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3 B L DEAFROZREL

(Geometric means of more than two operators)

JTE LR (Toyama Univ.) REF 4£— (Saichi Izumino)
R T 3B (Fujikoshi-kogyo Senior Highschool)
it % (Noboru Nakamura)

1. INTRODUCTION

The definition of the geometric mean of more than two positive invertible operators on
a Hilbert space (or positive definite matrices) has been presented by several researchers
([1], [15], [3], [8], etc.). We here try to give a definition of such a geometric mean related to
the Riccati equation for two operators. Let 2 be the set of all positive invertible operators
on H (or positive definite n x n matrices for some n). For A4, B € Q) the Riccati equation
XA™'X = B has a unique solution X = X, 5 € Q:

X = AfB := A?(A"2BA"%)1 A3,

which is defined as the geometric mean of A and B. As an extension, a weighted geometric
mean Af,B for 0 < a <1 is defined by

AfB = A3 (A"TBA™3)* A%,
For A, B,C € 2 we can consider a cubic equation

X(A$B)"'X(AtB)'X = C,
as an extension of the Riccati equation. Then it has a unique solution X = X4 p¢c €

X = (A4B)#,C(= Ct3(A4B)). (1.1)

If A, B,C commute with each other, then X = (ABC)%, so that X seems a candidate of
a geometric mean. However, it lacks permutation invariance, (one of the ten properties
required for a reasonable geometric mean in [3]). To supply the property we borrow the
symmetrization technique due to [3]: We define sequences {A,},{Bn}, {Cn} by A1 =
A By=B,Ci=Candforn>1

An+1 - Anﬁz\(BnﬁCn)a
Bn+1 = Bnuz\(cnﬁAn)1
Cn1 = Cnﬁz\(AnﬁBn)’

taking a real A € (0, 1] (more generally than 2/3 in (1.1) above).

Then they are convergent and have a common limit with respect to Thompson metric
defined below. We define the limit as the geometric mean of A, B,C and denote by G,
or G,(A, B,C). Thompson metric d(-, ) on Q is defined ([22], [4], [6]) as follows (and
is complete with the metric):

d(A, B) = max{log M(A/B), log M(B/A)} (A,B € Q),

where ‘
M(A/B) = inf{u > 0: A < uB} (=|| B"Y2AB~Y2% ).
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If A =1, then GA(= G,) is the geometric mean given by [3], and if A = 2/3, Gi(= G%)
is one given in [21]. As mentioned before, in [3], ten properties were posturated for a
geometric mean of n operators (or matrices) to be reasonable. Our geometric mean G,
satisfies all the properties. Starting from the geometric mean of two operators, we can
define those of n operators inductively for all integers n > 2, which satisfy all of the ten
properties. In [3], Ando-Li-Mathias stated the following ten postulates for a geometric
mean G(Ay,...,Ax) of k (or a k-tuple of) operators A,,..., A to be a reasonable one,
(the usual geometric mean G(A;, A;) = A;#A, is reasonable):

P1 Consistency with scalars. If 4;, As,... , Ay commute then
k G(A17 A2, e 7Ak) = (A1A2 e A’C)%'

P1’ This implies G(A, ..., A) = A.
P2 Joint homogeneity. G(a;A41,024,, ... ,arA;) = (a10; - --ak)%G(Al,Ag, .., Ag)  for
a; >0 withi=1,... k.
P2’ This implies G(aA1,aAs, ... ,aA;) = aG(A;, Ag, ... , A;) (a > 0).
P3 Permutation invariance. For any permutation w(A4;, Az, ..., Ag) of (A1, As, ... , A),
G(Al, Az, o ,Ak) = G(?T(Al, Az, e ,Ak)).
P4 Monotonicity. The map (A;, Ao, ..., Ax) = G(A1, Aa, ... , Ai) is monotone, i.e., if
Ai > Bi fori = 1,...,k‘, then G(Al,Az,... ,Ak) > G(Bl,B;_),. .. ,Bk).
P5 Continuity from above. If {A{™}, {4{™},...,{A™} are monotone decreasing
sequences converging to A;, Aa, ... , A, respectively, then {G(Ag"), AW L Ag"))}
converges to G(A;, A, ..., Ag).
P6 Congruence invariance. For any invertible S,
G(S"A1S5,5%A,8, ... ,5%AxS) = S*G(A1, A4g, . .. , Ag)S.
P7 Joint concavity. The map (A1, Ay, ... , Ag) = G(A1, Ay, ... , Ax) is jointly concave:
GAAL+ (1= N)AL Mo+ (L= M)A, .. M A+ (1= V)AL
2 AG(A1, Az, ... Ap) + (1 - N)G(A}, 4, ..., 4) (0< A<D,
P8 Self-duality. G(A1, Ay, ..., Ax)* = G(A1, Ag, ... , Ag). The dual G(A;, 4, ... , Ag)*
is defined by
G(A1, Ag, ..., AR)* = GATYH ASY, L AGH L
P9 (In case A, A,, ..., Ay are matrices.) Determinant identity.

det G(Ay, As, ... , Ap) = (det A; - det Ay - - - - - det Ay)E.
P10 The arithmetic-geometric-harmonic mean inequaility.
A+ Ay + -+ A A;1+A;1+---+A;‘)-1
k k '

In this report, we define a geometric mean of (k + 1) operators with a parameter
A which still satisfies the above properties P1-P10 from a given geometric mean of k
operators satisfying all properties by induction. For more than two positive operators, in
particular, we define the weighted geometric mean as an extension of that of two operators.

Without occurrence of ambiguity, we shall often abbreviate the letter A. All operators
(or matrices) are assumed to be positive invertible (or positive definite) if stated otherwise.

ZG(AI,Ag,...,Ak)?_(
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2. DEFINITION OF GEOMETRIC MEANS OF MORE THAN TWO OPERATORS

Let €2 be the set of all (positive invertible) operators on H. Then as mentioned above
the Thompson metric on 2 is defined by

d(A, B) = max{log M(A/B), log M(B/A4)} for A,B €,
where
M(A/B) =inf{u > 0: A < uB} (=|| B"Y2AB™'/2|)).
Between || A — B || and d(A, B) the following facts hold:
| A= B||< min{]| A, || B [I}(*® - 1),

d(A,B) <max{|| A7 |, B I} | A- Bl

We remark that 2 is complete with respect to the Thompson metric topology. As a basic
inequality with respect to the metric, the following inequality for a weighted geometric
mean of two operators holds [4], [6]:

d(A1#ad2, Bi#aBs) < (1 — )d(A1, Br) + ad(Az, Bs)

2.1
for Al,Az,Bl, Bz €Qand ae (0, 1) ( )
Now in order to define our geometric mean Gy (A,... , Ag+1) of (k+1) operators from
a given one of k (> 2) operators, we want to assume a useful inequality:
d(G(Ay,...,Ax),G(By,...,By)) < = Zd(A,,B) (2.2)
. 1—1
for another k-tuple of operators By, ... , Bx.
Theorem 2.1. The geometric mean Gx(Ay,... , Axks1) 18 always defined as the com-

mon limit of the following (k + 1) sequences {AY, ... ,{A;Q_l of (k + 1) operators
Ap, oo Akt

AV = A, for i=1,...,k+1, and

APTY = "’#,\G((A(’ Jiti) (= AVAGAD, . A, AR ATD))

forrzl,z—l,...,k+1_ (2.3)

where A € (0,1] and G(Ay, ... , Ax) is a geometric mean of k operators satisfying P1-P10
and the inequality (2.2). The geometric mean G (A, ..., Ar+1) satisfies P1-P10, and
furthermore, the following inequality holds:

k+1
d(Ga(A1y ..., Aks1), GA(Br, -+« Be41)) £ +—= k Zd(AhB) (2.4)

corresponding to (2.2) for another (k + 1)-tuple By, ... , Bxy1 of operators.
Proof. To see that all sequences {A&’)} are convergent with a common limit we first
show that fori,j =1,... ,k+1,i#J

d(A*Y, AT < (1 - f—g—lx) d(A;, Aj)- (2.5)
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By the definition (2.3) of 4(-r) and the inequalities (2.1) and (2.4), we have
(AT ATTY) = d(AT G (A era), ATV AG (AT )ey))
< (1= Nd(A7, AD) + Ad(G(A] ) 13), GUAT ) e5)
< (1= Nd(A7, A7)+ x Ed(Az(.T), Al
= (1 - é—;—1,\> (A", A,

Hence by iteration with respect to r we can obtain the desired inequality. Next we show

a4y < X (12 k1) Ki, (2.6)
k k
k+1
where K; = Y d(A;, A;). Note that
=1,044
k

e et
AN = AP #GAN, .., AD).
Using (2.2), we have

k
pr—— ———— k+1
AT+, AD) < MAGA o), GAD, . AD)) <A1 30 d(AD, 4D).
£=1,0#1
Hence from (2.5)
k+1 - r—1 _ r—1
d(A.Sr+1),A.ET)) S i\_ . E (1 _ k____]:/\) d(AZy Az) - é (1 — k__._lA) K’i,
ko k k k

which is the desired inequality. Now we see that for any i, the sequence {A{”} is conver-
gent, or a Cauchy sequence. In fact, for r < s

-1
(AT, AP < Y d(A®, AEY) < 2K, 3 (1—-——1/\)

f=r+1 {=r+1
A k-1\" , (k- K; E—1.\"
<ZK;-[1-—— S A= 1-=2—=)) .
<2k, (1 - /\) /( = k_l(l - /\>
Hence d(A*Y, AP™)) 5 0 as r(< s) — oo, so that {4{"} is convergent. From (2.5),
we easily see that all {Aﬁ”} have the same limit, which guarantees the desired geometric
mean to be defined.
It is not difficult to see that the geometric mean G, (A;, ... , Ar4+1) satisfies all properties

P1-P10. For example, to see P3, let m(A;, As,... ,Ak+1) = (Arq)s--- > Ar+1)) be a
permutation of (A;, A, ..., Axy1), and let

BY = AWy = Aswy, BV = BI#,G((By)\)
fori=1,...,k+1, r>1.

??‘l>4



Then we see that B{") = —l;r()l) In fact. assuming that B = .4§r’(’i) (t=1,....,k+1), we
have
1 r+1)
B(H_ ) = "1( (1)#/\G(( n{J) )J#z) ‘157(': .

Hence {B{"} and {Afr(i)} coincide, so that they converge to the same limit, which is

desired.
For the inequality (2.4), let the sequences {B§”}, cee s {B,(;)l} be defined corresponding
to By,..., Bks1, similarly as (2.3) for Aj,..., Ags1. Then for each 4, from (2.1) and the

assumption (2.2), we have
d(A™, BI*Y) = d(A7#AG (A7) j20), BV #AG((B])1:))

< (1= Nd(A", B + Ad(G((AV) ), G((B)24))
k+1
S( )d(A(r) B(")) A _]_‘_ Z d(A(r) B(T))
k '-l,j#

<1 - k__;c—._.}_/\) d(A(r) B(T) )+ = Z d(A(r) (")

Summing up all d(A" ), BU ) with respect to 4, we have

s (r+1) plr+1)
T T
Or41 = Z d(Ai , Bi )

i=1

_k+1 (") gy, k1 & e (")
(1 ks )\)ZdA, B+ Y a5

- 2 d(A", B{") (= o).

k+1
Hence 0,41 < 0, < --- < 0y, that is, g,41 < Z d(A;, B;). Taking the limit as r — 0o, we

=1
have the desired inequality since 0,41 — (k + 1)d(GA(A1, ... , Ak+1), Ga(B1, - - - , Bes1))-
Example 2.2. Let

10 1 41 49 10
Al:[ 1 0.2]’ A2=[4.9 6.1] andA3=[o 1]'

Then by numerical computation we have, (discarded less than 107%,)

_ [ 1647281 0.613824],_ 41 _ 400 _ 400
Gia = [ 0.613 824 0.835 789 ](“ AlT =4y = Ay forr 2 24),

1.649 909 0.615 737 . , )
0615 737 0.835 883 |(= AT = AD = AD for r > 13),

1.660 083 0.623 133 |,_ () _ 4 _ (0
Gass = [ 0.623 133 0.836 280 }(— Al = Ay7 = Ay forr 2 4)

and

_ [ 1697095 0.649 781 ], ) _ A _ a0
G = [ 0.649 781 0.838 029 ](— A" = Ay = Ay for r > 24).
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Now for more convenient expression, denote by (G, A) = (G, A)(A;...., dxy1) the geo-
metric mean constructed as in Theorem 2.1. Then successively we can define

(G, /\1,. . ,)\g) = ((G,/\l, e ,)\g_l),/\g).

k—2
Let G = #(A1, Ay) = A1#A,. Then (#,1,...,1) is the geometric mean (of k operators)
given by Ando-Li-Mathias in (3], and (#;2,..., %) is one given in [21].

Example 2.3. Let
21 11 [ 3 V2 10
Al——[ll],Ag-l:IZj!,A;;—l:\/i 1] and A4—l:01:'

Then by numerical computation, we obtain, (discarded less than 107%,) for r > 4,

1.412 693 0.706 627
(#: 3, 3) (A1, Az, A3, Ay) = [ 0.706 627 1.033 191

(= A = AP = 47 = AD).

3. WEIGHTED GEOMETRIC MEANS OF MORE THAN TWO OPERATORS

We introduce two types of weighted geometric means of k(> 3) operators as the ex-
tensions of weighted geometric means of two operators. Let €2 be the set of all (positive
invertible) operators on H. Denote by G(k) the set of all geometric means of k operators
with the properties P1-P10.

3.1 Weighted geometric means of k operators, type I

First for A;, A, € Q and for real numbers ¢, oz satisfying a; € [0,1] and as =1 — o4,
we write the weighted geometric mean by

(é =)A1#a2A2 = G(ah o; Ax, Az)-

Then we see
G(ay, ag; A1, A2) = Ao o, A1 = G(ag, ay; Az, Ay).

This implies that G is a weighted geometric mean with permutation invariance. We want
to extend this property for weighted geometric means of more operators.

For three operators A;, A,, A3 on Q and for real numbers oy, s, as satisfying oy, ag, a3 >
0 and o; + az + o3 = 1, we define the three sequences {B{"}, {B{"} and {B{"}, by
Bil) = By, Bél) = Bs, Bgl) = Bas, as follows:

B, = Al#l—alG 2 -2 Ay Asz),

l-a;1’ 1—a;

B2 = A?#l—azG g e ;A37 Al ’ (31)

l—a3’ l1-a2

B3 = As#1-a:G (12, 722- ; Ay, Ao .

l—-ag?’? 1—as3
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It is easv to see that if 4, A, 43 commute with each other then B, = By = B3 =
AT AZ2AZ.

Now let I' € G(3). Then we can obtain a common limit of the sequences {B{"}, {B{)}
and {Bér)} which we define a weighted geometric mean

Gr(ah Q2, O3 1 Aq, Ao, Aa) = F(Bl,Bm Bs)-

We want to call it as a weighted geometric mean of A;, Ay, A3 with weight (o, as, as).

Here we, parallel to P1-P10, state basic properties for a reasonable weighted geometric
mean of k operators: Let G = G(ay,... ,af ; Ay, ..., Ax) be a weighted geometric mean
of Ai,... , AL €Q (C!]_,... , O > O,Zleaj = 1)

PW1. G(al,... y O ;A,... ,A) = A.

PW2. G(o, as,... 0k ;a1A41,024, ... ,a:4k) = a‘flagz---a?"é’.

PW3. G is permutation invariant with respect to S(k) (which denote a permutation group
of k letters).

PW4. G is monotone.

PWS5. C:v‘ is continuous from above.

PW&6. G is congruence invariant.

PWT. C:v’ is jointly concave.

PW8. G is self-dual. _

PWO9. (In case of matrices) det G = (det A;)® - - - (det Ag)**.

PW10. The weighted arithmetic-geometric-harmonic mean inequality holds:

~ -1
A+ -+ agdy > G > (alAl‘1+-~+akA;‘) .

Now we can see that G(a;, az, asz ; A;, Az, A3) satisfies the above properties PW1-PW10
for k = 3, and furthermore if I' = G, 2 € G(3), then we can obtain

111
Gr (3, 33 ;A1,A2,A3> = G4 2(A1, Az, A3).

Generalizing the above result to k (> 2) operators, we have

Theorem 3.1.1 Assume that G(A1, ..., Ak ; X1,---,Xk) (M = 0,550 =1)isa

j=1
weighted geometric mean of k operators with the properties PW1-PW10. Let A, ... , Ags1
be k + 1 operators in Q2. For ay,...,0Qr+1 Satisfying oy, ... ,0xe1 > 0 and ):f;‘} a; =1,
we put '

A Q; ALY
Bz A‘z#l—aiG ((1 _ ai>j¢i ’ (AJ)J#i) :
Then for a I' € G(k), define
(G =)Gr(a, ..., k41 ;A1 ..., Aksr) =T(Bi,... , Bt

Then we have a "reasonable weighted geometric mean”, which satisfies the following:
(i) G satisfies PW1-PW10 for (k + 1) operators.




21

(1) If Ay, ..., Ag1 commute each other, then we obtain G = 427 ... AT*1,
(iti) If T = G’# R then we obtain

1 1 |
r(k+1’ ’k+1 ;‘417"-,4‘1k+1) =P(:"11,... 7Ak:+l)-

3.2 Weighted geometric means of k operators, type II

We want to construct a weighted geometric mean by another way. For real numbers
aq, g, i3 satisfying al,a2,oz3 >0, a1 + as + a3 = 1. Define {4(”} {A(’" } and {4 r)}
by A1 = A1, 42(1) = 4o, AL = A5 and

A (r+1) A(’”)#l e A( )#__3_A<r)

1 Y
AT = AP, Aé”#l_%AY’ , (3:2)
Ag"-’—l) — Ag}')#l—aa Ag_r)#_gz_Aér)

We want to show that they converge to the same limit by a method without using the
Thompson metric.

Proposition 3.2.1. Let {A{"}, {A{"} and {AP} be the sequences given above. Then the
sequences converge (with respect to strong operator topology) and have a common limit,

which we denoted by
G =G (051, Qg, (3] Al’ A27 A3)

Here S = {id, (123), (123)?} is a subset of S(3). Moreover, the limit G, is permutation
invariant with respect to S, (more precisely, with respect to S(3).)

Before the proof of the proposition we prepare a useful lemma:

Lemma 3.2.2. Let {A{} and {B{"} be sequences of positive operators such that 0 <
ml < Ap,B, < MI for some scalars m and M, and let h be real number satisfying
O<h<l.IfE,:=(1—-h)A,+hB, — Ap#1,B, — 0 then A, — B, — 0 (as n — 00).

Proof. First note that for any ¢ > 0,
(1— k) +ht —t* > min{h, 1 — h}(1 — £3)2,

_1 ! 3
From this inequality, replacing ¢ by A ?B,An? and multiplying both hand sides by A2
from the left and the right, we can obtain

(1 = h)An + hBy — Ay#s B, > min{h, 1 — h}AI{I — (A7 B, 47331248

Hence, if E, — 0 then (putting C, = (A;%BnA;%)%) we have AE};(I - CZ’,,)"’A,%l - 0, so
1
that also (I — C,)AZ — 0. Henc we have, using boundedness assumption,

An =B, = ARl - C?) A = AF (1 + C)(I - C,)AF — 0.
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Proof of Proposition 3.2.1. From Young inequality. we have

AT @Al (1 ) (44 2y A1)

Put C{") = 4(”# 43 ") then we obtain

A < a1A§” + (1= @)C” < mA + az40 + 034D - D,

Similarly we obtain

AL < g AP +H(1-00) (AP # 21 AD) = 0240+ (1-0)Cf < 01 AP +40 105D -

AT < 03 AN 4+ (1—a) (A‘ # o1 A(’)) = a3 AV +(1-a3)C{” < 01 A7+, AV + A - ..

Put D® = 0, AP + 0,4 + a3A”. By simple computation of (D xa1+ @ xaz+ @
xa3)DT+1) | we then obtain the following inequality:
ar AT 4 ap AT 4+ 03 AT < (%) € 01 AT + 0,40 + 0,40 (= D),
Here we put
() = 247 + 0ZA + 24T + 01 (1 — 01)C7 + (1 — 3)CS” + a3(1 — 03)CS.

Note that E( := D) — (x) < D) — Dr+1) 5 0 (as r — oo) since {D("} is decreasing

and convergent, which is
o

AN

E® = aq {ar AP + AL — (a1 + a) (A“)# A(’))}

[(")
+or {asAJ” + 0n AP — (a5 + on) (A(r)#a e Agr))}
I(")

“+a {agAgr) + a3A:(; ") (ag + a3) (A( )# a A(T))}

@ +a
= a3I§T) + 02I2(r) + allg(,’).
We can see the following fact:

I = (0q + a){(1 — B) AL + hAJ) — AD#, 4D} > 0,

a2
where h = P

In the same manner, we can obtain I{", I{” > 0.
Hence we can see that I\7, I{”), I{”) converge to 0 (as r — 0o), respectively. Hence from
Lemma 3.2.2 {A{"}, {A(')}, {A(')} converge to a common limit, which is desired.

Remark 3.2.3. We used the inequality:
#(a, 8,7 A, B,C)(= A#)_a(B# 2.C)) < cA+ (1 - a) (B#,C).
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But the following inequality doesn’t hold (by computer simulation).
Gy3(@, 8,7 A, B.C) S ad+ (1—a) (B#.2C). (3.3)

,_[10 10 1 (41 49
A_[O 1J’B_[1 O.QJ’C“[4.9 6.1J
and for real numbers «, 3,y satisfying a = S =v = % Then

. 1.660 083 0.623 133
Left side of (3.3) = G 3 (4. B,C) (= G (5554 B.C)) = | 1523 133 0,836 280 ] '

1.612 274 0.535 159
0.535 159 0.904 775

Let

Right side of (3.3)= 1A+ 2(B#C) = [ J Z Left side of (3.3).

For k operators A,,... , A; on Q and real numbers a, . .. , ay satisfying ay,... ,ar > 0
and a; + - + ax = 1, we define
k-2
g N—
#an, ... a5 ;AL ... Ax) i= Ar#o, (As#ta, - - (Akc1 o Ak ) -+ 0).
Here the above real numbers z, ... ,z_; are solutions of the following equations:

l-—2z, =a,

z1(1 ~ z2) = oy, ‘

............ , (3.4)
Ty Th-2(1 — T—1) = g1,

Ty Tp-1 = O.

(i) If A,,..., Ay commute with each other, then
#(ar, ... 0k AL, ..., Ag) = AD - - AR,
(11) #(ah"' y Ok ;Ah'" 7Ak) = Al#l—m (# (1—3‘2:-1" 71%2,? ;A27"' 7Ak))

Before we show a main result in this section, we state a lemma which extends Lemma
3.2.2. (We can prove it by induction.)

Lemma 3.2.4. Let {A&")}, .., {A™} be sequences of positive operators such that 0 <
ml < A; < MI (i=1,...,k) and let h; be real numbers satisfying 0 < h; < 1,55 h; =
1. If

k
E, =S RA™ —#(hy, ... by ; A™, .. A S0,
i=1
then for all i,j (i # j), AE") - Ag") — 0 (as n — ).

Theorem 3.2.5. Let A,,..., A be k operators in Q. For real numbers oy, ... , o satis-
fyingay,... o6 >0, a1+ +ar=1, and S = {m,...,m} C S(k), we define the
sequences {A}, ..., {A"} as follows:

A§1)1=A,' (i=1,--' ’k)’ fO’I"TZ 1’
A§r+ ) = #Wl(ala- . 7ak‘ ;Alyo . e )Ak) = #(a‘ﬂ'l(l)7"‘ ,aﬂ’]_(k) ;A"rl(l)’ e ’A"rl(k))’

(r+1) ’ 33'5)
Ak = #ﬂ'k(al, cee 3 O ;Al, ‘e ,Ak) = #(a,,k(l), ey a,,k(k) ;Am,(l), e ,Am.(lc) .

oooooooooooo
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Then the above k sequences converge and have a common limit (denoted by)
Gy =Gylon, ... ok i Arye oo, A,

For this mean G, the following facts hold.
(i) If Ay, ..., Ay commute with each other, then G, = AT* - -+ A%,
(ii) G has the properties PW1-PW10 except PW3.
(111) If the subset S is a subgroup of S(k) with order k, and if foro € S

(M0, ... ,Tk0) = (To1)y - -+ s Ta(k))s

then G is permutation invariant with respect to o (o-p.i.).

Proof. First by using Young inequality, we can see (by induction) that

1
AT < gy AT + (1= am @) {# (@ (2)r - 1 Oy § Am@)s -+ Ami)}
< AP + -+ gAY

1 r ‘
Al < am(l)ASr,.)u) + (1 — an,H{F# (@ 2)r - s U k) 3 Ama(@)s - -+ » Am(i) }
< alAY) + -+ O!kAgcr).

Qi (5
Here o, ;) = —l)  If we write
i\J 1 _— aﬂ’,‘(l)

O = #(0l1yr- -+ » Oy 3 Am2)s -+ » Ami(ry) and DO = X, 0, AP,
then from the above inequalities

D(T+1) — alAgT-Fl) N C!/CASCT+1)
< o1 {anmAT ) + (1= an@)C )+ + o {ommADG) + (1 = anw)C}
S alD(r) + P + akD(r) ] D(T)'

We then see that {D(} is a decreasing sequence (with a limit which we shall define as
G;), so that if we put

E® = ay {om,yATy) + (1 — am@)C} + - + o {omy ALy, + (1 — am@)C7

then D™ — E(M 5 0 as r — oco. Note that
k
D — EO =3 oI,
i=1
where
I = D — an,0) A7) ~ (1 = ary))C}”

k k
= 3 aeAS')—( S a,)-{#((ag)’),¢,j(1);(Aﬁ’))#,r,-(l)}

£=1,t#m;(1) =1, (1)

k k '
= (l > at) { > (@) A7 — #(@))ernm) ;(Agr))l;hrj(l)}-

=1,87#m;(1) £=1,0#7;(1)
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Hence since I}r) > 0 for each j by Young inequality, we see that I](-r) — 0 (from D™ —
E™ — 0). Hence by Lemma 3.2.4 we have A!" — Agr) — 0 for all 4, 5,7 # j. Now

k
D — 4 = 3 ay(A]) - Ay — 0,
£=1,4#5

which implies that all Ag-r) (j=1,...,k+1) have the same limit as D).

For the facts (i)-(iii), (i) is easy and (ii) can be shown by induction without difficulty.
So it suffices to show (iii). Let S = {my,... ,7x} be a subgroup of S(k), and let o be an
element in S. Put

(/Bh R 7)6k> = 0'((11, s 7ak) = (ao(l)a s ’ao(k))> i-e-y /Bz = Qg(3),
and
(B1,...,Bg) = o(Ay,... yAg) = (Aa(l),- .. ,Aa(k)), ie., B; = A,,(i).

We define sequences {B{"},...,{B{"}, similarly as, {A{"},...,{4"} by (3.5), that
is,
B,(l) =B; (i=1,...,k), and forr > 1,
B = #(mi(By, ..., B B, ..., BM)).
We then want to show, by induction on r, that

B{” =AY fori=1,... ,k, and for r > 1, (36)

which implies that all sequences {B{"}, as a whole, coinside with those of {A{M}, so that
G is invariant with respect to 0. Now for (3.6), it is clear for r = 1. So assume that (3.6)
holds (for r). Then

B = #m(By,... B ; B, ..., BY)
= #71i(Ue(), - - - » Ao(k) ;Ay()l),... ,Aﬁ,’(),c))
= #mo(oy,... o6 ; AT, .., A
= #m06) (01, ...,k ;A(lr),... ,A;cr))
= AUY.
Example 3.2.6. Let S = {m, ms, 73, m4} C S(4), with
(1,72, 73, ma) = (id, (12)(34), (13)(24), (14)(23)).

If 0 = 7y, then

(7710'3 20, T30, 7!'40') = (7!'2, Ty, T4, ”3)7
and

(7ra'(1)a Ta(2)> 7Ta(3),7fa(4)) = (ma, 1, T4, T3).
Hence by Theorem 3.2.5 (iii), G is o-p.i..

Example 3.2.7 Let p = (12.-.k) € S(k) be a cyclic permutation of k letters, and let
S = {m,...,m} with m; = p*~1. If o = p?, then

(7(’10’, <. ,71’[;0') = (p]1 seey k+j_—1) = (Trj+17 s ’7rk+j)'
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For (ps(1):- - - Po(k)), Since

; ; 1 2 k .. .
I =(12--- k) = i
ol =(12---k) < 147 245 . k4 > (k + £(> k) is identified with £),

we see 0(1) =1+ j,...,0(k) =k + j, so that
(Trcr(l)’ s 77ra(k)) = (7rj+1a S 77rk+j)~

Hence Gg is o-p.i..

Example 3.2.8. Let

5 2 11 10
S FRV IR R R R

Then by numerical computation we have, (discarded less than 107¢))

2.039 159 0.903 343
0.903 343 0.890 577

forT = G’#% € G(3).

Gr(}, 3,4 541, 4y, 45) = [ ] (= B" = B{” = B forr>3).

2.050 390 0.911 941
0.911 941 0.893 311

for S = {id, (123), (123)?} C S(3).

|

GS(%? %’% ;AI’A2aA3) = [ ] (= Agr) = Ag‘) = Ag’”) for r 2 4)

Example 3.2.9. Let

RS FE R F

Then by numerical computation we have, ( discarded less than 1078,)

- O

Gs, = Gs(i5 8 3 33 A1, A2, As, Ag)
_ [ 1.241 669 0.467 074 ] (= AP = 4D = AD = AD forr > 4)

= [ 0.467 074 0.981 064
for Sy = {id, (1234), (1234)?, (1234)°}.
GSz = GS(%: 'é'a '}ta %; Ala A2, A3, A4)
1.254 198 0.486 200 | ,_ (1) _ A(r) _ A(r) _ 4(r)
[ 0.486 200 0.985 801 ] (FAT =47 = A7 = A7 forr 2 4)
for S = {(23), (34), (243), (123)}.
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