the anti-chain of its incidence
graph $L(G)$ is at most $k$ . Let $F_{ij}(x)$ be the distribution function of the length of an edge $(v_{i}, v_{j})$ that
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is defined in Theorem 2. Let $\sigma$ be a value such that $\sigma^{p}\geq|(_{Tx}d)^{p}(F_{ij}(x))|$ for any non-negative integer
$p$ and any edge $(i, j)\in$ E. We further assume that the Taylor senes of $F_{ij}(x)$ converges to $F_{ij}(x)$

itself and that the time complexity of computing the p-th derivative of $F_{ij}(x)$ is $0(cxp(p))$ . Then $A_{n}^{p}(x)$

such that $|A_{n}^{\rho}(x)-F_{MAX}(x)|\leq\epsilon$ holds is calculated in time $O((k+1)!(p+1)^{k}k^{P+1}\exp(p))$ , where
$p=O(k^{2}x\sigma+\ln n+\ln 1/\epsilon)$ .
Proof. By the similar argument in the previous section, it can be shown that the time to compute $A_{?}^{p}(x)$

is $O((k+1)!n(p+1)^{k}k^{p+1}\exp(p))$ . We have $O((k+1)!)$ cases for computing integral of $A_{i}^{p}(z_{i}, \ldots, z_{n-1};x)$ .
In each cases, the integrand is the sum of products $C( \alpha)\prod_{v_{j}\in V_{l}}y_{j}^{\alpha_{j}}$ over all possible $\alpha=\{\alpha_{1}, \ldots, \alpha k\}$ ,
where $y_{j}$ is the corresponding variable of the j-th vertex in $N(W_{i})\backslash W_{i}$ (i.e., $y_{j}$ is equal to one of
$z_{h}$ where $v_{h}\in N(W_{i})\backslash T^{1}V_{i})$ , where $W_{i}=\{v_{1}, \ldots, v_{i}\}$ . Since $\alpha_{j}$ is a non-negative integer at most $p$ ,
the number of the terms in each case of integral is at most $(p+1)^{k}$ . Since differentiating a term in
the resulting form of (11) $p$ times with respect to one of $z_{i+1},$ $\ldots,$ $z_{narrow 1},$ $x$ creates at most $k^{p}$ terms
that consist of at most $k$ dummy variables as the factors each, the total running time of computing
$A_{i}^{p}(\tilde{z}i, \ldots, z_{narrow 1};x)$ as the Taylor polynomial is at most $O((k+1)1(p+1)^{k}k^{p+1})$ . Since, by assumption,
the time complexity of computing p-th derivative of $F_{ij}(x)$ is $O(\exp(p))$ , the running time of computing
$A_{n}^{p}(x)$ is $O((k+1)!n(p+1)^{k}k^{p+1}\exp(p))$ .

Now we concentrate on proving that $p=O(k^{2}x\sigma+\ln n+\ln 1/\epsilon)$ is sufficient for satis $\mathfrak{h}r$ing $|A_{n}^{p}(x)-$

$F_{1vIAX}(x)|\leq\epsilon$ . For each edge $(v_{i}, v_{j})$ , we consider a random variable $X_{ij}’=X_{ij}/(k\sigma)$ . Let $F_{MAX}’(x)$ be
the distribution function of the longest path length which is defined for the case where edge lengths are
given as $X_{ij}’$ instead of $X_{ij}$ . Since $F_{MAX}(x)=F_{MAX}’(k\sigma x)$ , we consider the normalized edge length $X_{ij}’$

and the normalized distribution function $F_{1vIAX}’(x)$ instead of $X_{ij}$ and $F_{MAX}(x)$ in the following. For the
simplicity, we give the proof for the case $\sigma=1/k$ . The proof for the general $\sigma$ can be given by replacing
$x$ in the following by $kx\sigma$ .

Let $\epsilon_{i}$ be the difference between $A_{i}^{p}(z_{i,}z_{n};x)$ and $Q_{i}(z_{i}, \ldots, z_{n-1};x)$ . We first bound the error
that is created when the Taylor polynomial of $Q_{2}(z_{2}, \ldots, z_{n-1};x)$ is computed. By generalizing the

$M( \sum_{v_{j}\in V_{2}}z_{j})^{p+1}$

evaluation of the Taylor polynomials in [13], it is easy to show that $|\epsilon 2|\leq\overline{(p+1)!}$ where
$M$ is an upper bound on the $(p+1)$-th derivatives of $Q_{2}(z_{2}, \ldots, z_{n-1};x)=\prod_{2<j<n}F_{1j}(x-z_{j})$ at the
origin where $z_{2}=Z_{3}=\cdots=z_{narrow 1}=x=0$. By the above normalization, it is $\overline{e}as^{-}y$ to show that $M$ is
less than 1. Since the dummy variables $z_{1},$ $\ldots,$ $z_{n-1}$ of integrals are non-negative and less than $x$ , by
Proposition 1, wc have

$| \epsilon_{2}|\leq\frac{(xk)^{\rho+1}}{(p+1)!}$ . (12)

Let us bound the error that is created when $A_{i+1}^{p}(z_{i+1}, \ldots, z_{n-1};x)$ is computed as the Taylor
polynomial of the convolution of $A_{i}^{p}(z_{i}, \ldots, z_{n-1};x)$ and $\prod_{i+1\leq j\leq n-1}F_{ij}(z_{i}-z_{j})$ with respect to $z_{i}$ . By
dcfinition, we have

$\epsilon_{i+1}=A_{i+1}^{p}(z_{i+1}, \ldots, z_{n-1};x)-\int_{R}(A_{i}^{p}(z_{i}, \ldots, z_{n-1};x)+\epsilon_{i})G_{i}(z_{i}, \ldots, z_{n-1})dz_{i}$ . (13)

Since $A_{i+1}^{\rho}(z_{i+1}, \ldots, z_{n-1};x)$ is the Taylor polynomial of $\int_{R}A_{i}^{p}(z_{i,\ldots,n}\tilde{k}-1;x)G_{i}(z_{i}, . . , , z_{narrow 1})dz_{i}$ , we
have

$| \epsilon_{i+1}|\leq\frac{(kx)^{p+1}}{(p+1)!}+\int_{R}|\epsilon_{i}|\frac{d}{d_{\tilde{k}}i}\prod_{i+1\leq j\leq narrow 1}F_{ij}(z_{i}-z_{j})dz_{i}=\frac{(kx)^{p+1}}{(p+1)!}+|\epsilon_{i}|$ . (14)

This leads to $| \epsilon_{n}|\leq(n-1)\frac{(kx)^{p+1}}{(p+1)!}$ by (12) and (14) for $i=2,3,$ $\ldots,$ $n$ .
If $kx\leq 1$ , the error $\epsilon_{n}$ converges to $0$ very quickly. If $kx>1,$ $p=O(\ln(n-1)+kx+\ln 1/\epsilon)$ is

sufficient to have $|\epsilon_{n}|=|A_{n}^{p}(x)-Q_{n}(x)|$ less than $\epsilon$ . 口

We immediately obtain the following corollary.
Corollary 2. If $x,$ $\epsilon,$

$k$ and $\sigma$ are constants, the proposed algorithm computes the value of $F_{MAX}(x)$

urithin error $\epsilon$ in a polynomial time of the size of $G$ .
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6 Conclusion

In this paper, we have investigated the longest path problem for DAGs $G,$ where the edge lengths are
given as mutually independent random variables. We have shown that the distribution function $F_{MAX}(x)$
of the longest path length is given as a form of repeated integral that involves $n-1$ integrals, where $n$

is the order of $G$ . We can thus approximately evaluate $F_{1vIAX}(x)$ for any fixed $x$ by applying numerical
methods to the form, at the expense of accuracy and time.

We however suggest that an important application of the repeated integral is in symbolic computation
of $F_{MAX}(x)$ . Because only $n-1$ integrals are involved with, it may give us a chance to symbolically
compute it in polynomial in $n$ , although there are $\Omega(2^{n})$ paths in $G$ . In fact, we have shown that a
representation of $F_{MAX}(x)$ by a combination of primitive functions is obtained in $O((k+1)!n^{k+2}(2m+$
$1)^{k+1})$ time, provided that the edge lengths obey the standard exponential distribution, where $k$ is the
maximum anti-chain cardinality of the incidence graph $L(G)$ . Recall that the problem is NP-hard even
for series-parallel graphs when the edge lengths obey discrete distributions. A natural open question
is thus to find another class of distribution functions for which there is a polynomial algorithm to
symbolically execute the repeated form.

Since naive iiumerical metbods to approximate the repeated integral need sufficiently long time and
do not have performance guarantees, by making use of the Taylor polynomials, we have proposed an
approximation algorithm to compute $F_{MAX}(x)$ with error smaller than $\epsilon$ for any given $x$ and $\epsilon$ , assuming
that thc distributions that the edge lengths obey satisfy the following three natural conditions; 1)
F. $(x)=0$ for $x\leq 0,2$) the Taylor series of $F_{e}(x)$ converges to $F_{e}(x)$ itself, and 3) for any non-negative
integer $p$ , there is a constant $\sigma$ satisfying $\sigma^{p}\geq|(zi|t)^{p}F_{e}(x)|$ . It takes a polynomial time in $n$ , when
each of $k,$ $x,$ $\epsilon$ and $\sigma$ can be regarded as constants.
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