Title	On Telgarski＇s formula（Research trends on general and geometric topol ogy and their problems）
Author（s）	Oka，Shinpei
Citation	数理解析研究所講究録（2009），1634：70－73
Issue Date	2009－04
URL	http：／hdl．handle．net／2433／140444
Right	
Type	Departmental Bulletin Paper
Textversion	publisher

On Telgárski＇s formula

Shinpei Oka
 Faculty of Education，Kagawa University

The following formula due to R．Telgársky（［3］）is indispensable in dealing with products of scattered spaces．

Theorem 1．Let X, Y be scattered spaces with leng $(X)=\alpha$ and leng $(Y)=\beta$ ．Then
（1）$(X \times Y)^{(\sigma)}=\cup_{\tau \oplus v=\sigma} X^{(\tau)} \times Y^{(v)}$ for every σ ．
（2）$(X \times Y)_{(\sigma)}=\cup_{\tau \oplus v=\sigma} X_{(\tau)} \times Y_{(v)}$ for every σ ．
（3）leng $(X \times Y)=\sup \{\tau \oplus v+1 \mid \tau<\alpha$ and $v<\beta\}$ ．
The symbol \oplus means Hessenberg＇s sum defined as follows ：
Definition 1．Let $\alpha>0, \beta>0$ be ordinals．Using Cantor＇s normal form，represent α, β uniquely as

$$
\alpha=\omega^{\gamma_{1}} n_{1}+\omega^{\gamma_{2}} n_{2}+\cdots+\omega^{\gamma_{k}} n_{k}, \quad \beta=\omega^{\gamma_{2}} m_{1}+\omega^{\gamma_{2}} m_{2}+\cdots+\omega^{\gamma_{k}} m_{k}
$$

$\gamma_{1}>\gamma_{2}>\cdots>\gamma_{k}, \quad 0 \leq n_{i}<\omega, 0 \leq m_{i}<\omega$ ，so that $n_{i}=0=m_{i}$ does not occur． Define

$$
\alpha \oplus \beta=\Sigma_{i=1}^{k} \omega^{\gamma_{i}}\left(n_{i}+m_{i}\right)
$$

Also define $\alpha \oplus 0=0 \oplus \alpha=0$ for every α ．
Hessenberg＇s sum is certainly convinient for describing the derivatives $(X \times Y)^{(\sigma)}$ but not for describing leng $(X \times Y)$ ．With an emphasis on the length of product spaces，we define a binary operation π as follows ：

Definition 2．Let $\alpha>0, \beta>0$ be ordinals．Represent α, β as in Definition 1．Put

$$
l=\min \left\{\max \left\{i \mid n_{i} \neq 0\right\}, \max \left\{j \mid m_{j} \neq 0\right\}\right\}
$$

and define

$$
\pi(\alpha, \beta)=\left\{\begin{array}{cl}
\Sigma_{i=1}^{l} \omega^{\gamma_{i}}\left(n_{i}+m_{i}\right) & \text { if } l<k \\
\left(\Sigma_{i=1}^{k-1} \omega^{\gamma_{i}}\left(n_{i}+m_{i}\right)\right)+\omega^{\gamma_{k}}\left(n_{k}+m_{k}-1\right) & \text { if } l=k,
\end{array}\right.
$$

where $l=k$ is，of course，equivalent to $n_{k} \neq 0 \neq m_{k}$ ．
For convenience，define $\pi(\alpha, 0)=\pi(0, \alpha)=0$ for every ordinal α ．
It is to be noted that，unlike Hessenberg＇s sum，the operation π is a countinuous oper－ ation with respect to the order topology．

Now we can restate Telgársky＇s formula as follows ：

Theorem 2. Let X, Y be scattered spaces with $\operatorname{leng}(X)=\alpha$, leng $(Y)=\beta$. Then (1) leng $(X \times Y)=\pi(\alpha, \beta)$.
(2) $(X \times Y)_{(\sigma)}=\cup\left\{X_{(\tau)} \times Y_{(v)} \mid \pi(\tau+1, v+1)=\sigma+1\right\}$ for every ordinal σ.
(3) $(X \times Y)^{(\sigma)}=\cup\left\{X^{(\tau)} \times Y^{(v)} \mid \pi(\tau+1, v+1)=\sigma+1\right\}$ for every ordinal σ.

We write simply $\pi(\alpha, \beta)=\alpha * \beta$.
Proposition 1. $\alpha * \beta=\beta * \alpha .(\alpha * \beta) * \gamma=\alpha *(\beta * \gamma)$.
Definition 3. A factorization $\alpha=\beta * \gamma$ of an ordinal α is called trivial if one of β, γ is 1 (and the other is α). An ordinal α is called a prime ordinal if $\alpha>1$ and it does not admit a non-trivial factorization.

As far as I know, the following notion was first defined and used by K. Borsuk ([1] also see [2]).

Definition 4. A factorization $X \approx Y \times Z$ of a space X is called trivial if one of Y, Z is a one point space (and the other is homeomorphic to X). A space X is called a prime space (or simply a prime) if $|X|>1$ and it does not admit a non-trivial factorization.

By the definition of the operation π we have
Proposition 2. An ordinal α is a prime ordinal if and only if $\alpha=\omega^{\gamma}+1$ with γ an ordinal.

The compact countable metric space X satisfying leng $(X)=\alpha$ and $\left|X^{(\alpha-1)}\right|=\left|X_{(\alpha-1)}\right|=$ n is denoted by $M S(\alpha, n)$. By the uniqueness of $M S(\alpha, n)$ we have $M S(\alpha, n) \approx$ $M S(\alpha, 1) \times M S(1, n)$ and, by Theorem $2, M S(\alpha, 1) \times M S(\beta, 1) \approx M S(\alpha * \beta, 1)$. These facts are combined with Proposition 2 to give

Proposition 3. A compact countable metric space X is a prime if and only if $X \approx$ $M S(1, p)$ with p a prime number or $X \approx M S\left(\omega^{\gamma}+1,1\right)$ with γ an ordinal.

Theorem 3. Every non-limit ordinal $\alpha>1$ is factorized uniquely as

$$
\alpha=\alpha_{1} * \alpha_{2} * \cdots * \alpha_{j}
$$

into prime ordinals $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{j}$. In full detail, if the normal form of α is

$$
\alpha=\omega^{\varsigma_{1}} n_{1}+\omega^{\varsigma_{2}} n_{2}+\cdots+\omega^{\varsigma_{k}} n_{k}
$$

with $\zeta_{k}=0$ then

$$
\begin{aligned}
\alpha= & \overbrace{\left(\omega^{\zeta_{1}}+1\right) *\left(\omega^{\zeta_{1}}+1\right) * \cdots *\left(\omega^{\zeta_{1}}+1\right)}^{n_{1}} * \\
& \overbrace{\left(\omega^{\zeta_{2}}+1\right) *\left(\omega^{\zeta_{2}}+1\right) * \cdots *\left(\omega^{\zeta_{2}}+1\right)}^{n_{1}} * \\
& \overbrace{\left(\omega^{\zeta_{k-1}}+1\right) *\left(\omega^{\zeta_{k-1}}+1\right) * \cdots *\left(\omega^{\zeta_{k-1}}+1\right)}^{n_{k}-1} * \\
& \overbrace{2 * 2 * \cdots * 2}^{n_{k-1}} \text {. (Do not confuse } n_{k-1} \text { with } n_{k}-1 .)
\end{aligned}
$$

A translation of the theorem into product spaces is as follows :
Corollary 1. Every compact countable metric space X with $|X|>1$ is factorized uniquely as

$$
X \approx X_{1} \times X_{2} \times \cdots \times X_{j}
$$

into primes $X_{1}, X_{2}, \ldots, X_{j}$. In further detail, if $X=M S(\alpha, n), \alpha=\omega^{\varsigma_{1}} n_{1}+\omega^{\varsigma_{2}} n_{2}+$ $\cdots+\omega^{\zeta_{k}} n_{k}$ with $\zeta_{k}=0$, then

$$
\begin{aligned}
X \approx & \overbrace{M S\left(\omega^{\zeta_{1}}+1,1\right) \times M S\left(\omega^{\varsigma_{1}}+1,1\right) \times \cdots \times M S\left(\omega^{\varsigma_{1}}+1,1\right)}^{n_{1}} \times \\
& \overbrace{M S\left(\omega^{\varsigma_{2}}+1,1\right) \times M S\left(\omega^{\varsigma_{2}}+1,1\right) \times \cdots \times M S\left(\omega^{\varsigma_{2}}+1,1\right)} \times \\
& \overbrace{M S\left(\omega^{\varsigma_{k-1}}+1,1\right) \times M S\left(\omega^{\varsigma_{k-1}}+1,1\right) \times \cdots \times M S\left(\omega^{\zeta_{k-1}}+1,1\right)}^{n_{n_{k-1}}} \times \\
& \overbrace{M S(2,1) \times M S(2,1) \times \cdots \times M S(2,1)} \times \\
& M S\left(1, p_{1}\right) \times M S\left(1, p_{2}\right) \times \cdots \times M S\left(1, p_{r}\right)
\end{aligned}
$$

where $n=p_{1} p_{2} \cdots p_{r}$ is the usual factorization of the natural number n into primes.
Examples. Put, for example, $\alpha=\omega^{2}+\omega 2+3$. Then

$$
\omega^{2}+\omega 2+3=\left(\omega^{2}+1\right) *(\omega+1) *(\omega+1) * 2 * 2 .
$$

Thus

$$
\begin{aligned}
M S\left(\omega^{2}+\omega 2+3,1\right)= & M S\left(\omega^{2}+1,1\right) \times M S(\omega+1,1) \times M S(\omega+1,1) \times \\
& M S(2,1) \times M S(2,1)
\end{aligned}
$$

$$
\begin{aligned}
M S\left(\omega^{2}+\omega 2+3,6\right)= & M S\left(\omega^{2}+1,1\right) \times M S(\omega+1,1) \times M S(\omega+1,1) \times \\
& M S(2,1) \times M S(2,1) \times M S(1,3) \times M S(1,2)
\end{aligned}
$$

References

[1] K. Borsuk, Sur la décomposition des polyèdres en produits cartésiens, Fund. Math. 31 (1938), 137-148.
[2] K. Borsuk, On the decomposition of a locally connected compactum into Cartesian product of a curve and a manifold, Fund. Math. 40 (1953), 140-159.
[3] R. Telgársky, Derivatives of Cartesian product and dispersed spaces, Colloq. Math. 19 (1968), 59-66.

