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Can distributed delays perfectly stabilize dynamical networks?

Takahiro Omi* and Shigeru Shinomoto†

Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
�Received 18 October 2007; revised manuscript received 12 February 2008; published 17 April 2008�

Signal transmission delays tend to destabilize dynamical networks leading to oscillation, but their dispersion
contributes oppositely toward stabilization. We analyze an integrodifferential equation that describes the col-
lective dynamics of a neural network with distributed signal delays. With the � distributed delays less dis-
persed than exponential distribution, the system exhibits reentrant phenomena, in which the stability is once
lost but then recovered as the mean delay is increased. With delays dispersed more highly than exponential, the
system never destabilizes.
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I. INTRODUCTION

Computational capability of neural networks had been
discussed utilizing the robust stability achieved with the co-
operative interaction among neurons. In model networks, the
stability can easily be obtained by introducing the delayless
symmetrical connections between neurons �1,2�. However,
the transmission delays unavoidably present in hard-wired
networks may destabilize the system causing the oscillation
or chaos �3–6�. On the other hand, the distribution of delays
contributes toward stabilization, in neural networks �7,8�,
ecological systems �9,10�, control engineering �11,12�, biol-
ogy �13�, or coupled dynamical systems �14–18�. In the
brain, the signal transmission delays are widely distributed in
time �19–23�.

In the present paper, we wish to fully comprehend how
the macroscopic stability of dynamical systems is controlled
by these competing factors; the mean and the dispersion of
delays. For this purpose, we examine the stability of an in-
tegrodifferential equation �13,24,25� derived from micro-
scopic dynamics of a neural network whose signal transmis-
sion delays are distributed in time. It is revealed from the
analysis that the network with � distributed delays less dis-
persed than exponential distribution exhibits reentrant stabil-
ity; the system once destabilizes but then recovers the stabil-
ity as the average delay is increased. With delays dispersed
more highly than exponential distribution, the system attains
a perfect macroscopic stationarity.

This paper is organized as follows. In Sec. II a dynamical
equation for the macroscopic order parameter is derived. In
Sec. III the linear stability of the steady state for the macro-
scopic dynamical equation is analyzed. In Sec. IV the raw
macroscopic equation is analyzed numerically for several de-
lay distributions. In Sec. V the condition for the perfect sta-
bility is sought. In Sec. VI the microscopic dynamics are
numerically simulated to compare with the result of the mac-
roscopic equation. In Sec. VII the effect of the distributed
delays for the occurrence of macroscopic oscillation is dis-
cussed.

II. DERIVATION OF A MACROSCOPIC
STATE EQUATION

We consider a network of model neurons that obey the
evolution equation

�
dxi�t�

dt
= − xi�t� + sgn��

j=1

n

wi,jxj�t − di,j� + si� , �1�

where sgn�v� is the sign function that takes values +1 and
−1, respectively, for v�0 and v�0. � is the “membrane
time constant” of an individual neuron. The “synaptic
weight” wi,j and the signal transmission delay di,j are fixed to
each transmission line from jth neuron to ith neuron �Fig. 1�.
si is the “external stimulus” to each neuron.

A dynamical equation of the macroscopic order parameter
X�t�� 1

n�i=1
n xi�t� can be derived in a manner similar to what

we have done for the discrete time model �8� in parallel with
Amari’s derivation for the synchronous update rule �26–29�:
A mean field exerted on X�t� is given by the difference of
ratios of positive and negative inputs. Using the distribution
pt�v� of inputs 	vi=� j=1

n wi,jxj�t−di,j�+si
 at time t, the mac-
roscopic equation can be represented as

�
dX�t�

dt
= − X�t� + �

0

�

pt�v�dv − �
−�

0

pt�v�dv . �2�

Under the assumption of the statistical independence of
	xj�t−di,j�
 from 	wi,j
, the central limit theorem holds for the
summed inputs 	� j=1

n wi,jxj�t−di,j�
. If in addition 	si
 are nor-
mally distributed, the distribution pt�v� can be approximated
as Gaussian characterized solely by the mean and the vari-
ance at time t. Then, the macroscopic state equation is ob-
tained as
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FIG. 1. �Color online� Schematic diagram of distributed signal
transmission delays.
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�
dX�t�

dt
= − X�t� + F�I� , �3�

where F�x� is the error function

F�I� =� 2

�
�

0

I

e−x2/2dx , �4�

and I is the ratio of the mean and the standard deviation of
inputs 	vi
 to neurons

I =
n�w
x� + �s

�n��w
2 + �w

2 �
x2� − n�w
2 
x�2 + �s

2
, �5�

where �w, �s, �w
2 , and �s

2 are, respectively, the means and
variances of 	wi,j
 and 	sj
.

Under the assumption that microscopic states 	xi
 are sta-
tistically independent from delays 	di,j
, the mean past activ-
ity 
x�� 1

n2 �i=1
n � j=1

n xj�t−di,j� can be represented by the mac-
roscopic order parameter �8� as


x� �
1

n2�
i=1

n

�
j=1

n

xj�t − di,j� = �
0

�

g�s�X�t − s�ds , �6�

where g�s� represents the distribution of delays. 
x2�
� 1

n2 �i=1
n � j=1

n xj
2�t−di,j� remains close to unity, if individual

microscopic states are always approaching swiftly either of
	1.

If n��w
2 +�w

2 �
�s
2, or if 
x2� can be approximated as unity,

then the dynamical equation �3� is closed with the macro-
scopic order parameter X�t�. Furthermore, if the model pa-
rameters satisfy n�w

2 
n�w
2 +�s

2, the evolution equation sim-
plifies to

�
dX�t�

dt
= − X�t� + F�W�

0

�

g�s�X�t − s�ds + S� , �7�

where W=n�w /�n�w
2 +�s

2 and S=�s /�n�w
2 +�s

2. Note that
n�w

2 
n�w
2 +�s

2 is not an essential condition for a macro-
scopic equation �7� to hold but is merely introduced to make
the analysis simpler.

The Eq. �7� is similar to the macroscopic equation derived
by Wilson and Cowan �30�, and also to the firing rate neuron
model with synaptic filtering �31�. These conventional stud-

ies have reduced the integrodifferential equation into a de-
layless differential equation assuming that signal transmis-
sion delays are sufficiently short in comparison to the time
scale of single neuron dynamics. The oscillation may emerge
even in the delayless system due to the interaction between
the groups of excitatory and inhibitory neurons.

In the present study, we accept the fact that signal trans-
mission delays in biological networks are widely distributed
in time, and would like to examine the cases in which the
distributed delays play a central role in the dynamics
�7,8,32–34�. We directly treat this integrodifferential equa-
tion �7� and investigate the influence of the dispersed delays
on the macroscopic stability of the system. We adopt here the
� distributed delays

g�s� =
�

����T
��s

T
��−1

exp�−
�s

T
� , �8�

which is characterized by the scale factor T representing the
average delay, and the shape factor � representing �inversely
related to� the dispersion of delays �Fig. 2�. ���� is the �
function defined by �0

�x�−1e−xdx.

III. LINEAR STABILITY ANALYSIS OF MACROSCOPIC
STATIONARY STATES

In this section, we perform the linear stability analysis of
the macroscopic Eq. �7�. In the absence of the transmission
delay, the system is perfectly stable for an arbitrary set of
model parameters. The system may be destabilized by trans-
mission delays, causing oscillation. We examine how the
parametric range for oscillation varies with the scale factor
representing the mean transmission delay and the shape pa-
rameter representing the dispersion of delays.

The macroscopic Eq. �7� is linearized with respect to the
deviation from a macroscopic stationary state X�t�=X0 that
satisfies X0=F�WX0+S�. The characteristic equation for the
linearized integrodifferential equation is obtained by putting
X�t�−X0=exp��t /�� as

�1 + ���1 + �T/���� = 
 , �9�

where 
 represents the slope of the response function,


 � �dF�WX + S�
dX

�
X=X0

. �10�

For positive 
, the system exhibits instability ��0 if the
response function F�WX+S� has a slope greater than unity,

�1. In this case, the system eventually attains one of stable
stationary states due to the nonlinear saturation.

A dynamical instability leading to oscillation may take
place for negative 
. In this case, the linear-stability bound-
ary is obtained by solving a pair of simultaneous equations
that represent the condition for the characteristic equation �9�
to have a pure imaginary solution �= i�:

arctan��� + � arctan�T�/��� = � , �11�


2 = �1 + �2��1 + �T�/���2��. �12�

Equation �11� has a solution only if ��1. In the limit of
T /�→0, � is obtained as

1 2

1

0
0

g κ
(t

)

t

κ = 1

κ = 5

κ = 0.5

3

FIG. 2. �Color online� The � distributions of identical means
�T=1� with different shape factors: Exponentially distributed
��=1�, with the standard deviation identical to the mean; more
dispersed ���1�, with the standard deviation greater than the
mean; less dispersed ���1�, with the standard deviation smaller
than the mean.
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� � ���/T�tan��/2�� , �13�

and critical 
 is obtained from Eq. �12� as


 � − ���/T�tan��/2���1 + tan2��/2����/2. �14�

In the opposite extreme of T /�→�, � is obtained as

� � ���/T�tan��/��, �� � 2� , �15�

� � tan���1 − �/2��, �2 � � � 1� , �16�

with which the critical 
 is obtained, respectively, as


 � − �1 + tan2��/����/2, �� � 2� , �17�


 � − 	�T/���tan���1 − �/2��
�

� 	1 + tan2���1 − �/2��
1/2, �2 � � � 1� . �18�

Figure 3 depicts the stability boundaries in the phase space
of 	T /� ,−

 obtained by numerically solving Eqs. �11� and
�12� for several shape parameters �: With identical delays
��→��, the critical coupling strength �
� decreases mono-
tonically with the average delay T. In other words, the sys-
tem becomes more fragile with delays. This fact is consistent
with the knowledge that the transmission delay is a destabi-
lizing factor. It is notable that a system with dispersed delays
exhibits reentrant phenomena; the stability is once lost but
then recovered as the average delay T is increased. With the
delays of small dispersion �2�����, the critical �
� re-
bounds and then saturates to a finite value. In a middle range
of dispersion �1���2�, the critical �
� takes a minimum
and diverges with T. With the delays highly dispersed ��
�1�, the network never destabilizes.

In most cases, the critical �
� increases with the dispersion
of delays 1 /�. However, there are cases in which the critical
�
� decreases with the dispersion. Figure 4 depicts how the
critical �
� depends on the dispersion of delays 1 /�, for vari-
ous mean delays T.

IV. NUMERICAL ANALYSIS OF THE MACROSCOPIC
STATE EQUATION

Next, we numerically solve the macroscopic evolution
equation �7� to see if there is nontrivially coexisting oscilla-
tion or chaos in the parameter range in which the linear sta-
bility is confirmed. For this purpose, we have tested a num-
ber of random initial conditions of various power spectra;

from white �jagged� to colored �smooth� random temporal
patterns.

Solving an integrodifferential equation is generally a hard
computational task. In some particular conditions, however,
the computational complexity can be reduced drastically by
devising efficient algorithms: For the exponential distribu-
tion of delays ��=1�, the mean past activity �0

�e−sX�t−s�ds is
represented by

At = �
j=0

�

e−j�X�t − j�� , �19�

where � is a unit step. Due to the exponential kernel, At can
be obtained by simply iterating the recurrence equation

At = e−�At−� + X�t� � � . �20�

In addition, for the case of �=2, the computational complex-
ity could be reduced by utilizing the relation of

te−t �
e−t − e−�1+��t

�
, �21�

with sufficiently small ���.
To the extent we have examined, we have not found any

nontrivial coexisting dynamical orbits in the parameter range
that the linear stability is guaranteed. Figure 5 shows an am-
plitude of X�t� obtained for the systems with shape param-
eters of �=2 and 1. In the case of �=2, a significant ampli-

κ=1.5
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κ=3

κ=2

0.01 0.1 1 10 100 1000
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T/τ
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FIG. 3. The stability boundaries in the space of 	T /� ,−

 ob-
tained for several shape parameters �=1.5, 2 , 3 , 10000.
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FIG. 4. The dependences of critical −
 on the dispersion of
delays 1 /�.
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FIG. 5. The amplitude of X�t� numerically obtained for W=
−25 and S=0, �
=−20�; The linear instability boundaries for �=2
are T /�=0.254 and 15.7 and depicted by the arrows. They coincide
with the critical points at which the system numerically shows re-
entrant stability; The system with delays exponentially distributed
��=1� always remains stable. The dynamics of the order parameter
X�t� for �=2. �a� T=0.1, �b� T=4, �c� T=20 will be illustrated in
Fig. 8.

CAN DISTRIBUTED DELAYS PERFECTLY STABILIZE … PHYSICAL REVIEW E 77, 046214 �2008�

046214-3



tude of X�t� can be observed in the interval of mean delay T
in which the system is linearly unstable. For the shape pa-
rameter �=1 with which the system is linearly stable, the
amplitude is negligibly small in the whole range of T.

V. VARIOUS DELAY DISTRIBUTIONS

What is the key factor in the perfect stability? As the
system shows a perfect stability in the absence of delay, we
suspect if a fraction of instantaneous signal transmissions
lead to the stability for ��1. We examine the stability of a
system with the delay distribution composed of two delta
functions peaked at zero and finite delays a��t�+ �1−a���t
−T�. It is found from the characteristic equation that the
system can be destabilized even if delayless lines are present
in a finite fraction 0�a�1 /2. This fact demonstrates that
the presence of instantaneous signal transmissions alone does
not necessarily induce a perfect stability.

Next, we suspect if the long tail of the delay distribution
has led to the stability. We examine whether or not a system
remains stable even if a lag is added to � distributed delays

�8� as ��t−��g�t−��, where ��x� is the Heaviside step func-
tion ��x�=1 if x�0 and =0 otherwise. In the presence of a
lag ��0, the instability condition equation �11� is modified
as

arctan��� + � arctan�T�/��� + ��/� = � . �22�

This characteristic equation possesses a solution even for the
case of a high dispersion ��1. This implies that the perfect
stability can be destroyed by a time lag. As long as the time
lag � is small, however, the system exhibits an instability at a
very high frequency of the order of �� /�, and the amplitude
of the order parameter X�t� cannot grow large due to the
nonlinearity of the system. This point is verified by directly
solving the original nonlinear macroscopic evolution equa-
tion. Figure 6 compares the order parameters X�t� computed
for the several kinds of delay distributions: the system of �
=2 may exhibit a large amplitude X�t�; the system of �=1
has never yielded a significant amplitude X�t�; the system
with � distributed delays of �=1 accompanied by a small
time lag � /�=0.01 has yielded an order parameter X�t� rap-
idly oscillating with a small amplitude.

VI. NUMERICAL SIMULATION OF MICROSCOPIC
DYNAMICS

In this section, the microscopic evolution equation �1� is
numerically simulated to examine the validity of the mean-
field

t/τ

-0.6

0

0.6

0 2 4 6 8 10

X
(t)

FIG. 6. �Color online� The macroscopic order parameters X�t�
numerically obtained for the cases of W=−1250 and S=0, �

=−1000�, and T /�=1. Solid line: Oscillation observed for the shape
parameter �=2. Dashed line: Stability observed for �=1. Dotted
line: Rapid oscillation of small amplitude observed for the � dis-
tributed delays of �=1 accompanied by a time lag of � /�=0.01.
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FIG. 7. Emergence of macroscopic oscillation. The dashed line
represents the amplitude of the order parameter evaluated by nu-
merically solving the mean-field equation �7� with parameters �
=5, T=1, W=w05, and S=0. Error bars represent the distributions
of the order parameter amplitudes obtained from simulating twenty
networks of n=500 neurons whose microscopic parameters were
independently sampled: External stimuli to individual neurons fixed
in time were drawn from the Gaussian distribution of the mean
�s=0 and variance �s

2=10000. The synaptic couplings and the time
scale of the individual dynamics were set uniform: wij =w0 and �
=1. The delay intervals 	dij
 were derived from the � distribution of
�=5 with the mean T=1.
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(b)T=4

(c)T=20

Macroscopic

Equation
n=800n=100

FIG. 8. Order parameter dynamics obtained with the numerical
simulations of the networks of n=100 �left� and n=800 �middle�, in
reference to that of the macroscopic equation �right�. The micro-
scopic parameters n=100, �s=0, �s=4, w0=−1, �=2 �left� and
n=800, �s=0, �s=32, w0=−1, �=2 �middle� correspond to the
parameters of macroscopic equation W=−25, S=0, g�x� :�=2
�right�. Simulations for �a� were carried out with distributed delays
of the mean T=0.1. The individual delays 	dij
 were increased from
�a� by 40 for �b� and by 200 for �c�.
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approximation we employed in deriving the macroscopic
equation by comparing the network dynamics with the solu-
tion of the mean-field equation �7�. In Fig. 7, the distribu-
tions of the order parameter amplitudes obtained by simulat-
ing twenty networks of n=500 neurons are compared to the
solution of the macroscopic Eq. �7�. The agreement between
these results demonstrated in Fig. 7 confirms the numerical
validity for the mean field approximation employed in deriv-
ing the macroscopic equation.

Next, the reentrant phenomenon of the macroscopic oscil-
lation is examined with the numerical simulation of the mi-
croscopic equation. Figure 8 compares the temporal dynam-
ics of the order parameter for the networks of n=100 �left�
and n=800 �middle�, in reference to that of the macroscopic
equation �right�. The mean delay T is increased from the top
�a� to the bottom �c� in Fig. 8 so that the network parameters
become identical to three points �a�, �b�, and �c� in Fig. 5. By
increasing T from �a� to �b�, the macroscopic oscillation
emerges. By increasing the mean delay further to �c�, the
stable macroscopic oscillation disappears: Although some
noisy fluctuation remains in the smaller network of n=100, it
is less prominent in the larger network n=800, implying the
reentrant stability predicted by the macroscopic equation.

VII. DISCUSSION

In the present study, we examined the stability of a neural
network whose signal transmission delays are distributed in
time. The network is found to exhibit a reentrant stability for
the delays less dispersed than the exponential distribution.
The network attains a perfect stability for the highly dis-
persed delays.

We should like to compare the present reentrant phenom-
enon with others �35–37�. For instance, the network exam-
ined by Gerstner consists of spiking neurons that oscillate
autonomously, and exhibits rich reentrance of the macro-
scopic coherence. In the systems of this kind, abundant
phases are yielded by the interaction between the native os-
cillation and the delay. In contrast, the present study adopted
passive elements that do not exhibit autonomous oscillation,
and the whole network neither exhibits oscillation in the ab-
sence of transmission delays. In the present network, the os-
cillatory instability is induced genuinely by the delays and
the stability is recovered due to their dispersion. Thus the
mechanisms of the reentrant phenomena are totally different.

Next, we should like to note that the perfect stability due
to the dispersion was indicated by Eurich et al. �10�. They
proved the perfect stability in the limit of highest dispersion
�→0 in an ecological feedback system. In the present paper,
we have revealed that the perfect stability can be manifested
not only in the limit, but also in a finite range of the disper-
sion or the shape parameter 0���1 for a neural network. It
is desirable to examine the generality of the present findings;
whether or not the perfect stability is achieved solely due to
the delay distribution, irrespective of detailed dynamics of
individual elements.
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