Title	A Solution to a Problem posed by S．Manni and the Related Topics（New A spects of A nalytic Number Theory）
Author（s）	Ozeki，Michio
Citation	数理解析研究所講究録（2009），1639：149－163
Issue Date	2009－04
URL	http：／hdl．handle．net／2433／140548
Right	
Type	Departmental Bulletin Paper
Textversion	publisher

A Solution to a Problem posed by S．Manni and the Related Topics

弘前大学•理工学部 小関 道夫（Michio Ozeki）
Faculty of Science and Technology，Hirosaki University

29．October 2008

1 Introduction

Throughout this talk we consider only positive definite even unimodular lattces．
S．Manni［12］proved
Theorem 1．1．In 56 （resp．72）dimensional even unimodular extremal lattices，the theta series associated to such lattices we can say that in degree 3 their difference is，up to a multiplicative，possibly 0 ，constant，and equal to χ_{28}（resp．χ_{36} ）．

In 40 dimensional lattices，if two extremal theta series are equal in degree 2，then in degree 3 their difference is up to a multiplicative，possibly 0 ，constant，and equal to χ_{20} ．

He then wrote

Find two even unimodular extremal lattices L_{1} and L_{2} of rank 40 whose theta series coincide in degree 2 and differ in degree 3．Besides this he posed the problems in ranks 32,48 and 56.

In the present report we show that there are 40 dimensional two even unimodular extremal lattices coming from two doubly even self－dual extremal codes，whose theta series of degree 2 coincide and theta series of degree 3 differ definitely．We also show an instance of two another even unimodular extremal lattices coming from another two doubly even self－dual extremal codes，whose theta series of degree 2 and degree 3 coincide．These are shown by computing some beginning Fourier coefficients of theta series of the lattices in question combined with some facts on the dimensions of the linear spaces of Siegel modular forms already proved by other people． S．Manni［12］also proved

Theorem 1．2．In 32 （resp．48）dimensional even unimodular extremal lattices，about the theta series associated to such lattices we can say that
（i）it is unique in degree 3，
（ii）in degree 4 their difference is，up to a multiplicative（possibly 0）constant，equal to a power of Schottky＇s polynomial J．

He then wrote
Find two even unimodular extremal lattices L_{3} and L_{4} of rank 32 or 48 whose theta series differ in degree 4.
We dicuss some related trials to this problem．

2 A brief account

2.132 dimensional case

Erokhin［6］proved
Theorem 2．1．If two 32 dimensional even unimodular lattices have identical theta series of degree 1 ，then they have identical theta series of degrees up to 3 ．

Venkov［28］，［29］gave a method to compute some Fourier coefficients of Siegel theta series of degree 3 associated with even unimodula extremal 32 dimensional lattices．

2.240 or higher dimensional cases

The 40 dimensional case is our present topic. There is not any explicit result for the 48 dimensional and 56 dimensional cases along with Manni's questions. The reasons for this would be the facts that there are few explicit constructions of lattices and that they are constructed through ternary codes. In 32 dimensional case our present method will apply to Manni's problem, but we have not pursued this case since the shapes of minimal vectors in an extremal 32 dimensional lattice are complicated.

3 Some Basics

3.1 Lattice

A lattice L of rank n (or dimension n) is a \mathbb{Z}-module generated by the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ in \mathbb{R}^{n} that are linearly independent over \mathbb{R}. The vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are called the basis of L.
L is integral if the inner product (\mathbf{x}, \mathbf{y}) belongs to $\mathbb{Z} \quad$ for all pairs \mathbf{x} and \mathbf{y} in L.

The dual lattice $L^{\#}$ of L is defined to be

$$
L^{\#}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid(\mathbf{x}, \mathbf{y}) \in \mathbb{Z},{ }^{\forall} \mathbf{x} \in L\right\}
$$

A lattice L is unimodular if it holds that $L=L^{\#}$.
A lattice L is even if any element \mathbf{x} of L has even norm (\mathbf{x}, \mathbf{x}).
Even unimodular lattices exist only when $n \equiv 0(\bmod 8)$.
$\operatorname{Min}(L)=\min _{0 \neq \mathbf{x} \in L}(\mathbf{x}, \mathbf{x})$
When L is even unimodular of rank n it holds that

$$
\operatorname{Min}(L) \leq 2\left[\frac{n}{24}\right]+2
$$

A lattice which attains the above maximum is called an extremal lattice.
Let L be an even unimodular lattice of rank n.
$\Lambda_{2 m}(L)$: The set of \mathbf{x} in L with $(\mathbf{x}, \mathbf{x})=2 m(m \geq 1)$.

3.2 Siegel modular forms

The symplectic group $S p_{g}(\mathbb{R})$ of degree g over \mathbb{R} is defined to be

$$
\begin{aligned}
& S p_{g}(\mathbb{R})= \\
& \quad\left\{\left.M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in M_{2 g}(\mathbb{R}) \right\rvert\,{ }^{t} M J M=J, J=\left(\begin{array}{cc}
O & -I_{g} \\
-I_{g} & O
\end{array}\right)\right\}
\end{aligned}
$$

Siegel modular group $S p_{g}(\mathbb{Z})$ of degree g is a subgroup of $S p_{g}(\mathbb{R})$ consisting of elements in $S p_{g}(\mathbb{R})$ whose entries are in \mathbb{Z}. Let \mathbb{H}_{g} be the Siegel upper half-space of degree g :

$$
\mathbb{H}_{g}=\left\{\tau\left|\tau=X+Y i \in M_{g}(\mathbb{C}),\right|^{t} \tau=\tau, Y \text { is positive definite }\right\}
$$

A Siegel modular form of degree $g(g \geq 2)$ and weight k is a holomorphic complex valued function $f(\tau)$ defined on \mathbb{H}_{g} satisfying the condition :

$$
\begin{aligned}
& f\left((A \tau+B)(C \tau+D)^{-1}\right)= \\
& \quad(\operatorname{det}(C \tau+D))^{k} f(\tau) \quad \forall\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in S p_{g}(\mathbb{Z}) .
\end{aligned}
$$

Note that when $g=1$ an additional condition of the holomorphicity of f at the cusp is neccessary.

3.3 Siegel theta series

Siegel theta series of degree g attached to the lattice L is defined by

$$
\vartheta_{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\boldsymbol{g}} \in L} \exp \left(\pi i \sigma\left(\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{g}\right] \tau\right)\right)
$$

where τ is the variable on Siegel upper-half space of degree $g,\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{g}\right]$ is a g by g square matrix whose (i, j) entry is ($\mathbf{x}_{i}, \mathbf{x}_{j}$) and σ is the trace of the matrix.

Siegel theta series of degree g can be expanded to

$$
\vartheta_{g}(\tau, L)=\sum_{T} a(T, L) e^{2 \pi i \sigma(T \tau)}
$$

Here T runs over the set of positive semi-definite semi-integral symmetric square matrices of degree g, and $a(T, L)=\#\left\{\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{g}\right\rangle \in L^{g} \mid\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{g}\right]=2 T\right\}$.
Fact: Siegel theta series of degree g associated with an even integral unimodular lattice L of rank $2 k$ ($2 k$ is a multiple of 8) is a modular form of degree g and weight k.

3.4 Theta Functions with characteristics

$$
\begin{aligned}
& \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](\tau, Z)= \\
& \quad \sum_{N \in \mathbb{Z}^{g}} \exp \left\{2 \pi i\left[\frac{1}{2} t\left(N+\frac{\epsilon}{2}\right) \tau\left(N+\frac{\epsilon}{2}\right)+{ }^{t}\left(N+\frac{\epsilon}{2}\right)\left(Z+\frac{\epsilon^{\prime}}{2}\right)\right]\right\}
\end{aligned}
$$

Here $\epsilon, \epsilon^{\prime}$ are integral vectors of length g with entries 0 or $1, Z$ is a variable on \mathbb{C}^{g}, and τ is a variable on \mathbb{H}_{g}, the Siegel upper half space of genus g. For $g=2$ case

$$
\begin{aligned}
& \theta\left[\begin{array}{ll}
\epsilon_{1} & \epsilon_{2} \\
\epsilon_{1}^{\prime} & \epsilon_{2}^{\prime}
\end{array}\right](\tau, Z) \\
&=\sum_{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} \exp \left\{\pi i \left(\sum_{i, j=1}^{2} \tau_{i j}\left(n_{i}+\frac{\epsilon_{i}}{2}\right)\left(n_{j}+\frac{\epsilon_{j}}{2}\right)\right.\right. \\
&\left.\left.+2 \sum_{i=1}^{2}\left(n_{i}+\frac{\epsilon_{i}}{2}\right)\left(z_{i}+\frac{\epsilon_{i}^{\prime}}{2}\right)\right)\right\} \\
&= \sum_{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} q_{1}^{n_{1}^{2}+n_{1} \epsilon_{1}+\epsilon_{1}^{2} / 4} q_{2}^{n_{2}^{2}+n_{2} \epsilon_{2}+\epsilon_{2}^{2} / 4} q_{3}^{2 n_{1} n_{2}+\left(n_{2} \epsilon_{1}+n_{1} \epsilon_{2}\right)+\epsilon_{1} \epsilon_{2} / 2} \\
& \times \zeta_{1}^{2\left(n_{1}+\epsilon_{1} / 2\right)} \zeta_{2}^{2\left(n_{2}+\epsilon_{2} / 2\right)} e^{\pi i\left[\epsilon_{1}^{\prime}\left(n_{1}+\epsilon_{1} / 2\right)+\epsilon_{2}^{\prime}\left(n_{2}+\epsilon_{2} / 2\right)\right]}
\end{aligned}
$$

Here $\tau_{i j}$ is the $i j$ entry of $\tau, Z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}, q_{1}=e^{\pi i \tau_{11}}, q_{2}=e^{\pi i \tau_{22}}, q_{3}=e^{\pi i \tau_{22}}, \zeta_{1}=e^{\pi i z_{1}}, \zeta_{2}=e^{\pi i z_{2}}$.

Two instances.

$$
\begin{aligned}
& \theta\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right](\tau, Z) \\
& =\sum_{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} q_{1}^{n_{1}^{2}} q_{2}^{n_{2}^{2}} q_{3}^{2 n_{1} n_{2}} \zeta_{1}^{2 n_{1}} \zeta_{2}^{2 n_{2}} \\
& \theta\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right](\tau, Z) \\
& =\sum_{\mathrm{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} q_{1}^{\left(n_{1}+1 / 2\right)^{2}} q_{2}^{n_{2}^{2} q_{3}^{2\left(n_{1}+1 / 2\right) n_{2}} \zeta_{1}^{2\left(n_{1}+1 / 2\right)} \zeta_{2}^{2 n_{2}}}
\end{aligned}
$$

3.5 Binary linear code

Let $\mathbb{F}_{2}=G F(2)$ be the field of 2 elements. Let $V=\mathbb{F}_{2}^{n}$ be the vector space of dimension n over \mathbb{F}_{2}. A linear $[n, k]$ code \mathbf{C} is a vector subspace of V of dimension k. An element \mathbf{x} in \mathbf{C} is called a codeword of \mathbf{C}. In V, the inner product, which is denoted by $\mathbf{x} \cdot \mathbf{y}$ for \mathbf{x}, \mathbf{y} in V, is defined as usual. Two codes \mathbf{C}_{1} and \mathbf{C}_{2} are said to be equivalent if and only if after a suitable change of coordinate positins of \mathbf{C}_{1} all the codewords in both codes coincide.
The dual code \mathbf{C}^{\perp} of \mathbf{C} is defined by

$$
\mathbf{C}^{\perp}=\{\mathbf{u} \in V \mid \mathbf{u} \cdot \mathbf{v}=\mathbf{0} \quad \forall \mathbf{v} \in \mathbf{C}\}
$$

The code \mathbf{C} is called self-orthogonal if it satisfies $\mathbf{C} \subseteq \mathbf{C}^{\perp}$, and the code \mathbf{C} is called self-dual if it satisfies $\mathbf{C}=\mathbf{C}^{\perp}$.

Self-dual codes exist only if $n \equiv 0(\bmod 2)$ and $k=\frac{n}{2}$
Let

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

be a vector in V, then the Hamming weight $w t(\mathbf{x})$ of the vector \mathbf{x} is defined to be the number of i s such that $x_{i} \neq 0$. The Hamming distance d on V is also defined by $d(\mathbf{x}, \mathbf{y})=w t(\mathbf{x}-\mathbf{y})$. Let \mathbf{C} be a code ,then the minimum distance d of the code \mathbf{C} is defined by

$$
\begin{aligned}
d & =\operatorname{Min}_{\mathbf{x}, \mathbf{y} \in \mathbf{C}, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y}) \\
& =\operatorname{Min}_{\mathbf{x} \in \mathbf{C}, \mathbf{x} \neq \mathbf{0}} w t(\mathbf{x}) .
\end{aligned}
$$

Let \mathbf{C} be a self-dual binary $\left[n, \frac{n}{2}\right.$] code, then the weight $w t(\mathbf{x})$ of each codeword \mathbf{x} in \mathbf{C} is an even number. Further, if the weight of each codeword \mathbf{x} in \mathbf{C} is divisible by 4 , then the code is called a doubly even binary code. It is known that doubly even self-dual binary codes \mathbf{C} exist only when the length n of \mathbf{C} is a multiple of 8.

Let \mathbf{C} be a self-dual doubly even code of length n, which are embedded in \mathbb{F}_{2}^{n}. Let $\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right), \mathbf{v}=$ $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be any pair of vectors in \mathbb{F}_{2}^{n}, then the number of common 1 's of the corresponding coordinates for \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} * \mathbf{v}$. This is called the intersection number of \mathbf{u} and \mathbf{v}, and $\mathbf{u} * \mathbf{u}$ is nothing else $w t(\mathbf{u})$.

3.6 Multiple weight enumerator

Let \mathbf{C} be a doubly even self-dual code of length n, and g be a positive integer and we let α run the set \mathbb{F}_{2}^{g} of g-tuple vectors. The 2^{g} algebraically independent over \mathbb{C} variables x_{α} are parametrized by $\alpha \in \mathbb{F}_{2}^{g}$. Let
$\mathbf{u}_{1}=\left(u_{1}^{1}, u_{1}^{2}, \cdots, u_{1}^{n}\right), \mathbf{u}_{2}=\left(u_{2}^{1}, u_{2}^{2}, \cdots, u_{2}^{n}\right), \cdots, \mathbf{u}_{g}=\left(u_{g}^{1}, u_{g}^{2}, \cdots, u_{g}^{n}\right)$ be the g-tuple codewords of \mathbf{C}. For each $\alpha \in \mathbb{F}^{g}$ a generalized weight
$w t_{\alpha}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{g}\right) \alpha$ is defined to be the number of coordinates $j(1 \leq j \leq n)$ such that the equation $\alpha=\left(u_{1}^{j}, u_{2}^{j}, \cdots, u_{g}^{j}\right)$ holds.
The multiple weight enumerator $\mathbf{W}_{g}\left(x_{\alpha} ; \mathbf{C}\right)$ of genus g for the code \mathbf{C} is defined by

$$
\mathbf{W}_{g}\left(x_{\alpha} ; \mathbf{C}\right)=\sum_{\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{g}\right) \in \mathbf{C}^{g}} \prod_{\alpha \in \mathbb{F}_{2}^{g}} x_{\alpha}^{w t_{\alpha}\left(\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{g}\right)}
$$

The multiple weight enumerator of second degree is called a biweight enumerator, and the multiple weight enumerator of third degree is called a triweight enumerator.

3.7 From binary codes to lattices

C : binary self-orthogonal $[n, k]$ code
Construction A_{2}

$$
\begin{array}{rl}
\rho: \mathbb{Z}^{n} & \rightarrow \mathbb{F}_{2}^{n} \\
U & U \\
\mathbf{x} & \mapsto \mathbf{x} \bmod 2 \\
L(C)=\frac{1}{\sqrt{2}} \rho^{-1}(C)
\end{array}
$$

Construction B_{2}

$$
\begin{aligned}
& \rho: \mathbb{Z}^{n} \rightarrow \mathbb{F}_{2}^{n} \\
& U \quad U \\
& \mathbf{x} \mapsto \mathbf{x} \bmod 2 \\
& M(C)= \\
& \frac{1}{\sqrt{2}}\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \rho^{-1}(C) \mid \sum_{i=1}^{n} x_{i} \equiv 0 \quad(\bmod 4)\right\}
\end{aligned}
$$

Doubling the density process:

Suppose that \mathbf{C} is a doubly even self-dual binary $[n, n / 2]$ code. Put

$$
\begin{gathered}
\gamma=\left\{\begin{array}{lll}
\frac{1}{\sqrt{8}}(1, \ldots, 1,-3) & \text { if } n \equiv 8 \quad(\bmod 16), \\
\frac{1}{\sqrt{8}}(1, \ldots, 1,1) & \text { if } n \equiv 0 \quad(\bmod 16)
\end{array}\right. \\
\mathcal{N}(C)=\mathcal{M}(C) \cup(\gamma+\mathcal{M}(C))
\end{gathered}
$$

We pick up peculiar codes. We denote the codes \mathcal{C}_{1} (respetively $\mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}$) the second code in [17], Yorgov's C_{5} ,Yorgov's code C_{2} and Yorgov's code C_{4} [?] respectively. The lattices constructed by the above process are denoted by $M_{11}=\mathcal{N}\left(\mathcal{C}_{1}\right), M_{12}=\mathcal{N}\left(\mathcal{C}_{2}\right), M_{13}=\mathcal{N}\left(\mathcal{C}_{3}\right)$ and $M_{14}=\mathcal{N}\left(\mathcal{C}_{4}\right)$ respectively.

3.7.1 40 dimensional case

We are particularly concerned with the set of minmal vectors $\Lambda_{4}(N(\mathbf{C}))$ in an extremal even unimodular lattice constructed from binary self-dual extremal $[40,20,8]$ code.
When \mathbf{C} is a doubly even self-dual binary [$40,20,8$] code, $\Lambda_{4}=\Lambda_{4}(N(C))$ consists of two kinds of vectors:

$$
\begin{array}{ll}
\Lambda_{4}^{1}=\left\{\frac{1}{\sqrt{2}}\left((\pm 2)^{2}, 0^{38}\right)\right\} & \text { number }=3120 \\
\Lambda_{4}^{2}=\left\{\frac{1}{\sqrt{2}}\left((\pm 1)^{8}, 0^{32}\right)\right\} & \text { number }=36480
\end{array}
$$

The set Λ_{4}^{1} forms a root system of type D_{40} scaled by a factor $\sqrt{2}$, and the vectors in the set Λ_{4}^{2} come from codewords of weight 8 in the code \mathbf{C}.
To each $\mathbf{y} \in \Lambda_{4}$ we associate a binary vector $\mathbf{v}=\operatorname{supp}(\mathbf{y}) \in \mathbb{F}_{2}^{40}$ which corresponds to non zero positions of \mathbf{y}.

3.8 Duke-Runge map

We explain the map by using the case $g=2$.
We put

$$
\varphi_{\epsilon}(\tau)=\theta\left[\begin{array}{l}
\epsilon \\
\mathbf{0}
\end{array}\right](2 \tau, 0)
$$

These are theta zero values with the variable τ multiplied by 2 . There are 2^{g} functions $\varphi_{\mathrm{e}}(\tau)$.

$$
\begin{aligned}
\varphi_{00}(\tau) & \\
= & \sum_{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} q_{1}^{2 n_{1}^{2}} q_{2}^{2 n_{2}^{2}} q_{3}^{4 n_{1} n_{2}} \\
= & 1+2 q_{1}^{2}+2 q_{2}^{2}+2 q_{1}^{2} q_{2}^{2}\left(q_{3}^{4}+q_{3}^{-4}\right)+2 q_{1}^{8}+2 q_{2}^{8} \\
& +2 q_{1}^{8} q_{2}^{8}\left(q_{3}^{16}+q_{3}^{-16}\right)+2 q_{1}^{8} q_{2}^{2}\left(q_{3}^{8}+q_{3}^{-8}\right) \\
& +2 q_{1}^{2} q_{2}^{8}\left(q_{3}^{8}+q_{3}^{-8}\right)+\cdots \\
& \\
& \\
\varphi_{10}(\tau) & \quad \sum_{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} q_{1}^{2\left(n_{1}+1 / 2\right)^{2}} q_{2}^{2 n_{2}^{2}} q_{3}^{4\left(n_{1}+1 / 2\right) n_{2}} \\
= & 2 q_{1}^{\frac{2}{2}}+2 q_{1}^{\frac{1}{2}} q_{2}^{2}\left(q_{3}^{2}+q_{3}^{-2}\right) \\
& +2 q_{1}^{\frac{1}{2}} q_{2}^{8}\left(q_{3}^{4}+q_{3}^{-4}\right) \\
& +2 q_{1}^{\frac{9}{2}}+2 q_{1}^{\frac{9}{2}} q_{2}^{2}\left(q_{3}^{8}+q_{3}^{-6}\right) \\
& +2 q_{1}^{\frac{8}{2}} q_{2}^{8}\left(q_{3}^{12}+q_{3}^{-12}\right)+\cdots
\end{aligned}
$$

Likewise $\varphi_{01}(\tau), \varphi_{11}(\tau)$ can be expanded. Let $\mathbf{W}_{g}\left(x_{\alpha} ; \mathbf{C}\right)$ be a multiple weight enumerator of genus g for a doubly even self-dual code \mathbf{C}, then $\mathbf{W}_{g}\left(\varphi_{c} ; \mathbf{C}\right)$ is proved to be Siegel theta series of degree g that is associated
with the lattice constructed by using Construction A_{2} in Section 3.7.
For instance

$$
\begin{aligned}
& W_{2}\left(x_{00}, x_{01}, x_{10}, x_{11} ;\right. \text { Ham } \\
& \quad=x_{00}^{8}+x_{01}^{8}+x_{10}^{8}+x_{11}^{8}+14\left(x_{00}^{4} x_{01}^{4}+x_{00}^{4} x_{10}^{4}+x_{00}^{4} x_{11}^{4}+x_{01}^{4} x_{10}^{4}+x_{01}^{4} x_{11}^{4}+x_{10}^{4} x_{11}^{4}\right)+168 x_{11}^{2} x_{10}^{2} x_{01}^{2} x_{00}^{2}
\end{aligned}
$$

is the biweight enumerator of the Hamming [8,4,4] code. And

$$
\begin{aligned}
& W_{2}\left(\varphi_{00}(\tau), \varphi_{01}(\tau), \varphi_{10}(\tau), \varphi_{11}(\tau) ; \text { Ham }\right) \\
&= 1+240 q_{2}^{2}+2160 q_{2}^{4}+6720 q_{2}^{6}+17520 q_{2}^{8}+30240 q_{2}^{10} \\
&+q_{1}^{2}\left[240+240 q_{3}^{4} q_{2}^{2}++240 / q_{3}^{4} q_{2}^{2}+13440 q_{3}^{2} q_{2}^{2}+13440 / q_{3}^{-2} q_{2}^{2}+30240 q_{2}^{2}+30240 / q_{3}^{8} q_{2}^{4}+30240 q_{3}^{8} q_{2}^{4}+\right. \\
& 13440 / q_{3}^{12} q_{2}^{6}+181440 / q_{3}^{8} q_{2}^{6}+138240 q_{3}^{4} q_{2}^{4}+181440 q_{2}^{4}+138240 / q_{3}^{4} q_{2}^{4}+13440 q_{3}^{12} q_{2}^{6}+ \\
&+362880 / q_{3}^{12} q_{2}^{10}+1330560 / q_{3}^{4} q_{2}^{10}+30240 / q_{3}^{16} q_{2}^{10}+362880 q_{3}^{12} q_{2}^{10}+30240 q_{3}^{16} q_{2}^{10} \\
&+1814400 q_{2}^{10}+997920 q_{3}^{8} q_{2}^{10}+997920 / q_{3}^{8} q_{2}^{10}+1330560 q_{3}^{4} q_{2}^{10}+497280 / q_{3}^{8} q_{2}^{8}+997920 q_{2}^{8} \\
&+240 / q_{3}^{16} q_{2}^{8}+138240 q_{3}^{12} q_{2}^{8}+240 q_{3}^{16} q_{2}^{8}+497280 q_{3}^{8} q_{2}^{8}+967680 / q_{3}^{4} q_{2}^{8} \\
&\left.+138240 / q_{3}^{12} q_{2}^{8}+967680 q_{3}^{4} q_{2}^{8}+181440 q_{3}^{8} q_{2}^{6}+497280 q_{2}^{6}+362880 / q_{3}^{4} q_{2}^{6}+362880 q_{3}^{4} q_{2}^{6}+\right]
\end{aligned}
$$

is the Siegel theta series of degree 2 for the root lattice E_{8}.
The multiple weight enumerators for the class of doubly even self-dual codes are invariant under the action of certain finite group G of linear transformations. Runge discussed the ring \mathcal{R} of invariants under a special subgroup H of G and extended the mapping Φ to \mathcal{R}.

4 Preliminary results

Table 1 The dimensions of the linear space of Siegel modular forms of degree g and weight k.

$n \backslash k$	4	6	8	10	12	14	16	18	20
1	1	1	1	1	2	1	2	2	2
2	1	1	1	2	3	2	4	4	5
3	1	1	1	2	4	3	7	8	11
4	1	1	2	3	6	6	14		

Proposition 4.1. Siegel theta series $\vartheta_{g}(\mathbf{Z}, L)$ of degree g associated with an even unimodular lattice of rank $2 k$ $(k \equiv 0(\bmod 2)$) is determined uniquely if the Fourier coefficients $a(T, L)$ are known for T 's given in the Table 2-1~2-8.

Table 2-1 $g=1$ case

$2 k$	8	16	24	32	40
T	0	0	0	0	1
			1	1	1

Table 2-2 $g=2$ case

Table 2-3 $g=3$ case

$2 k$	24	32	40
$T=\left(\begin{array}{lll}t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33}\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 1 / 2 & 0 \\ 1 / 2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 1 / 2 & 0 \\ 1 / 2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
		$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$
		$\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
		$\left(\begin{array}{ccc}1 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 & 0 \\ 1 / 2 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 1 / 2 & 0 \\ 1 / 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
			$\left(\begin{array}{ccc}1 & 1 / 2 & 1 / 2 \\ 1 / 2 & 1 & 0 \\ 1 / 2 & 0 & 1\end{array}\right)$
			$\left(\begin{array}{ccc}1 & 0 & 1 / 2 \\ 0 & 1 & 1 / 2 \\ 1 / 2 & 1 / 2 & 2\end{array}\right)$
			$\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$
			$\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$

even unimodular lattices K_{i} of rank 32 , whose underlining root lattices are denoted below: $K_{1}: 3 E_{8}, K_{2}: D_{24}, K_{3}: A_{24}, K_{4}: A_{17} \oplus E_{7}$

$m \backslash j$	0	1	2	5
1	1	720	436320	219024000
2	1	1104	1022304	781393536
3	1	600	303600	127512000
4	1	432	158112	48263040

even unimodular lattices L_{i} of rank 32, whose underlining root lattices are denoted below:
$L_{1}: 4 E_{8}, L_{2}: D_{24} \oplus E_{8}, L_{3}: A_{24} \oplus E_{8}, L_{4}: E_{7} \oplus A_{17}+E_{8}, L_{5}: D_{32}, L_{6}: A_{1} \oplus A_{31}, L_{7}: A_{16} \oplus A_{16}$

Table of the Fourier coefficients of Siegel theta series of degree 3

$$
\vartheta_{3}\left(\mathbf{Z}, L_{m}\right)(1 \leq m \leq 8)
$$

m) ${ }^{\text {a }}$	0	1	2	3	- 8	6	7
	1	980	812160	63760	600307200	42874820	1481820
2	1	1344	1582464	110892	1619421696	120729600	4540416
3	1	840	621840	41040	402350400	28408880	970080
4	1	672	395712	27264	203109120	14736384	570240
5	1	1984	3456128	238080	5240378880	386641920	14046730
6	1	994	867008	59520	657636480	8449280	1726080
7	1	544	262208	16320	111041280	7408280	228480

even unimodular lattices M_{i} of rank 40, whose underlining root lattices are denoted below:
$M_{1}: E_{8}^{5}, M_{2}: D_{24} \oplus E_{8}, M_{3}: A_{24} \oplus E_{8}^{2}, M_{4}: E_{7} \oplus A_{17} \oplus E_{8}^{2}, M_{5}: D_{32} \oplus E_{8}$,
$M_{6}: A_{1} \oplus A_{31} \oplus E_{8}, M_{7}: A_{16}^{2} \oplus E_{8}, M_{8}: D_{20}^{2}, M_{9}: D_{40}, M_{10}: D_{28} \oplus D_{12}$. The lattices M_{11}, M_{12} and M_{13} respectively are the ones ciming from doubly even self-dual [$40,20,8$] codes: Iorgov's C_{2} [9], a code in [17], Iorgov's code C_{5} [9] respectively.

Table of the Fourier coefficients of Siegel theta series of degree 3

$$
\vartheta_{3}\left(\mathbf{Z}, M_{m}\right)(1 \leq m \leq 13)
$$

$m / 5$	0	1	2	3	4	5	6
1	1	1200	1303200	67200	226106935200	1273968000	69350400
2	1	1584	2257824	124032	383278632864	2882537858	188302720
3	1	1080	1055280	54480	185566037280	928094400	50513760
4	1	912	748512	40704	135688986272	550800000	31279104
5	1	2224	4438888	251520	734080529568	7910593920	471413760
6	1	1234	1374368	72960	238658059648	1373972320	77061120
7	1	784	553568	29760	102348818848	350997120	19605120
8	1	1520	2088480	108440	357220647840	2579975040	142709760
9	1	3120	8779680	474240	1422569435040	22161709440	1263375360
10	1	1776	2815008	167808	474354791328	3964519296	247698432
11	1	0	0	0	994281120	0	0
12	1	0	0	0	994281120	0	0
13	1	0	0	0	1035568800	0	0
14	1	0	0	0	1035568800	0	0

$m) j$	7	8	9	10
1	1814400	8378688000	4410980882400	
2	4903296	11702768640	9419495777280	
3	1332960	3945926400	16132530547200	
4	933120	2360742528	1991438493696	
8	14409600	31503139840	24945829414400	
6	2088980	8677661440	4703505845780	
7	591360	1516810240	1343172216960	
8	3830400	10705566720	8231241262080	
9	35568000	88887400320	07344838036480	
10	8220288	15670729728	12915085943808	
11	0			18596332778880
12	0	0	0	15596205378896
13	0	0	0	17448486307200
14	0	0	0	17448486307200

5 Main result

Theorem 5.1. There are a pair of even unimodular 40 dimensional lattices L_{1} and L_{2} such that their Siegel theta series of degrees 1 and 2 coincide and their theta series of degree 3 differ.
Theorem 5.2. There are a pair of even unimodular 40 dimensional non-isomorphic lattices L_{3} and L_{4} such that their Siegel theta series of degrees 1, 2 and 3 coincide.

6 A brief sketch of computing the Fourier coefficients of $\vartheta_{3}(Z, L)$

We compute

$$
a(T, L)=\#\left\{\langle x, y, z\rangle \in L^{3} \mid[x, y, z]=2 T\right\}
$$

for the case when L is an even unimodular 40-dimensional extremal lattice constructed from binary code. This quantity is expressed as

$$
a(T, L)=\sum_{\langle x, y\rangle \in L^{2},[x, y]=\left(\begin{array}{cc}
2 t_{1} & 2 t_{12} \\
2 t_{12} & 2 t_{2}
\end{array}\right)} \mu\left(x, y ; t_{1}, t_{13}, t_{23}\right),
$$

where

$$
\mu\left(x, y ; t_{1}, t_{13}, t_{23}\right)=\#\left\{z \in \Lambda_{2 t_{3}} \mid(x, z)=2 t_{13},(y, z)=2 t_{23}\right\}
$$

We need to compute $a(T, L)$ for particular T 's given in the Table 2-3. For

$$
T=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

We see that

$$
a(T, L)=\sum_{\langle x, y\rangle \in L^{2},[x, y]=\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right)} \mu(x, y ; 2,0,0)
$$

and

$$
\begin{aligned}
\mu(x, y ; 2,0,0) & =\#\left\{z \in \Lambda_{4}(L) \mid(x, z)=0,(y, z)=0\right\} \\
& =\mu_{A}(x, y ; 2,0,0)+\mu_{B}(x, y ; 2,0,0),
\end{aligned}
$$

where

$$
\begin{aligned}
& \mu_{A}(x, y ; 2,0,0)=\#\{z \in A \mid(x, z)=0,(y, z)=0\} \\
& \mu_{B}(x, y ; 2,0,0)=\#\{z \in B \mid(x, z)=0,(y, z)=0\}
\end{aligned}
$$

Further we get

$$
\begin{aligned}
a(T, L)= & \sum_{x \in A, y \in A}\left\{\mu_{A}(x, y ; 2,0,0)+\sum_{x \in A, y \in A} \mu_{B}(x, y ; 2,0,0)\right\} \\
& +\sum_{x \in A, y \in B}\left\{\mu_{A}(x, y ; 2,0,0)+\sum_{x \in A, y \in A} \mu_{B}(x, y ; 2,0,0)\right\} \\
& \sum_{x \in B, y \in A}\left\{\mu_{A}(x, y ; 2,0,0)+\sum_{x \in A, y \in A} \mu_{B}(x, y ; 2,0,0)\right\} \\
& \sum_{x \in B, y \in B}\left\{\mu_{A}(x, y ; 2,0,0)+\sum_{x \in A, y \in A} \mu_{B}(x, y ; 2,0,0)\right\}
\end{aligned}
$$

We can easily prove that
Proposition 6.1. It holds that

$$
\begin{aligned}
& \left.\sum_{x \in A, y \in A} \mu_{B}(x, y ; 2,0,0)\right\} \\
& =\sum_{x \in A, y \in B} \mu_{A}(x, y ; 2,0,0) \\
& =\sum_{x \in B, y \in A} \mu_{A}(x, y ; 2,0,0),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\sum_{x \in A, y \in B} \mu_{B}(x, y ; 2,0,0)\right\} \\
& =\sum_{x \in B, y \in A} \mu_{B}(x, y ; 2,0,0) \\
& =\sum_{x \in B, y \in B} \mu_{A}(x, y ; 2,0,0) .
\end{aligned}
$$

By the above proposition we get an expression:

$$
\begin{aligned}
& a(T, L) \\
&= \sum_{x \in A, y \in A}\left\{\mu_{A}(x, y ; 2,0,0)+3 \sum_{x \in B, y \in A}\left\{\mu_{A}(x, y ; 2,0,0)\right.\right. \\
&+3 \sum_{x \in B, y \in B}\left\{\mu_{A}(x, y ; 2,0,0)+\sum_{x \in B, y \in B}\left\{\mu_{B}(x, y ; 2,0,0)\right.\right.
\end{aligned}
$$

Computation of $\sum_{x \in A, y \in A} \mu_{A}(x, y ; 2,0,0)$

We get

$$
\sum_{x \in A, y \in A} \mu_{A}(x, y ; 2,0,0)=3120(2 \cdot 2812+2812 \cdot 2524)=22161709440
$$

Computation of $\sum_{x \in B, y \in A} \mu_{A}(x, y ; 2,0,0)$
We get

$$
\sum_{x \in B, y \in A} \mu_{A}(x, y ; 2,0,0)=36480 \cdot(56 \cdot 2014+1984 \cdot 1798)=134246983680
$$

Computation of $\sum_{x \in B, y \in B} \mu_{A}(x, y ; 2,0,0)$

The biweight enumerator of a linear code of length n is defined to be

$$
\mathcal{B} \mathcal{W}\left(\mathbf{C}, X_{11}, X_{10}, X_{01}, X_{00}\right)=\sum_{\mathbf{u}, \mathbf{v} \in \mathbf{C}} X_{11}^{w_{11}(\mathbf{u}, \mathbf{v})} X_{10}^{w_{10}(\mathbf{u}, \mathbf{v})} X_{01}^{w_{01}(\mathbf{u}, \mathbf{v})} X_{00}^{w_{00}(\mathbf{u}, \mathbf{v})}
$$

where X_{11}, X_{10}, X_{01} and X_{00} are algebraically independent variables over the field of complex numbers, and $w_{i j}(\mathbf{u}, \mathbf{v})(0 \leq i, j \leq 1)$ is the number of the coordinates $k(1 \leq k \leq n)$ such that the k th component of \mathbf{u} takes the value i and the k-th component v takes the value j. We exibit the biweight enumerators of the codes $\mathbf{C}_{i}(1 \leq i \leq 4):$

$$
\begin{aligned}
& \mathcal{B} \mathcal{W}\left(\mathbf{C}_{1}, X_{11}, X_{10}, X_{01}, X_{00}\right)= \\
& \mathcal{B} \mathcal{W}\left(\mathbf{C}_{2}, X_{11}, X_{10}, X_{01}, X_{00}\right)= \\
& =\quad \\
& \quad \cdots+285 X_{11}^{8} X_{00}^{32}+5040 X_{11}^{4} X_{10}^{4} X_{01}^{4} X_{00}^{28}+ \\
& \\
& \quad+53760 X_{11}^{2} X_{10}^{6} X_{01}^{6} X_{00}^{28}+22140 X_{10}^{8} X_{01}^{8} X_{00}^{24}+\cdots \\
& \mathcal{B} \mathcal{W}\left(\mathbf{C}_{3}, X_{11}, X_{10}, X_{01}, X_{00}\right)= \\
& \mathcal{B} \mathcal{W}\left(\mathbf{C}_{4}, X_{11}, X_{10}, X_{01}, X_{00}\right)= \\
& = \\
& \\
& \\
& \quad \cdots+285 X_{11}^{8} X_{00}^{32}+11760 X_{11}^{4} X_{10}^{4} X_{01}^{4} X_{00}^{28}+ \\
& \\
& \quad+40320 X_{11}^{2} X_{10}^{6} X_{01}^{6} X_{00}^{26}+28860 X_{10}^{8} X_{01}^{8} X_{00}^{24}+\cdots
\end{aligned}
$$

In the above we display all the terms for both \mathbf{u} and \mathbf{v} are of weight 8.
After all we get

$$
\begin{aligned}
& \sum_{x \in B, y \in B} \mu_{A}(x, y ; 2,0,0) \\
& =2^{7} \cdot(285 \cdot 70 \cdot 2008+5040 \cdot 48 \cdot 1540+53760 \cdot 64 \cdot 1360+22140 \cdot 128 \cdot 1216) \\
& =1092855490560 \text { for } \operatorname{codes} \mathbf{C}_{1}, \mathbf{C}_{2} \\
& =2^{7} \cdot(285 \cdot 70 \cdot 2008+11760 \cdot 48 \cdot 1540+40320 \cdot 64 \cdot 1360+28860 \cdot 128 \cdot 1216) \\
& =1140584048640 \text { for } \operatorname{codes} \mathbf{C}_{3}, \mathbf{C}_{4}
\end{aligned}
$$

Computation of $\sum_{x \in B, y \in B} \mu_{B}(x, y ; 2,0,0)$

If we dare to explain every detail of the computation, it may take too much space, therefore we only describe
the inner product relations of the vectors x, y and z in B. The description is well-controled by some terms of the triweight enumerator of a code \mathbf{C} :

$$
\begin{aligned}
& \mathcal{T} \mathcal{W}\left(\mathbf{C}, X_{111}, X_{110}, X_{101}, X_{011}, X_{100}, X_{010}, X_{001}, X_{000}\right)= \\
& \quad \sum_{\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{C}} X_{111}^{w_{11}(\mathbf{u}, \mathbf{v}, \mathbf{w})} X_{110}^{w_{11}(\mathbf{u}, \mathbf{v}, \mathbf{w})} X_{101}^{w_{101}(\mathbf{u}, \mathbf{v}, \mathbf{w})} X_{011}^{w_{011}(\mathbf{u}, \mathbf{v}, \mathbf{w})} X_{100}^{w_{100}(\mathbf{u}, \mathbf{v}, \mathbf{w})} X_{010}^{\left.w_{010}^{(u, v}, \mathbf{w}\right)} X_{001}^{w_{001}(\mathbf{u}, \mathbf{v}, \mathbf{w})} X_{000}^{w_{000}(\mathbf{u}, \mathbf{v}, \mathbf{w})},
\end{aligned}
$$

where $X_{111}, X_{110}, X_{101}, X_{011}, X_{100}, X_{010}, X_{001}$ and X_{000} are algebraically independent variables over the field of complex numbers, and $w_{i j h}(\mathbf{u}, \mathbf{v}, \mathbf{w})(0 \leq i, j, h \leq 1)$ is the number of the coordinates $k(1 \leq k \leq n)$ such that the k th component of u takes the value i and the k-th component v takes the value j, and k-th component of \mathbf{w} takes the value h.
For our present computation we only need the terms coming from the codewords $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of weight 8 . For instance, in case of C_{1} terms such as $11760 X_{111}^{2} X_{110}^{2} X_{101}^{2} X_{011}^{2} X_{100}^{2} X_{010}^{2} X_{001}^{2} X_{000}^{26}$ and
$42000 X_{111}^{4} X_{111}^{4} X_{100}^{4} X_{010}^{4} X_{001}^{4}$. There are 50 types of terms that correspond to triples of codewords of weight8. For a fixed $x \in B$ we want to count the vectors $y, z 1 B$ such that $(x, y)=(x, z)=(y, z)=0$. However the frequencies of the pairs $\langle y, z>$ vary according to the intersection relation among suppx, suppy, suppz. We omit the details.

After all we get

$$
\begin{aligned}
& a\left(\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), L\left(C_{1}\right)\right)=15596332778880 \\
& a\left(\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), L\left(C_{2}\right)\right)= \\
& a\left(\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), L\left(C_{3}\right)\right)=a\left(\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), L\left(C_{4}\right)\right)=17448486307200
\end{aligned}
$$

In the same way the values in the last table in Section 4 are determined. These value are the base of our Theorems in Section 5.

7 Further Research

7.1 Some Basic Difficulties

7.1.1 Graded Ring Structure

In genus (degree) 2 case the theory of Siegel modular forms has rich tools.
In genus 3 case thanks to Tsuyumine the graded ring structure of Siegel modular forms is available. However if we fix the weight k we seems not to have the explicit method to determine the linear basis of the space of Siegel modular forms of genus 3 and weight k, although we could know the dimension of the space. We do not have the way to compute the Fourier expansion of those Siegel modular forms.
In genus 4 case the graded ring structure is not determined. Oura, Poor and Yuen [13] initiate to study this case.

7.1.2 Computational Difficulties

Duke-Runge map does not directly produce the Siegel theta series of even unimodular extremal lattice from the multiple weight enumerator of doubly even self-dual extremal binary code. The weight enumarator of $[24,12,8]$ binary Golay code is given by

$$
W_{G_{24}}(x, y)=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

In $g=1$ case the mapping from weight enumerators to modular forms is known as Broué-Enguehard map (cf. [2])

Example1. In 24 dimension case.

$$
\begin{aligned}
& W_{G_{24}}\left(\varphi_{0}(\tau), \varphi_{1}(\tau)\right) \\
& \quad=\quad 1+48 q_{1}^{2}+195408 q_{1}^{4}+16785216 q_{1}^{6}+397963344 q_{1}^{8}+4629612960 q_{1}^{10}+\cdots
\end{aligned}
$$

This is theta series of degree 1 associated with even unimodular lattice of root type $24 \times A_{1}$. The polynomial

$$
\begin{aligned}
& \hat{W}_{G_{24}} \\
&= x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24} \\
&-3\left(x^{20} y^{4}-4 x^{16} y^{8}+6 x^{12} y^{12}-4 x^{8} y^{16}+x^{4} y^{20}\right)
\end{aligned}
$$

leads to theta series of degree 1 associated with the Leech lattice:

$$
\begin{aligned}
& W_{G_{24}}\left(\varphi_{0}(\tau), \varphi_{1}(\tau)\right) \\
& \quad=\quad 1+196560 q_{1}^{4}+16773120 q_{1}^{6}+398034000 q_{1}^{8}+4629381120 q_{1}^{10}+\cdots
\end{aligned}
$$

Example 2. In 32 dimension there are five classes of doubly even self-dual binary linear codes, and they have identical weight enumerator:

$$
W_{C_{32}}(x, y)=x^{32}+620 x^{24} y^{8}+13888 x^{20} y^{12}+36518 x^{16} y^{16}+13888 x^{12} y^{20}+620 x^{8} y^{24}+y^{32}
$$

The image of this polynomial under Broué-Enguehard map is

$$
\begin{aligned}
& W_{C_{32}}\left(\varphi_{0}(\tau), \varphi_{1}(\tau)\right) \\
& \quad=1+64 q_{1}^{2}+160704 q_{1}^{4}+64543488 q_{1}^{6}+4845725632 q_{1}^{8}+137699222400 q_{1}^{10}+\cdots
\end{aligned}
$$

This is theta series of degree 1 associated with even unimodular 32 dimensional lattice of root type $32 \times A_{1}$. Another polynomial:

$$
\begin{aligned}
\hat{W}_{C_{32}} & \\
= & x^{32}+620 x^{24} y^{8}+13888 x^{20} y^{12}+36518 x^{16} y^{16} \\
& +13888 x^{12} y^{20}+620 x^{8} y^{24}+y^{32} \\
& -4\left(-10 x^{24} y^{8}-49 x^{20} y^{12}+76 x^{16} y^{16}\right. \\
& \left.-49 x^{12} y^{20}+10 x^{8} y^{24}+x^{28} y^{4}+y^{28} x^{4}\right)
\end{aligned}
$$

leads to

$$
\begin{aligned}
& W_{C_{32}}^{\sharp}\left(\varphi_{0}(\tau), \varphi_{1}(\tau)\right) \\
& \quad=\quad 1+167360 q_{1}^{4}+65740800 q_{1}^{6}+4867610560 q_{1}^{8}+138035363840 q_{1}^{10}+\cdots
\end{aligned}
$$

which is theta series of degree 1 associated with even unimodular 32 dimensional extremal lattice.

In $g=2$ case. We utilize the polynomials $P_{8}, P_{12}, P_{20}, P_{24}$ that are described in [14]. The biweight enumerator of extremal binary self-dula doubly even self-dual [$32,16,8$] code is

$$
\frac{182}{729} P_{8} P_{24}+\frac{13}{27} P_{8}^{4}+\frac{49}{729} P_{8} P_{12}^{2}+\frac{49}{243} P_{12} P_{20}
$$

The image under the Duke-Runge map is the Siegel theta series of degree 2 for the even unimodular lattice of root lattice type $32 \times A_{1}$.
The polynomial which corresponds to the Siegel theta series for even unimodular exremal lattice constructed from the above extremal code is

$$
\frac{20}{81} P_{8} P_{24}+\frac{4}{9} P_{8}^{4}+\frac{25}{324} P_{8} P_{12}^{2}+\frac{25}{108} P_{12} P_{20}
$$

which is not the biweight enumerator of a code, since it has negative coefficients.
A last remark: the reporter has downsized the total report, since he realizes the strong constraint that the number of pages should be under 16 posed by the organizer. The reader who wants to read this report more precisely may take enlarged copies.

References

[1] E. Bannai, and M. Ozeki, Construction of Jacobi forms from certain combinatorial polynomials, Proc. Japan Academy Ser.A 72 (1996)12-15
[2] M. Broué and M. Enguehuard, Polynômes des poids de certains codes et fonctions thêta de certain réseaux, Ann. Scient. Ec. Norm. sup., 4^{e} serie t.5, 157-181 (1972)
[3] R.E. Borcherds, E. Freitag, and R. Weissauer, A Siegel cusp form of degree 12 and weight 12, J. reine angew. Math. 494 (1998) 141-153
[4] W. Duke and O. Imamoglu, Siegel modular forms of small weight, Math. Ann. 308 (1997) 525-534
[5] V.A. Erokhin, Theta series of even unimodular 24-dimensional lattices, LOMI 86 (1979), 82-93, J. Soviet Meth. 17(1981) 1999-2008
[6] V.A. Erokhin, Theta series of even unimodular lattices, LOMI 116 (1982),68-73, J. Soviet Meth. 26(1984), 1012-1020
[7] J.-I. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962) 175-200
[8] J.-I. Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967) 817-855
[9] V.I. Iorgov, Binary self-dual codes with automorphisms of odd order, Problems of Information Transmission 19 (1983) 260-270
[10] M. Kneser, Lineare Relationen zwischen Darstellungsanzahlen quadratischer Formen, Math. Ann. 168 (1967) 31-39
[11] F.J. MacWilliams, C.L. Mallows and N.J.A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inf. Th. IT-18 (1972), 794-805.
[12] R.S. Manni, Slopes of cusp forms and theta series, J. Num. Th. 83 (2000) 282-296
[13] M. Oura, C. Poor and D. Yuen, Toward the Siegel Ring in Genus Four, Int. J. Number Theory 4 (2008), no.4, 563-586
[14] H. Maschke, Über die quaternäre endlich lineare Substitutionsgruppe der Borchardschen Moduln, Math. Ann. 30 (1887) 496-515
[15] M. Ozeki, On basis problem for Siegel modular forms of degree 2., Acta Arithmetica 31 (1976) pp 17-30
[16] M. Ozeki, On a relation satisfied by Fourier coefficients of theta-series of degree one and two, Math. Ann. 222 (1977) pp 225-228
[17] M. Ozeki, Hadamard matrices and doubly even error correcting codes, J. Comb. Th. Ser.A 44 (1987) 274-287
[18] M. Ozeki, Examples of even unimodular extremal lattices of rank 40 and their Siegel theta-series of degree 2 , J. Num. Th. 35 (1988) 119-131
[19] M. Ozeki, On the relation between the invariants of a doubly even self-dual binary code C and the invariants of the even unimodular lattices $L(C)$ defined from the code C. Meeting on algebraic combinatorics Proc. RIMS No. 671 (1988) 126-139
[20] C. Poor and D. Yuen, Dimensions of spaces of Siegel modular forms of low weight in degree four, Bull. Austral. Math. Soc. 54 (1996) 309-315
[21] C. Poor and D. Yuen, Estimates for dimensions of spaces of Siegel modular cusp forms, Abhand. Math. Sem. Univ. Hamburg 66 (1996) 17
[22] C. Poor and D. Yuen, Linear dependence among Siegel modular forms, Math. Ann. 318 (2000) 205-234
[23] C. Poor and D. Yuen, Slopes of integral lattices, J. Num. Th. 100 (2002) 363-380
[24] N.J.A. Sloane, Self-dual codes and lattices, in "Relations between Combinatorics and Other Parts of Mathematics", Proc. Symp. in Pure Math., no. 34 (1979) 273-308.
[25] S. Tsuyumine, On Siegel modular forms of degree 3, Amer. J. Math. 108 (1986) 755-862
[26] E. Witt, Eine Identität zwischen Modulformen zweiten Grades, Abhandlungen aus Mathm. Seminar Hamburg, 14 (1941), 323-337,
[27] B.B. Venkov, The classification of integral even unimodular 24-dimensional quadratic forms, Trudy Math. Inst. Steklov 148 (1978), 65-76 Proc. Steklov Inst. Math. 148 (1980) 63-74
[28] B.B. Venkov, On even unimodular Euclidean lattices of dimension 32, LOMI 116 (1982),44-45, 161-162, J. Soviet Meth. 26(1984), 1860-1867
[29] B.B. Venkov, On even unimodular Euclidean lattices of dimension 32, II, LOMI 134 (1982),34-58, J. Soviet Meth. 36(1987), 21-38

