

Title	On Telgarski's formula (Research trends on general and geometric topology and their problems)
Author(s)	Oka, Shinpei
Citation	数理解析研究所講究録 (2009), 1634: 70-73
Issue Date	2009-04
URL	http://hdl.handle.net/2433/140444
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On Telgárski's formula

Shinpei Oka

Faculty of Education, Kagawa University

The following formula due to R. Telgársky ([3]) is indispensable in dealing with products of scattered spaces.

Theorem 1. Let X, Y be scattered spaces with leng(X) = α and leng(Y) = β . Then

- (1) $(X \times Y)^{(\sigma)} = \bigcup_{\tau \oplus v = \sigma} X^{(\tau)} \times Y^{(v)}$ for every σ .
- (2) $(X \times Y)_{(\sigma)} = \bigcup_{\tau \oplus v = \sigma} X_{(\tau)} \times Y_{(v)}$ for every σ .
- (3) $\operatorname{leng}(X \times Y) = \sup \{ \tau \oplus \upsilon + 1 \mid \tau < \alpha \text{ and } \upsilon < \beta \}$.

The symbol \oplus means Hessenberg's sum defined as follows:

Definition 1. Let $\alpha > 0$, $\beta > 0$ be ordinals. Using Cantor's normal form, represent α , β uniquely as

$$\alpha = \omega^{\gamma_1} n_1 + \omega^{\gamma_2} n_2 + \cdots + \omega^{\gamma_k} n_k , \quad \beta = \omega^{\gamma_1} m_1 + \omega^{\gamma_2} m_2 + \cdots + \omega^{\gamma_k} m_k ,$$

 $\gamma_1>\gamma_2>\cdots>\gamma_k$, $~0\leq n_i<\omega$, $0\leq m_i<\omega$, so that $n_i=0=m_i$ does not occur. Define

$$\alpha \oplus \beta = \sum_{i=1}^k \omega^{\gamma_i} (n_i + m_i) .$$

Also define $\alpha \oplus 0 = 0 \oplus \alpha = 0$ for every α .

Hessenberg's sum is certainly convinient for describing the derivatives $(X \times Y)^{(\sigma)}$ but not for describing leng $(X \times Y)$. With an emphasis on the length of product spaces, we define a binary operation π as follows:

Definition 2. Let $\alpha > 0$, $\beta > 0$ be ordinals. Represent α , β as in Definition 1. Put

$$l = \min\{\max\{i \mid n_i \neq 0\}, \max\{j \mid m_j \neq 0\}\}$$

and define

$$\pi(\alpha, \beta) = \begin{cases} \sum_{i=1}^{l} \omega^{\gamma_i} (n_i + m_i) & \text{if } l < k \\ \left(\sum_{i=1}^{k-1} \omega^{\gamma_i} (n_i + m_i)\right) + \omega^{\gamma_k} (n_k + m_k - 1) & \text{if } l = k \end{cases},$$

where l = k is, of course, equivalent to $n_k \neq 0 \neq m_k$.

For convenience, define $\pi(\alpha, 0) = \pi(0, \alpha) = 0$ for every ordinal α .

It is to be noted that , unlike Hessenberg's sum, the operation π is a countinuous operation with respect to the order topology.

Now we can restate Telgársky's formula as follows:

Theorem 2. Let X, Y be scattered spaces with leng(X) = α , leng(Y) = β . Then

- (1) leng $(X \times Y) = \pi(\alpha, \beta)$.
- (2) $(X \times Y)_{(\sigma)} = \bigcup \{X_{(\tau)} \times Y_{(\upsilon)} \mid \pi(\tau+1, \upsilon+1) = \sigma+1\}$ for every ordinal σ . (3) $(X \times Y)^{(\sigma)} = \bigcup \{X^{(\tau)} \times Y^{(\upsilon)} \mid \pi(\tau+1, \upsilon+1) = \sigma+1\}$ for every ordinal σ .

We write simply $\pi(\alpha, \beta) = \alpha * \beta$.

Proposition 1. $\alpha * \beta = \beta * \alpha$. $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$.

Definition 3. A factorization $\alpha = \beta * \gamma$ of an ordinal α is called *trivial* if one of β , γ is 1 (and the other is α). An ordinal α is called a *prime* ordinal if $\alpha > 1$ and it does not admit a non-trivial factorization.

As far as I know, the following notion was first defined and used by K. Borsuk ([1] also see [2]).

Definition 4. A factorization $X \approx Y \times Z$ of a space X is called *trivial* if one of Y, Z is a one point space (and the other is homeomorphic to X). A space X is called a prime space (or simply a prime) if |X| > 1 and it does not admit a non-trivial factorization.

By the definition of the operation π we have

Proposition 2. An ordinal α is a prime ordinal if and only if $\alpha = \omega^{\gamma} + 1$ with γ an ordinal.

The compact countable metric space X satisfying leng(X) = α and $|X^{(\alpha-1)}| = |X_{(\alpha-1)}| =$ n is denoted by $MS(\alpha, n)$. By the uniqueness of $MS(\alpha, n)$ we have $MS(\alpha, n) \approx$ $MS(\alpha, 1) \times MS(1, n)$ and, by Theorem 2, $MS(\alpha, 1) \times MS(\beta, 1) \approx MS(\alpha * \beta, 1)$. These facts are combined with Proposition 2 to give

Proposition 3. A compact countable metric space X is a prime if and only if $X \approx$ MS(1, p) with p a prime number or $X \approx MS(\omega^{\gamma} + 1, 1)$ with γ an ordinal.

Theorem 3. Every non-limit ordinal $\alpha > 1$ is factorized uniquely as

$$\alpha = \alpha_1 * \alpha_2 * \cdots * \alpha_i$$

into prime ordinals $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_j$. In full detail, if the normal form of α is

$$\alpha = \omega^{\zeta_1} n_1 + \omega^{\zeta_2} n_2 + \cdots + \omega^{\zeta_k} n_k$$

with $\zeta_k = 0$ then

$$\alpha = \underbrace{(\omega^{\zeta_{1}} + 1) * (\omega^{\zeta_{1}} + 1) * \cdots * (\omega^{\zeta_{1}} + 1) *}_{n_{2}} * \underbrace{(\omega^{\zeta_{2}} + 1) * (\omega^{\zeta_{2}} + 1) * \cdots * (\omega^{\zeta_{2}} + 1) *}_{n_{k-1}} * \underbrace{(\omega^{\zeta_{k-1}} + 1) * (\omega^{\zeta_{k-1}} + 1) * \cdots * (\omega^{\zeta_{k-1}} + 1) *}_{n_{k-1}} * \underbrace{(\omega^{\zeta_{k-1}} + 1) * (\omega^{\zeta_{k-1}} + 1) * \cdots * (\omega^{\zeta_{k-1}} + 1) *}_{n_{k-1}} * \underbrace{(Do \ not \ confuse \ n_{k-1} \ with \ n_{k} - 1 \ .)}_{n_{k-1}}$$

A translation of the theorem into product spaces is as follows:

Corollary 1. Every compact countable metric space X with |X| > 1 is factorized uniquely as

$$X \approx X_1 \times X_2 \times \cdots \times X_i$$

into primes X_1, X_2, \ldots, X_j . In further detail, if $X = MS(\alpha, n)$, $\alpha = \omega^{\zeta_1} n_1 + \omega^{\zeta_2} n_2 + \cdots + \omega^{\zeta_k} n_k$ with $\zeta_k = 0$, then

$$X \approx \overbrace{MS(\omega^{\zeta_{1}} + 1, 1) \times MS(\omega^{\zeta_{1}} + 1, 1) \times \cdots \times MS(\omega^{\zeta_{1}} + 1, 1)}^{n_{1}} \times \underbrace{MS(\omega^{\zeta_{1}} + 1, 1) \times MS(\omega^{\zeta_{1}} + 1, 1) \times \cdots \times MS(\omega^{\zeta_{1}} + 1, 1)}_{n_{2}} \times \underbrace{MS(\omega^{\zeta_{2}} + 1, 1) \times MS(\omega^{\zeta_{2}} + 1, 1) \times \cdots \times MS(\omega^{\zeta_{2}} + 1, 1)}_{n_{k-1}} \times \underbrace{MS(\omega^{\zeta_{k-1}} + 1, 1) \times \cdots \times MS(\omega^{\zeta_{k-1}} + 1, 1)}_{n_{k-1}} \times \underbrace{MS(2, 1) \times MS(2, 1) \times \cdots \times MS(2, 1)}_{MS(1, p_{1}) \times MS(1, p_{2}) \times \cdots \times MS(1, p_{r})},$$

where $n = p_1 p_2 \cdots p_r$ is the usual factorization of the natural number n into primes.

Examples. Put, for example, $\alpha = \omega^2 + \omega^2 +$

$$\omega^2 + \omega 2 + 3 = (\omega^2 + 1) * (\omega + 1) * (\omega + 1) * 2 * 2.$$

Thus

$$MS(\omega^2 + \omega 2 + 3, 1) = MS(\omega^2 + 1, 1) \times MS(\omega + 1, 1) \times MS(\omega + 1, 1) \times MS(2, 1) \times MS(2, 1) .$$

$$\begin{array}{ll} MS(\omega^2+\omega 2+3,\,6) = & MS(\omega^2+1,\,1) \times MS(\omega+1,\,1) \times MS(\omega+1,\,1) \times \\ & MS(2,\,1) \times MS(2,\,1) \times MS(1,\,3) \times MS(1,\,2) \; . \end{array}$$

References

- [1] K. Borsuk, Sur la décomposition des polyèdres en produits cartésiens, Fund. Math. 31 (1938), 137-148.
- [2] K. Borsuk, On the decomposition of a locally connected compactum into Cartesian product of a curve and a manifold, Fund. Math. 40 (1953), 140-159.
- [3] R. Telgársky, Derivatives of Cartesian product and dispersed spaces, Colloq. Math. 19 (1968), 59-66.