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Abstract
Intensity-modulated radiation therapy (IMRT) is a modem cancer treatment technique aiming

to deliver a prescribed $\infty nformal$ radiation dose to a target tumor while sparing the surrounding
normal tissue and critical structures. In this paper, we consider a set of geometric and combina-
torial problems that arise in IMRT planning and delivery, such as static leaf sequencing, static
leaf sequencing with error control, field splitting, dose simplification, dynamic leaf sequencing,
single-arc leaf sequencing, and and image segmentation. We discuss efficient algorithms for these
problems. The algorithms exploit the underlying geometric and combinatorial properties of the
problems and transform them into geometric or graph-theoretic problems such as shortest paths,
optimal matchings, maximum flows, multicommodity demand flows, and linear programming.
Some open problems and promising directions for future research are also given.

1 Introduction

Algorithmic studies of combinatorial and geometric optimization problems that arise in the field of
medicine are emerging as a significant interdisciplinary research area. Many medical applications
call for effective and efficient algorithmic solutions for many discrete or continuous computational
problems. In this paper, we cover a number of geometric and combinatorial problems in the research
and clinical practice of intensity-modulated rvndiation therapy for cancer treatment.

Intensity-modulated radiation therapy (IMRT) is a modem cancer treatment technique that aims
to deliver highly conformal prescribed radiation distribution to a target volume (e.g., a tumor) in 3-D
whIle sparing the surrounding normal tissue and critical structures. Good quality IMRT treatment
Is based on the ability to accurately and efficiently deliver prescribed dose distributions of radiation,
called intensity maps $(IMs)$, to the target. An IM is speclfied by a set of nonnegative integers on
a uniform 2-D grid (see Figure $1(a)$ ). The value for each grid cell of the IM indicates the intensity
level (in units) of radiation to be delivered to the body region corresponding to that grid cell. For
common clinical prescriptions, the size of an IM cell is typically measured from $0.5cm\cross 0.5cm$ to
1 $cm\cross 1$cm [29].

Most current IMRT delivery systems consist of two major components: (i) a medical linear
accelerator (LINAC) as the radiation source, which generates photon beams used in IMRT treatment,
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Figure 1: (a) An intensity map (IM). (b) A schematic drawing of a multileaf collimator (MLC), in

which the shaded rectangles represent the MLC leaves that can move left and right (as indicated by

the arrows) to form an MLC-aperture. (c) The patient couch and rotatable gantry.

and (ii) a multileaf collimator (MLC) [44, 72, 73]. which defines or specifies the shapes of cylindrical

radiation beams for delivering thc prescribed intensity maps (IM). An MLC is made of many pairs

of tungsten alloy leaves $oi$ the same rectangular shape and size (see Figure $1(b)$ ). The opposite

leaves of each pair are aligned to each other. These leaves, which are controlled by a computer,

can move left and right to form a rectilinear polygonal region, called MLC-aperture, which defines

the cross-section of a cylindrical radiation beam. Note that such a cross-section is of the shape of

a y-monotone rectilinear polygon (Figure $1(b)$ ). During IMRT treatment, the patient is positioned

and secured to the treatment couch (see Figure $1(c)$ ), and the LINAC delivers radiation beams to

the target tumor from various directions. The direction of a radiation beam is controlled by rotating

the gantry (which contains the radiation source) to the desired angle. The MLC is mounted on

the gantry and the cross-section of the cylindrical radiation beam is shaped by an MLC-aperture to

deliver a uniform dose to (a portion of) an IM [17, 33, 51, 52, 53, 63, 67, 80, 83].

Currently, there are three popular commercial MLC systems in use for clinical cancer treatment:

Elekta, Siemens, and Varian [44]. Depending on the actual MLC system used, there are some

differences among the particular geometric shapes of the rectihnear y-monotone polygonal regions

that can be formed by the corresponding MLC. The details on the differences between these MLC
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systems will be discussed in Section 2.1.
Using a computer-controlled MLC, the IMs are usually delivered either statically or dynamically.

In the static approach [15, 16, 11, 12, 13, 14, 30, 35. 41, 40, 74, 79], the MLC leaves do not move
during irradiation, and are repositioned to form another beam shape only when the radiation source
is tumed off. In the dynamic approach [28, 29, 31, 45, 70, 69, 71], the MLC leaves keep moving
across an IM field while the radiation remains on. Note that MLC leaves are capable of changing
their positions quickly during irradiation, and the actually delivered IMs can still remain to be of
integer values in the dynamic settings. In both these delivery approaches, the gantry is fixed during
irradiation. Arc-modulated radiation therapy (AMRT) is a newly emerging IMRT delivery technique
[82]. AMRT differs from the commonly used static and dynamic IMRT approaches in that the gantry
is kept rotating during delivery, typically along a circular arc path in 3-D around the patient. The
radiation source remains on for irradiation during the gantry rotation. In the meantime, the MLC
leaves also move continuously across the treatment field to produce the prescribed IM.

A treatment plan for delivering a given IM provides a precise description of how to control the
MLC leaves and radiation source to deliver the dose distribution of the IM. For static IMRT, the
treatment plan must also specify how to tum on$/0ff$ the radiation beam source. Two key criteria are
used to evaluate the quality of an IMRT treatment plan:

(i) Delivery time (the efflciency): Minimizing the delivery time is important because it not
only lowers the treatment costs but also increases the patient throughput. Short delivery time
also reduces the possible recurrence of tumor cells. For static IMRT, the delivery time consists
of two parts: (1) the beam-on time and (2) the machine setup time. Here, the beam-on time
refers to the total amount of time when a patient is exposed to actual irradiation, and the
machine setup time refers to the time associated with tuming on$/0ff$ the radiation source and
repositioning MLC leaves. Since the machine setup time is the dominating portion of the total
delivery time in static IMRT, minimizing the machine setup time normally can significantly
shorten the delivery time. On the other hand, minimizing the beam-on time is considered as
an effective way to enhance the radiation source efficiency of the machine (referred to as the
monitor unit efficiency or $MU$ efficiency in medical literature) as well as to reduce the patient’s
risk and treatment uncertainties under radiation [10]. For dynamic IMRT or arc-modulated
radiation therapy, since the radiation source is always on when delivering an IM, the delivery
time is almost equal to the beam-on time.

(ii) Delivery error (the accuracy): For various reasons, there are discrepancies between the
prescribed IM and the actually delivered IM. We distinguish two types of delivery error: (1)
approstmation error and (2) tongue-and-groove errvr. The approximation $emr$ refers to the
discrepancy between the prescribed IM and actually delivered IM that resides in the interior
of the IM grid cells; the tongue-and-groove error [79, 81, 68] refers to the discrepancy between
the prescribed IM and actually delivered IM that appears on the boundaries of the IM cells,
which is caused by the special geometric shape design, called tongue-and-groove design, of the
MLC leaves [81] (Section 2.2 discusses more on its nature).

There are many interesting and important geometric optimization problems arising in the plan-
ning and delivery of radiation cancer treatment. In this paper, we discuss the following problems in
IMRT, such as: (1) static leaf sequencing (SLS), (2) static leaf sequencing with tongue.and-groove
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error control, (3) field splitting, (4) dose simplification (DLS), (5) dynamic leaf sequencing, (6) single-
arc leaf sequencing, and (7) image segmentation. The definitions of the above problems will be given
in later sections.

The rest of this paper is organized as foUows. Section 2 discusses the MLC constraints and its
$tongu\triangleright and$-groove feature. Sections 3 to 7 discuss the aforementioned problems and give efficient
algorithms. Section 8 discusses some open problems and promising directions for future research.

2 Preliminaries

In this section, we first discuss the three popular MLC systems and their constraints, then characterize
the tongue-and-groove error associated with IMRT treatments using such MLC systems.

2.1 Constraints of Multileaf Collimators

As mentioned in Section 1, there are three popular MLC systems currently used in clinical treatments
[44]: the Elekta, Siemens, and Varian MLC systems. The mechanical structure of these MLCs,
although is quite flexible, is not perfect in that it still precludes certain aperture shapes from being
used [44, 29, 73] for treatment. In the following, we summarize the common constraints that appear
in these MLC systems:

(1) The minimum leaf separation constraint. This requires the distanoe between the opposite leaves
of any MLC leaf pair (e.g., on the Elekta or Varian MLC) to be no smaller than a given value
$\delta$ (e.g., $\delta=$ lcm).

(2) The interleaf motion constraint. On the Elekta or Siemens MLC, the tip of each MLC leaf is
not allowed to surpass those of its neighboring leaves on the opposite leaf bank.

(3) The maximum leaf spread constraint. This requires the maximum distance between the tip of
leftmost left leaf and the tip of the rightmost right leaf of the MLC is no more than a threshold
distance (e.g., 25 cm for Elekta MLCs). This constraint applies to all existing MLCs.

(4) The maximum leaf motion speed constraint. This requires the MLC leaves cannot move faster
than a threshold value (e.g., $3cm/s$ for Varian MLCs). This constraint applies to all existing
MLCs.

Figure 2 shows the constraints (1) and (2) of these MLC systems. The Elekta MLC is subject
to both the minimum leaf separation and interleaf motion constraints. The Siemens MLC is subject
to only the interleaf motion constraint. Hence a degenerate rectilinear y-monotone polygon can be
formed by the Siemens MLC, by closing some leaf pairs (see Figure $2(b)$ ). (A polygon $P$ in the plane
is called y-monotone if every line orthogonal to the y-axis intersects $P$ at most twice. A y-monotone
polygon is degenerate if its interior is not a single connected piece. ) The Varian MLC is subject to
the minimum leaf separation constraint, but allows interleaf motion. Thus, to ”close” a leaf pair in
the Varian system, we can move the leaf opening under the baClcup diaphragms (see Figure $2(c)$ ).
But, the Elekta MLC cannot “close” its leaf pairs in a similar manner due to its interleaf motion
constraint.
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$(a)$ $(c)$

Figure 2: mustrating the constraints of three different MLC systems. The shaded rectangles repre-
sent the MLC leaves, and the unshaded rectangles represent the backup diaphragms which form a
bounding box of an MLC-aperture. (a) The Elekta MLC. (b) The Siemens MLC. (Notice that unlike
the Elekta and Varian MLCs, the Siemens MLC only has a single pair of backup metal diaphragms.)
(c) The Varian MLC.

$(a)$ $(b)$

Figure 3: (a) Illustrating the tongue-and-groove interlock feature of the MLC in &D, where leaf $B$ is
used for blocking radiation. (b) When leaf $B$ is used for blocking radiation, there is an underdose and
leakage in the tongue or groove area. (c) The underdose and leakage areas of the tongue-and-groove
feature on an MLC-aperture region.

Geometrically, on the Elekta, each MLC-aperture is a rectilinear y-monotone simple polygon
whose minimum vertical “width” is $\geq$ the minimum separation value $\delta$ , while on the Siemens or
Varian, an MLC-aperture can be a degenerate y-monotone polygon (i.e., with several connected
components).

2.2 Tongue-and-Groove Design of the MLC Leaves

On most current MLCs, the sides of the leaves are designed to have a “tongue-and-groove” interlock
feature (see Figure $3(a)$ ). This design reduces the radiation leakage through the gap between two
neighboring MLC leaves and minimizes the kiction during leaf movement [68, 73, 79, 81]. But, it
also causes an unwanted underdose and leakage situation when an MLC leaf is used for blocking
radiation (see Figures 3(b) and $3(c)$ ). Geometrically, the underdose and leakage error caused by
the tongue-and-groove feature associated with an MLC-aperture is a set of 3-D axis-parallel $bc\propto es$

$w\cdot l_{i}\cdot h$ , where $w$ is the (fixed) width of the tongue or groove side of an MLC leaf, $l_{i}$ is the length of the
portion of the i-th leaf that is actually involved in blocking radiation, and $h=\alpha\cdot r$ is the amount of
radiation leakage with $\alpha$ being the (fixed) leakage ratio and $r$ being the amount of radiation delivered
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Figure 4: Illustrating the tongue-and-groove error. (a) and (b): Two MLC-apertures (the shaded
rectangles represent MLC leaves). (c) When delivering the two MLC-apertures in (a) and (b) (one

by one), the groove side of leaf $B$ and tonguc side of leaf $C$ are both used for blocking radiation,

causing a tongue-and-groove error in the area between the leaves $B$ and C. (d) Illustrating a dose
“dip’: in the final dose distribution wherc a tongue-and-groove error occurs.

by that MLC-aperture. Figure 3(b) illustrates the height of the underdose and leakage error, and

Figure 3(c) illustrates the width and length of the underdose and leakage error.
The tongue-or-groove error of an MLC-aperture is defined as the amount of underdose and

leakage error occurred whenever the tongue side or groove side of an MLC lcaf is used for blocking

radiation. The tongue-or-groove error of an IMRT plan (i.e., a set of MLC-apertures) is the sum of the

tongue-or-groove errors of all its MLC-apertures. The tongue-and-groove error occurs whenever

the tongue side of an MLC leaf and the corresponding groove side of its neighboring leaf are both used
for blocking radiation in any two different MLC-apertures of an IMRT plan (see Figure 4). Note that

the tongue-or-groove error is defined on each individual MLC-aperture, while the tongue-and-groove
error is defined by the relations between different MLC-apertures. Clearly, the tongue-and-groove

error is a subset of the tongue-or-groove error. In medical physics, the tongue-and-groove error has

received more attention than tongue-or-groove error because it usually occurs in the middle of the

delivered intensity maps, causing insufficicnt dose coverage to the tumor [79]. According to a recent
study [30], tongue-and-groove error may cause a point dose error up to 10%, well beyond the allowed
3-5% limit.

Chen et al. [24] introduced the notion of emr-norm, which is closely related to the tongue-or-

groove error. Thc error-norm $||A||_{E}$ of an IM $A=(a_{i,j})$ of size $m\cross n$ is defined as

$||A||_{E}= \sum_{i=1}^{m}(|a_{i,1}|+\sum_{j=1}^{n-1}|a_{i,j}-a_{i,j+1}|+|a_{n}|)$ . (1)

Chen et al. [23] proved that for any treatment plan $S$ that exactly delivers IM $A$ , the difference be-

tween the associated tongue-or-groove error $TorG(S)$ and the tongue-and-groove error TandG$(S)$ al-

ways equals to $||A||_{E}$ . Thus minimizing $tongue\cdot or$-groove error is equivalent to minimization tongue-

and-groove error. Chen et al. [23] further showed that $||A||_{E}$ is the strict lower bound for $TorG(S)$ ,

which implies that the tongue-and-groove error has a strict lower bound $0$ for any input IM.
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3 Static Leaf Sequencing

3.1 Problem Deflnition

The static leaf sequencing problem arises in the static IMRT delivery. In this delivery approach, an
IM is delivered as follows:

1. Form an MLC-aperture.

2. Turn on the beam source and deliver radiation to the area of the IM exposed by the MLC-
aperture.

3. Tum off the beam source.

4. Reposition the MLC leaves to form another MLC-aperture, and repeat steps 2-4 until the entire
IM is done.

In this setting, the boundary of each MLC-aperture does not intersect the interior of any IM
cell, i.e., any IM cell is either completely inside or completely outside the polygonal region formed
by the MLC-aperture. In delivering a beam shaped by an MLC-aperture, all the cells inside the
region of the MLC-aperture receive the same integral amount of radiation dose (say, one unit), i.e.,
the numbers in all such cells are decreased by the same integer value. The IM is done when each cell
has a value zero.

The static leqf sequencing $(SLS)$ problem, in general, seeks a treatment plan $S$ (i.e., a set of
MLC-apertures together with their weights) for exactly delivering a given IM $A$ such that the delivery
time is minimized. Note that the weight of an MLC-aperture corresponds to the amount of radiation
dose delivered to the area of the IM exposed by the MLC-aperture, and by $!$ exactly delivering” we
mean there is no approximation error but may have tongue-or-groove error. We will discuss how to
minimize the tongue-or-groove error in static IMRT delivery in the next section.

Several variations of the SLS problem have been studied in the literature: (1) the $SLS$ problem
with minimum beam-on time [3, 7, 10, 13, 46, 54], (2) the $SLS$ problem with minimum machine setup
time [7, 23, 25. 30, 79], and (3) the $SLS$ problem with minimum beam-on time plus machine setup
time [7, 54]. Recall that for static IMRT, the delivery time equals the sum of beam-on time and
machine setup time.

The SLS problem with minimum beam-on time is polynomial time solvable [10]. Ahuja and
Hamacher [3] formulated this problem as a minimum cost flow problem in a directed network and
gave an optimal linear time algorithm for the case when the MLC is not subject to the minimum
separation constraint and interleaf motion constraint, e.g., the Varian MLC. Kamath et al. $[46|$

proposed a different approach by sweeping the IM field from left to right and generating MLC-
apertures accordingly. They showed how to handle the minimum separation constraint and interleaf
motion constraint during the sweeping and achieve minimum beam-on time.

The SLS problem with minimum machine setup time is, in general, NP-hard. Burkard [18] proved
that for IMs with at least two rows, the problem can be reduced from the subset sum problem [38].
Baatar et al. [7] further showed that NP-hardness holds even for input IMs with a single row, using
a reduction from the 3-partition problem [38]. Chen et al. [22], independently, gave an NP-hardness
proof of this problem based on a reduction from the 0-1 knapsack problem [38]. The SLS problem
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Figure 5: The leaf openings $A,$ $B,$ $C,$ $D$ , and $E$ for delivering the dose profile curve of an IM of a
single row.

with minimum beam-on time plus machine setup time is also NP-hard [10]. We are not aware of any
efficient algorithms for the MLC problem with minimum beam-on time plus machine setup time.

In this section, we will study the following &D static leaf sequencing (SLS) problem [79]:

Given an IM, find a minimum set $S$ of MLC-apertures (together with their weights) for delivering

the IM (i.e., the size $|S|$ is minimized). Note that our goal is to minimize the number of MLC-
apertures used for delivering an IM, which is equivalent to minimizing the machine setup time under
the assumption that the setup time needed to go from one MLC-aperture shape to another shape is
constant. While the MLC problem with minimum beam-on time plus machine setup time seems more
general, our formulation of the &D SLS problem also well captures the total delivery time. This is

because the machine setup time for the MLC-apertures dominates the total delivery time [30, 79], and
algorithms that minimize the number of MLC-apertures used are desired to reduce the delivery time
[79]. It should be pointed out that even though the SLS problem with the minimum beam-on time
is polynomial time solvable, the resulting plan can use a very large number of MLC-apertures[36],

and thus a prolonged total delivery time.
A key special case of the SLS problem, called the basic $-D SLS problem, is also of clinical

value [11, 12, 13, 14, 15, 16]: Given an IM, find a minimum set of MLC-apertures for the $m\iota$ , such
that each MLC-aperture has a unit height. Note that in the general SLS problem, the weight of each
MLC-aperture can be any integer $\geq 1$ . Studying the basic case is important because the maximum
heights of the majority of IMs used in current clinical treatments are around 5, and an optimal

solution for the basic case on such an IM is often very close to an optimal solution for the general

case.
The rest of this section is organized as follows. In Section 3.2, we consider the special SLS case

that the input IM has a single row. In Section 3.3, we consider the special SLS case that the input

IM has only $0$ or 1 in its cells. In Section 3.4, we study the 3-D SLS problem.

3.2 The $1-D$ SLS Problem

When the input IM is of a single row, the 3-D SLS problem reduces to the 1-D case. The input

IM becomes a one-dimensional intensity proMe and the output MLC-apertures become a set of leaf
openings with weighted intensity levels (see Figure 5). Such openings are obtained by setting the
left and right leaves of an MLC leaf pair to specific positions. The goal is to minimize the number
of leaf openings.

The basic $1-D$ SLS problem, in which the output leaf openings are required to have unit
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weights, can be easily solved using a sweeping method proposed by Boyer and Yu [17]. The method
first distinguishes the left and right ends along the intensity profile curve, and then uses a greedy
approach to generate a delivery option, i.e., a valid pairing in which a left end is always paired with
a right end on its right. An interesting question is how to generate all possible delivery options for a
basic 1-D SLS instance. Yu [80] pointed out that for an IM row with $N$ left ends and $N$ right ends,
there are in the worst case $N!$ delivery options. Webb [74] presented a general formula for determining
the total number of delivery options for an arbitrary IM row, and showed that this number in general
tends to be considerably smaller than $N!$ . Luan et al. [56] gave an efficient algorithm for producing all
possible delivery options which runs in optimal time, linearly proportional to the number of output
delivery options. The key idea of the algorithm is to impose an order onto how the left and right
ends should be paired: it recursively pairs the r\’ightmost unpaired left end with an unpaired right
end such that the pair does not define an illegal opening.

The general $1-D$ SLS problem, in which the output leaf openings are not required to have unit
weights, is NP-hard [7, 22]. It is quite easy to observe that a horizontal trapezoidal $de\infty mposition$ of
the input intensity profile curve yields a 2-approximation solution for the general 1-D SLS problem
(e.g., see Figure 5).

Bansal et al. [8] modeled the general 1-D SLS problem as a maximum partition problem of prefix
positive zero sum vectors, and proposed several approximation algorithms with approximation ratio
less than 2. For the unimodal input intensity $profi,le$ curves, i.e., of only one peak, they gave a $\frac{9}{7}$

approximation algorithm by reducing the general 1-D SLS problem to the set packing problem [43].
For arbitrary input intensity profile curves, they gave a $\frac{24}{13}$ approximation based on rounding the
solution of a certain linear programming problem.

Independently, Chen et al. [21] studied the shape rectangularizarion $(SR)$ problem of finding
minimum set of rectangles to build a given functional curve, which turns out to be equivalent to the
general 1-D SLS problem. They presented a $(; +\epsilon)$-approximation algorithm for the SR problem.
They pointed out two interesting geometric observations: (1) For the SR problem, it is sufficient to
consider only a special type of rectangle sets, called canonical rectangle sets, in which the left and
right ends of the rectangles coincide with the left and right ends of the input intensity profiles; (2)
An optimal rectangle set which is also canonical is isomorphic to a forest of weighted trees. Based
on the above observations, they proposed a combinatorial optimization problem, called the $p$rimary
block set (PBS) problem[21], which is related to the SR problem in the sense that for any $\mu\geq 2$ , a $\mu-$

approximation PBS algorithm immediately implies a $(2_{\vec{\mu}}^{1}-)$-approximation SR algorithm. Further,
they showed that the PBS problem can be reformulated, in polynomial time, as a multicommodity
demand flow (MDF) problem [19] on a path. Chekuri et al. [19] gave a polynomial time $(2+\epsilon)-$

approximation algorithm for the MDF problem on a path when the maximum demand dmax is $\leq$

the minimum capacity $c_{m1n}$ . Chen et al. [21] extended Chekuri et al.’s result and gave a $(2+\epsilon)-$

approximation algorithm for the MDF problem on a path when $d_{\max}\leq\lambda\cdot c_{\tau n\dot{*}n}$ , where $\lambda>0$ is any
constant. This leads to a $(_{\mathfrak{T}}^{3}+\epsilon)$-approximation algorithm for the SR problem when $M_{f}\leq\lambda\cdot m_{f}$ ,
where $m_{f}$ (or $M_{f}$) is the global positive minimum (or maximum) of the input intensity profile curve
$f$ .
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3.3 The 2-D SLS Problem

$W^{r}hen$ the input $n\prime I$ has only $0$ or 1 in its cells, the 3-D SLS problem becomes a 2-D one (called

the $2-D$ SLS problem), and an optimal set of MLC-apertures is just a minimum set of rectilinear

y-monotone simple polygons. For MLCs with the minimum separation constraint, each rectilinear

y-monotone simple polygon must be have a minimum width $\geq\delta$ (the parameter $\delta$ represents the

minimum separation constraint discussed in Section 2.1). As shown in Section 3.4, a good algorithm

for partitioning a rectilinear polygonal region (possibly with holes) into a minimum set of rectilinear
y-monotone simple polygons can become a key procedure for solving the genera13-D SLS problem.

Chen et al. [23] presented a unified approach for solving the minimum y-monotone partition

problem on an n-vertex polygonal domain (possibly with holes) in various settings. This problem

can be reduced to computing a maximum bipartite matching. But, due to the specific geometric

setting, an explicit construction of the underlying bipartite graph for a maximum matching is too

costly. They over$\infty me$ this difficulty by reducing the matching problem to a maximum flow problem

on a geometric graph. Since the matching information is implicitly stored in the flow graph, they use

a special depth-first search to find an actual optimal matching. Thus, an $O(n^{2})$ time algorithm is

obtained for partitioning a polygonal domain (possibly with holcs) into a minimum set of y-monotone

parts, improving the previous $O(n^{3})$ time algorithm [55] (which works only for the simple polygon

case). The ideas can be extended to handling the minimum separation constraint by modifying the

edge capacities of the flow graph.

3.4 The 3-D SLS Problem

In this subsection, we study the 3-D SLS problem, which seeks a minimum set $S$ of MLC-apertures

(together with their weights) for delivering the a given IM.

3.4.1 The Basic $3-D$ SLS Problem

The basic $-D SLS problem, in which the all weights of the MLC-apertures are required to be 1,

has been studied under different MLC constraints. For MLCs that are not subject to the minimum

separation constraint nor the interleaf motion constraint, the problem can be easily reduced to

the basic 1-D SLS problem (see Section 3.4), since each leaf pair is fully independent. For MLCs
subjective to the minimum separation constraint but not the interleaf motion constraint, Kamath

et al. [46] gave an algorithm that generates an optimal MLC-aperture set. The algorithm first

generates an optimal MLC-aperture set without considering the minimum separation constraint,

and then performs a sweeping of the IM field; during the sweeping, it repeatedly detects instances

of violation and eliminates them accordingly.
For MLCs subjective to both the minimum separation and interleaf motion constraints, Chen $et$

al. [25] modeled the corresponding &D SLS problem as an optimal terrain construction problem. To

compute an optimal set of MLC-apertures for the IM, the algorithm builds a graph $G:(1)$ Generate

all distinct delivery options for each IM row. and let every vertex of $G$ correspond to exactly one
such delivery option; (2) for any two delivery options for two consecutive IM rows, put left-to-right

directed edges whose weights are determined by the optimal bipartite matchings between the leaf
openings of the two delivery options. The basic &D SLS problem is then solved by finding a shortest

path in the graph $G[25]$ .
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This algorithm, however, it does not handle two crucial issues well. The first issue is on the
worst case time bound of the algorithm has a multiplicative factor of $N!$ . Recall that there can be
$N!$ distinct dclivery options in the worst case for every IM row (see Section 3.2). The sccond issue
is on the optimality of the MLC-aperture set produced. Since the algorithm uses only the minimal
delivery options for each IM row to compute a set of MLC-apertures (i.e., each such delivery option
has the minimum number of leaf opening for building the corresponding IM row), the output may
not be truly optimal. It is possible that a truly optimal MLC-aperturc set for an IM need not use a
minimal delivery option for each row; instead, some of the delivery options used may be defined by
Steiner points [23].

Chen et al.[23] proposed a polynomial time basic 3-D SLS algorithm that can handle the above
two issues. The key idea is based on new geometric observations which imply that it is sufficient to
use only very few special delivery options, which they called canonical delivery options, for each IM
row without sacrificing the optimality of the output MLC-aperture set. This produces guaranteed
optimal quality solutions for the case when a constant number of Steiner points is used on each IM
row.

3.4.2 The Genera13-D SLS Problem

We now study the general $3-D$ SLS problem, in which the weights of the MLC-apertures can be
arbitrary positive integers.

Several heuristic methods for the general &D SLS problem have been proposed [11, 12, 13, 14, 15,
16, 29, 30, 35, 41, 74, 79]. They all have several main steps: (1) Choose the upper monotone boundary
of an MLC-aperture (by using somc simple criteria), (2) choose the lower monotone boundary, (3)
check whether the two monotone boundaries enclose an MLC-aperture, and (4) output the MLC-
aperture thus obtained. These steps are repeated until the entire IM is built. Depending on where
the upper monotone boundary is placed, these algorithms are further classified ss either the “sliding
window” or “reducing level” methods. The sliding window methods always place the upper monotone
boundary at the boundary of the planar projection of the remaining IM to be built, while the reducing
level methods normally set the upper monotone boundary at the place with the maximum height of
the remaining IM.

Chen et al. [23] presented a heuristic algorithm for the genera13-D SLS problem based on their
solutions for the 2-D SLS problem (see Section 3.3 and basic 3-D SLS problem (see Section 3.4.1).
To make use of the 2-D SLS algorithm and basic 3-D SLS algorithm, they partition the input IM
into a “good“ set of sub-IMs, such that each sub-IM can be handled optimally by one of these two
algorithms (i.e., each resulting sub-IM must be of a uniform height, or the maximuun height of each
such sub-IM should be reasonably small, say, $\leq 5$). The partition is carried out in a recursive fashion
and for each recursive step, several partition schemes are tested and compared, and the algorithm
finally chooses the best result using dynamic programming.

Luan et al. [57] gave two approximation general 3-D SLS algorithms for MLCs without the
minimum separation constraint nor the interleaf motion constraint (e.g., the Varian MLC). The
first is a $(\lceil\log h\rceil+1)$-approximation where $h>0$ is the largest entry in the IM. The second is a
$2(|’\log D\rceil+1)$ -approxima.tion algorithm where $D$ is the maximum element of a set containing 1) all
absolute differences between any two consecutive row entries over all rows, 2) the first entry of each
row, 3) the last entry of each row, and 4) the value 1. The main ideas include (1) 2-approximation
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algorithm for the single-row case, and (2) an IM partition scheme that partitions the input IM into
logarithmic number of sub-IMs with weights that are all powers of 2. These two algorithms have a
mnning time complexity of $O(mn\log h)$ and $O(mn\log D)$ , respectively.

4 Static Leaf Sequencing with Tongue-and-Groove Error Control

In this section, we study the static leaf sequencing (SLS) problem with tongue-and-groove error
control, i.e., we will seek to minimize both the delivery time and the tongue-and-groove error. As
we will show later in this section, there is actually a trade-off between these two criteria. Thus
this problem has been studied in two variations: (1) minimizing the delivery time subject to the
constraint that the tongue.and-groove error is completely eliminated [24, 49, 65]. (2) mininizing
the delivery time subject to the constraint that the tongue-and-groove error is no more than a given
error bound [22].

Que et al. [65] gave a heuristic SLS algorithm that eliminates the tongue-and-groove error based
on the “sliding-windows” method proposed by Bortfeld et al. [13]. The algorithm, however, does
not guarantee optimal delivery time, either in terms of beam-on time or in terms of the number of
MLC-apertures.

Kamath et al. [49] gave an SLS algorithm that minimizes beam-on time of the output plan sub-
jective to the constraint that the tongue-and-groove error is completely eliminated. Their algorithm
consists of a scanning scheme they proposed earlier [46] for solving the SLS problem with mini-
mum beam-on time (and without tongueand-groove error control), and a modification scheme that
rectifies that possible tongue-and-groove error violation.

Chen et al. [22] presented a graph modeling of the basic SLS problem (i.e.. each MLC-aperture
is of unit weight) with a tradeoff between the $tongue\cdot and$-groove error and the number of MLC
apertures, and an efficient algorithm for the problem on the Elekta MLC model, which has both the
minimum separation and interleaf motion constraints. In their solution, the problem is formulated as
a k-weight shortest path problem on a directed graph, in which each edge is defined by a minimum
weight g-cardinality matching. Every such k-weight path specifies a set $S$ of $k$ MLC-apertures for
delivering the given IM, and the cost of the path indicates the tongue-and-groove error of the set $S$

of MLC-apertures. Chen et al. [22] also extended the above algorithm to other MLC models, such as
Siemens and Varian, based on computing a minimum g-path cover of a directed acyclic graph. They
used a partition scheme developed in paper [23] for handling the general case, i.e., each MLC-aperture
can be of an arbitrary weight.

Chen et al. [24] presented an algorithm for SLS problem with minimum number of MLC-apertures
subjective to the constraint that the tongue-and-groove error is completely eliminated. The main
ideas of their algorithm include:. A novel IM partition scheme, called mountain reduction, for reducing a “tall” 3-D IM (moun-

tain) to a small set of “low” sub-IM mountains that introduces no tongue-and-groove error. (In

contrast, the partition scheme used in paper [22] may introduce $tonguearrow and$-groove error.) The
key to their mountain reduction scheme is the $pmfile- poesen\dot{n}ng$ mountain cutting (PPMC)
problem, which seeks to cut an IM $A$ into two IMs $qB$ and $C$ (i.e., $A=q\cdot B+C$ , where
$q\geq 2$ is a chosen integer), such that $qB$ and $C$ have the same profile as $A$ . Two IMs $M’$

and $M”$ are said to have the same prvfile if for all $i,j,$ $M_{ii}’\geq M_{i,j+1}’\Leftrightarrow M_{i,j}’’\geq M_{1d+1}’’$ and
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$M_{i,j}’\leq M_{i,j+1}’\Leftrightarrow M_{i_{1}j}’’\leq M_{i_{\theta}+1}’’$ . They showed that the profile-preserving cutting introduces no
tongue-and-groove error. They formulated this PPMC problem as a bottleneck shortest path
(BSP) problem on a DAG $G’$ of a pseudo-polynomial size. By exploiting interesting properties
of this DAG, they compute the BSP by searching only a small (linear size) portion of $G’$ and
achieve an optimal linear time PPMC algorithm.. An efficient graph based algorithm for partitioning a sub-IM into a minimum number of MLC-
apertures without tongue-and-groove error. They directly incorporated the zero tongue-and-
groove error constraint with the previous graph-based algorithm proposed in paper [22], and
by exploiting geometric properties, they show that the size of the graph can be significantly
reduced and computing the weights of edges can be done in a much faster manner using a new
matching algorithm.

5 Field Splitting

In this section, we study a few geometric partition problems, called fidd splitting, which arise in
intensity-modulated radiation therapy. Due to the maximum leaf spread constraint (see Section
2.1), an MLC cannot enclose an IM of a too large width. For example, on one of the most popular
MLC systems called Varian, the maximum leaf spread constraint limits the maximum allowed field
width to about 14.5 cm. Hence, this necessitates a $largearrow width$ IM field to be split into two or more
adjacent subfields, each of which can be delivered separately by the MLC subject to the maximum
leaf spread constratnt [32, 42, 75]. But, such IM splitting may result in a prolonged beam-on time
and thus affect the treatment quality. The fleld splitting problem, roughly speaking, is to split
an IM of a large width into several subfields whose widths are all no bigger than a threshold value,
such that the total beam-on time of these subfields is minimized.

In this section, we will focus our discussion on the Varian MLCs, whose maximum spread thresh-
old value $(i.e., 14.5cm)$ is the smaUest among existing popular MLCs and where the field splitting is
often needed for medium and large size tumor cases. Henceforth, we always assume the MLC under
discussion do not have the minimum separation constraint nor the interleaf motion constraint.

Engel [34] showed that for an IM $M$ of size $mxn$ , when $n$ is no larger than the maximum allowed
field width $w$ , the minimum beam-on time (MBT) of $M$ is captured by the following formula

$MBT(M)= \max_{i=1}^{m}\{M_{i,1}+\sum_{j=2}^{n}\max\{0, M_{i_{1}j}-M_{i_{\dot{\theta}}-1}\}\}$ (2)

Engel also described a class of algorithms achieving this minimum value.
Geometrically, we distinguish three versions of the field splitting problem based on how an IM is

split (see Figures $6(c)- 6(e)$ ) $:(1)$ splitting using vertical lines; (2) splitting using y-monotone paths;
(3) splitting with overlapping. Note that in versions (1) and (2), an IM cell belongs to exactly one
subfield; but in version (3), a cell can belong to two adjacent subfields, with a nonnegative value
in both subfields, and in the resulting sequence of subfields, each subfield is allowed to overlap only
with the subfield immediately before or after it.

Kamath et $d$. $[50]$ studied the field spliuing using vertical lines (FSVL) problem with minimum
total $MBT$, i.e., the sum of the MBTs of the resulting subfields. Their algorithm worked in a brute
force manner and split a size $mxn$ IM using vertical lines into at most three subfields (i.e., $n\leq 3w$
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Figure 6: (a) An MLC. (b) An IM. $(c)-(e)$ Examples of splitting an IM into three subfields, $M_{1},$ $M_{2}$ ,
and $M_{3}$ , using vertical lines, y-monotone paths, and with overlapping, respectively. The dark cells
in (e) show the overlapping regions of the subfields; the prescribed dose in each dark cell is divided
into two parts and allocated to two adjacent subfields.

for their algorithm, where $w$ is the maximum allowed field width), and took $O(mn^{2})$ time. Wu [77]

formulated the FSVL problem that splits IMs of arbitrary widths into $k\geq 3$ subfields as a k-link
shortest path problem in a directed acyclic graph. Each vertex in the graph represents a possible

splitting line, and each edge represents the subfield enclosed by the two lines and is assigned a weight

which equals $t$he MBT for its associated subfield. With a carefully characterization of the intrinsic
structures of the graph, an $O(mnw)$ time algorithm was achieved.

Chen and Wang [27] studied the field splitting using y-monotone paths (FSMP) problem. Their
key observation is that there are at most a number of $mw+1$ , instead of $O((w+1)^{m})$ , candidates
for the leftmost y-monotone path used in the splitting need to be considered. They then showed
that all these candidate paths can be enumerated efficiently by using a heap data stmcture and an
interesting new method called MBT-sweeping[27]. Further, they exploited the geometric properties

of the underlying field splitting problem to speed up the computation of the total MBT of the induced
subfields. The resulting FSMP algorithm took polynomial time as long as the number of subfields is

a constant.
The field spliuing with overlapping $(FSO)$ problem has also been studied. Kamath et al. [47]

studied a special FSO case in which an IM is split into at most three overlapping subfields and the

overlapping regions of the subfields are fixed; a greedy scanning algorithm is proposed that produces

optimal solutions in $O(mn)$ time for this special case. In fact, it was pointed out in paper [27] that

by considering all possible combinations of overlapping regions, the algorithm in [47] can be extended
to solving the general FSO problem, i.e., the overlapping regions of the subfields are not fixed and
the number $d$ of resulting subfields is any integer $\geq 2$ , in $O(mnw^{d-2})$ time.

Chen and Wang $[27|$ presented an $O(mn+mw^{d-2})$ time FSO algorithm, improving the time
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bound of Kamath et al.’s algorithm[47] by a factor of $\min\{w^{d-2}, n\}$ . The algorithm hinges on a
$nonarrow trivial$ integer linear programming (ILP) formulation of the field splitting with fixed overlapping
(FSFO) problem. Basically, this is the FSO problem subject to the constraint that the sizes and
positions of the $d$ sought subfields are all fixed. They showed that the constraint matrix of the
induced ILP problem is totally unimodular [64], and thus the ILP problem can be solved optimally
by linear programming (LP). Further, they showed that the dual of this LP is a shortest path problem
on a DAG, and the FSFO problem is solvable in totally $O(mn)$ time. The algorithm then reduced
the original FSO problem to a set of $O(w^{d-2})$ FSFO problem instances. They pointed out that under
the ILP formulation of the FSFO problem, with an $O(mn)$ time preprocess, each FSFO instance is
solvable in only $O(m)$ time. This finally gave an $O(mn+mw^{d-2})$ time FSO algorithm.

6 Dose Simplification

In this section, we study the dose simplification problem that arises in IMRT. During the IMRT
treatment planning process, the shapes, sizes, and relative positions of a tumor volume and other
surrounding tissue are determined by &D image data, and an “ideal” radiation distribution is com-
puted by a computer system. Without loss of generality, let the z-axis be the beam orientation. Then
this “ideal” radiation distribution is a function defined on the xy-plane (geometrically, it is a 3-D
functional surface above the xy-plane), which is usually of a complicated shape and not deliverable
by the MLC. Thus, the ”ideal” radiation distribution must be ”simplified” to a discrete IM (see
Section 1), i.e., a discrete IM approximates the “ideal” distribution under certain criteria. In some
literature, a “ideal“ radiation distribution is also referred to as a continuous $IM$.

The dose simplification problem has been studied under two major variants, depending on how
the complexity of a (discrete) IM is defined:. (Clustering) If the complexity of an IM is defined by the number of distinct intensity levels in

the IM, then the dose simplification problem can be modeled as a constrained $1-D$ K-means
clustering problem [9, 20, 61, 78]: Given an “ideal” radiation distribution of size $mxn$, the
$mn$ intensity values in the distribution need to be grouped into $K$ clusters for the smallest
possible number $K$ , such that the maximum difference between any two intensity values in
each cluster is no bigger than a given bandwidth parameter $\delta$ and the total sum of variances
of the $K$ clusters is minimized. The resulting clusters are then used to specify a discrete IM.

$\bullet$ (Shape Approximation) If the complexity of an IM is defined by the number of MLC-apertures
required to deliver the IM, then the dose simplification problem can be modeled as a shape
approximation problem: Given an “ideal“ radiation distribution, find $K$ MLC-apertures for the
smallest possible number $K$ , such that the approximation error between the “ideal” radiation
distribution and the discrete IM (defined by the sum of the $K$ MLC-apertures) is within a
given error bound $\mathcal{E}$ .

Several algorithms for the constrained 1-D K-means clustering problems have been given in
medical literature and used in clinical IMRT planning systems [9, 61, 78]. These algorithms use
heuristic numerical methods to determine the clusters iteratively [9, 61, 78], and can be trapped
in a local minimal. To the best of our knowledge, no theoretical analysis has been given on their
convergence speed.
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Chen et al. [20] presented an efficient geometric algorithm for computing optimal solutions to the

constrained 1-D K-means problem. They modeled the problem as a K-link shortest path problem

on a weighted directed acyclic graph (DAG). By exploiting thc Monge property [1, 2, 62, 76] of the
DAG, the algorithm runs in $o( \min\{Kn, n2^{\sqrt{}\overline{\log K\log\log n}}\})$ time.

The shape approximation variant of the dose simplification problem appears to be much harder.

Several papers [13, 21, 35, 73] discussed a simple version of the problem: Given a 1-D dose profile

functional curve $f$ , find a minimum set of rcctangles whose sum approximates $f$ within a given error
bound $\mathcal{E}$ . Due to its relation with the shape rectangularization problem (See Section 3.2), Chen
et al. [21] called this special case the generalized shape rectangularization (GSR) problem

and pointed out its NP-hardness. They also showed the relation between the GSR problem and
the forest of block towers (FBT) problem: an optimal FBT solution immediately implies a 2-
approximation GSR solution. Here, the FBT problem is a special GSR case in which the output

rectangles are required to satis$\mathfrak{b}^{r}$ the inclusion-exclusion constraint [13, 35], meaning that for any two
rectangles, either their projected intervals on the x-axis do not intersect each other (except possibly
at an endpoint), or one interval is fully contained in the other interval.

Some work has been done on the FBT problem in the medical field [13, 35, 73]. An approach

based on Newton’s method and calculus techniques was used in [35]; but, it works well only when the

input curve $f$ has few “peaks”, and must handle exponentially many cases as the number of “peaks”

of $f$ increases. Chen et al. [21] presented an FBT algorithm that produces optimal solutions for
arbitrary input curves. They made a set of geometric observations, which imply that only a finite set
of rectangles needs to be considered as candidates for thc sought rectangles, and a graph $G$ on such
rectangles can be built. They then modeled the FBT problem as a k-MST [4, 5, 6, 37, 39, 59, 60,

66, 84] problem in $G$ . By exploiting the geometry of $G$ , they gave an efflcient dynamic programming
based FBT algorithm.

7 Leaf Sequencing for Dynamic IMRT and Arc Modulated Radia-
tion Therapy

In this section, we study the dynamic leaf sequencing problem and the single-arc leaf sequencing
problem, i.e., the leaf sequencing problems for dynamic IMRT delivery and arc-modulated radiation
therapy (AMRT) (see Section 1), respectively.

7.1 Dynamic Leaf Sequencing (DLS)

Dynamic IMRT delivery is differcnt from static delivery in that the radiation beam is always on and
the leaf positions change with respect to time. The dynamic leaf sequencing (DLS) problem

seeks a set of trajectories of the left and right leaf tips of the MLC leaf pairs, i.e., the leaf tip position

at any time, to deliver a given IM with minimum total delivery time. Unlike the SLS problem (see

Section 3), we need to consider an additional MLC constraint, namely, the maximum leaf motion
speed constraint (see Section 2.1), in the DLS problem. Note that the actual delivered radiation
dose to an IM cell $A(i,j)$ in the IM $A$ , is proportional to the amount of time the cell is exposed to

the radiation beam, (i.e., the total time the cell is inside the leaf opening formed by the i-th MLC
leaf pair) during the dynamic delivery.
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Figure 7: (a) Illustrating the CPP problem: $p_{l}$ and $p_{r}$ are two non-crossing c-steep paths with $c=1$ ;
the darkened area shows the vertical section on the i-th column of the region enclosed by the two
paths, whose length corresponds to the amount of actually delivered radiation dose. (b) The input
(intensity) function $f$ for the CPP problem, which is defined on $\{$ 1,2, $\ldots$ , $n\}$ ; the darkened area
shows the value of $f$ at the i-th cell, which specifies the amount of prescribed dose at that cell.

Dynamic leaf sequencing (DLS) algorithms [13. 28, 45, 58, 70, 69] were given for exactly delivering
an input IM with a short delivery time, under the maximum leaf motion speed constraint. Spirou
and Chui’s algorithm [69] computes the MLC leaf trajectories for exactly delivering the input IM.
Their algorithm scans all IM cells ffom left to right, and when entering a new cell, produces the
corresponding leaf positions. They proved that the algorithm optimizes the delivery time under
the assumption that on each IM row, the corresponding MLC leaf tips always move from the left
boundary of the leftmost non-zero cell to the right boundary of the rightmost non-zero cell. Kamath
et al. [48] presented a DLS algorithm that can handle the interleaf motion MLC constraint, which
occurs in some MLC systems such as Elekta and Siemens. The algorithm interleaves a scanning
procedure similar to Spirou and Chui’s [69] with detecting and rectifying possible violations of the
interleaf motion constraint. The algorithm makes the same assumption on the starting and ending
leaf tip positions as the algorithm in paper [69].

Chen et al. [26] pointed out that the assumption on the starting and ending leaf tip positions
made in papers [48, 69] may sacrifice the optimality of the output DLS solution. For MLCs without
the interleaf motion constraint, they modeled the DLS problem as the following coupled path
planning (CPP) problem [26]. The problem is defined on a uniform grid $R_{g}$ of size $nxH$ for some
integers $n$ and $H$ such that the length of each grid edge is one unit. A path on the plane is said to be
xy-monotone if it is monotone with respect to both the x-axis and the y-axis. For an integer $c>0$ , an
xy-monotone (rectilinear) path $p$ along the edges of $R_{g}$ is said to be c-steep if every vertical segment
of $p$ is of a length at least $c$ (i.e., formed by $c$ or more grid edges) and every horizontal segment has a
unit length. The CPP problem is defined as follows: Given a non-negative function $f$ defined on the
integer set $\{$ 1, 2, $\ldots,$

$n\}$ and positive integers $c$ and $\Delta(\Delta\leq H)$ , find two non-crossing c-steep paths
on $R_{g}$ , each starting at the bottom boundary and ending at the top boundary of $R_{g}$ , such that the
two paths, possibly with the bottom and top boundaries of $R_{g}$ , enclose a (rectilinear) region $P$ in
$R_{g}$ such that (1) for any column $C_{i}$ of $R_{g}$ , the vertical length of the intersection between $C_{i}$ and $P$

approximates the function value $f(i)$ (i.e., the value of $f$ at i) within the given error bound $\Delta$ (see
Figures $7(a)- 7(b))$ , and (2) the total sum of errors on $P$ is minimized. Note that in the CPP problem,
$f$ corresponds to the intensity profile function specifying one row of an IM (see Figure $7(b)$ ), and the
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two output paths specify the moving trajectories of the two MLC leaf tips, i.e., the leaf tip position

(the x-coordinate) at any unit time (the y-coordinate). The maximum motion speed constraint of

MLC is reflected in the c-steepness constraint on the paths. The CPP problem basically seeks to

minimize the total approximation error of delivery within a given amount $H$ units of delivery time.

Chen et al. [26] presented a novel approach based on interesting geometric observations for the

CPP problem. The key idea is to formulate the problem as computing a shortest path in a weighted

directed acyclic graph of $O(nH\Delta)$ vertices and $O(nH^{2}\Delta^{2})$ edges. They exploited a set of geometric

properties, such as certain domination relations among the vertices, to speed up the shortest path

computation, resulting in an $O(nH\Delta)$ time CPP algorithm. One unique feature of their algorithm

is it computes a tradeoff between the delivery time and the approximation error.

7.2 Arc Modulated Radiation Therapy

Arc modulated radiation therapy (AMRT) is a newly patented IMRT delivery technique !82]. In

an AMRT delivery, the beam source rotates along a single arc path in 3-D, and for every $\theta$ degrees

(usually $\theta=10$), a prescribed intensity map (IM) of size $mxn$ is delivered towards the target regions.

A key problem in AMRT delivery is the so-called single-arc leaf sequencing (SALS) problem,

which seeks to optimally convert a given set of $K$ IMs (with $K=\ovalbox{\tt\small REJECT}$ ) into MLC leaf trajectories.

The MLC is assumed to be free of the interleaf motion constraint, and thus each MLC leaf pair is

treated independently.
Chen et $al[26]$ pointed out the close relation between the SALS problem and the constrained CPP

problem, which is a special version the CPP problem (see Section 7.1) where the starting and ending

points of the sought paths are given as part of the input. Based on a graph modeling, it was shown

[26] that the SALS problem can be $\infty mputed$ by solving the set of all constrained CPP problem

instances. More specifically, for all possible combinations of starting and ending leaf pair positions,

the optimal solutions are sought for the corresponding constrained CPP instances (in total, there are
$O(n^{4})$ problems instances). They proposed a non-trivial graph transformation scheme that ailows a

batch fashion computation of the instances. Further, the shortest path computation is accelerated
by exploiting the Monge property of the transformed graphs. Consequently, an $O(n^{4}\Delta+n^{2}H\Delta^{2})$

time algorithm was given for solving the set of all constrained CPP problem instances. The final

SALS algorithm takes $O(Kmn^{2}\Delta(n^{2}+H\Delta))$ time.

8 Concluding Remarks

As pointed out by Webb [73], two of the most important developments in improving the quality

of radiation therapy are (1) the introduction of intensity maps in the treatment planning stage to

approximate the geometric shape of the plaming target volume, and (2) the usage of multileaf

collimators in the treatment delivery stage to geometrically shape the radiation beams. These devel-

opments are at the leading edge of the field and call for effective and efficient methods for treatment
planning and delivery. In this paper, we have discussed various geometric and combinatorial prob-

lems that arise in the treatment planning and the treatment delivery phases of intensity-modulated

radiation therapy.
There are many exciting and important computational problems in IMRT that are yet to be

solved. We would like to discuss some of the open problems and research directions that are likely
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to receive considerable attention in the future:. For the general 3-D SLS problem discussed in Section 3.4.2, the existing approximation algo-
rithm by Luan et al. [57] has an approximation ratio related to the complexity of the input
IM and applies to MLCs without the interleaf motion constraint and the minimum separation
constraint. However, what about the MLCs (e.g., Elekta and Siemens MLCs) that have one
or both of these constraints? And is it possible to achieve a polynomial time algorithm with
better approximation ratio, say a constant?. Current field splitting algorithms (see Section 5) all target at the Varian MLCs which are not
subject to the interleaf motion constraint and seek to minimize the total beam-on time. Can
one extend the those field splitting algorithms to other types MLCs? Also, is it possible to
develop efficient field splitting algorithms that minimize the total number of MLC-apertures?. The shape approximation variant of the dose simplification problem still remains to be intrigu-
ing. The FBT algorithm (see Section 6) presented is a weakly polynomial time algorithm. Is it
possible to develop strongly polynomial time algorithms for the FBT problem? Also, can we de-
velop approximation algorithms for the shape approximation variant of the dose simplification
problem. which is known to be NP-hard?

$\bullet$ For the dynamic leaf sequencing problem, the coupled path planning based algorithm (see
Section 7.1) produces truly optimal solutions for MLCs without the interleaf motion constraint.
Is is possible to extend this algorithm so that it can handle MLCs with the interleaf motion
constraint?

$\bullet$ Recent development of radiation therapy calls for the combination of IMRT with Image-guided
radiation therapy (IGRT). IGRT is a process of using various imaging technologies to locate
a tumor target prior to a radiation therapy treatment. This process is aimed to Improve the
treatment accuracy by eliminating the need for large target margins which have traditionally
been used to compensate for errors in localization. Advanced imaging techniques using CT,
MRI, and ultrasound are applied to accurately delineate treatment target. One key problem
arising in IGRT is the $s\triangleright caUed$ medical image registration problem, which aims to trans-
form one set of medical image data into others (e.g. data of the same patient taken at different
points in time). The main difficulty here is to cope with elastic deformations of the body
parts imaged. Existing medical image registration algorithms generally require lots of human
interaction in order to find a satisfactory transformation, and do not work well for deformable
cases. We believe the underlying problem could be formulated by some special matching and
flow problems in graphs.
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